

Original Article

Molecular identification and expression profiling of a novel alpha2-macroglobulin gene in giant freshwater prawn (*Macrobrachium rosenbergii*, De Man)

Wirot Likittrakulwong,^a Uthairat Na-Nakorn,^b Supawadee Poompuang,^b Skorn Koonawootrittriron,^c Prapansak Srisapoome^{d,*}

^a Genetic Engineering, Faculty of Graduate School Kasetsart University, Bangkok 10900, Thailand

^b Laboratory of Aquatic Animal Genetics, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand

^c Department of Animal Science, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand

^d Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand

ARTICLE INFO

Article history:

Received 13 June 2016

Accepted 15 August 2016

Available online 22 February 2017

Keywords:

Aeromonas hydrophila

Alpha-2 macroglobulin

cDNA

Giant freshwater prawn

Immune responses

ABSTRACT

A full-length cDNA encoding a novel alpha-2 macroglobulin (*Mr-2 α 2M*) gene in giant freshwater prawn was cloned and sequenced using rapid amplification cDNA end techniques. The *Mr-2 α 2M* was 5194 bp and comprised a 4560-bp open reading frame (ORF) encoding 1519 amino acid residues. The mature *Mr-2 α 2M* protein had a calculated molecular mass of 168.8 kDa and an estimated pI of 5.14. *Mr-2 α 2M* contained significantly functional domains, including a bait region, a thiol ester motif and a receptor-binding domain, similar to the α 2Ms of other species. Amino acid sequence analysis of α 2Ms indicated that *Mr-2 α 2M* was most similar to the Chinese white shrimp (*Fenneropenaeus chinensis*) α 2M isoform 2 (Fc-A2M-2), with an identity of 58.8%, and the previously identified giant freshwater prawn *Mr-1 α 2M* protein, with an identity of 43.5%. Phylogenetic analysis revealed that *Mr-2 α 2M* was more closely related to Fc-A2M-2 than *Mr-1 α 2M*, which was placed in a different subminor group. Quantitative real-time reverse-transcription polymerase chain reaction assay illustrated that *Mr-2 α 2M* mRNA transcripts were strongly detected in the subcuticular epithelium, heart, midgut and muscle but marginally detected in the hemocytes of normal prawns. Immune response analysis in prawns stimulated with *Aeromonas hydrophila* clearly indicated that *Mr-2 α 2M* was quickly up-regulated to high levels in hemocytes and hepatopancreas after 12 h, in contrast to the expression pattern of *Mr-1 α 2M*. This novel α 2M gene may have unique, important roles in giant freshwater prawn immune systems that differ significantly from those of the previously identified *Mr-1 α 2M* gene.

Copyright © 2017, Kasetsart University. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (<http://creativecommons.org/licenses/by-nc-nd/4.0/>).

Introduction

The giant freshwater prawn, *Macrobrachium rosenbergii*, is an economically important species of aquatic animal in Southeast Asian countries, particularly Thailand with an annual production of approximately 33,000 t, valued at USD 79,096,000 (Na-Nakorn and Jintasataporn, 2012). The major threat to production is white tail disease, which is caused by *M. rosenbergii* nodavirus (MrNV) and extra small virus (XSV) according to Yoganandhan et al. (2006). Infectious diseases caused by bacteria are also major causes of

disease outbreaks and economic losses in the prawn industry. Pathogenic bacteria for prawns, such as *Aeromonas* spp. (Lengbumrung et al., 2007), have been reported. A basic knowledge of immunity is essential to develop practical methods of controlling outbreaks of these diseases in culture systems. Crustaceans lack the adaptive immune systems of vertebrates and have only innate immune systems, which protect against pathogens using physical barriers, humoral and cellular components (Söderhäll et al., 1990). Humoral factors play crucial roles in the immune response by inducing the production of specific immune-responsive proteins in response to different pathogens; of these proteins, α 2M is one of the most important proteins in the immune systems of vertebrates and invertebrates. α 2M is a non-specific protease inhibitor that plays an important function in inhibiting and eliminating

* Corresponding author.

E-mail address: ffispssp@ku.ac.th (P. Srisapoome).

dangerous pathogen proteases (Ho et al., 2009). It also acts against infection by opsonizing phagocytosis and is important in regulating the prophenoloxidase activating cascade (Aspán et al., 1990).

To date, α 2M molecules have been identified and characterized from several vertebrates, invertebrates and even giant freshwater prawn, *M. rosenbergii* (Ho et al., 2009). These studies have demonstrated that crustacean α 2Ms feature important structural components similar to those of vertebrate α 2Ms. However, the immune response of crustacean α 2Ms to invading pathogens and their structural genomic information remains to be fully characterized. The aim of this study was to characterize a novel α 2M gene (*Mr-2 α 2M*) in giant freshwater prawn. The complementary DNA (cDNA) of *Mr-2 α 2M* was isolated from hemocytes, and its amino acid and nucleotide sequences were determined to evaluate the evolutionary relationships with α 2Ms from other organisms. The expression levels of *Mr-2 α 2M* and the previously discovered *Mr-1 α 2M* in the gills, hepatopancreas and hemocytes of normal prawns and prawns challenged with *Aeromonas hydrophila* were determined by quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR). The identification of a second α 2M gene in the giant prawn genome suggests diversification of specific functions in prawn immune systems.

Materials and methods

Cloning and characterization of *Mr-2 α 2M* cDNA

Adult giant freshwater prawns, *M. rosenbergii* (approximately 40–50 g), were purchased from a commercial farm in Nakhon Pathom province, Thailand. The prawns were maintained in fiber-glass tanks under optimal aeration conditions and fed commercial pellets at 5% body weight twice daily for 2 wk. Hemolymph (0.5 mL) was collected by bleeding from the ventral sinus cavity using a sterile syringe containing 0.5 mL of anticoagulant solution (10% trisodium citrate dihydrate; (C₆H₅Na₃–2H₂O) in RPMI 1640 medium plus L-glutamine). The hemocytes in TRIzol reagent were isolated and homogenized using an automatic tissue extractor (MP Biomedicals; Santa Anna, CA, USA) as recommended by the manufacturer's protocol. Total RNA was extracted, and mRNA was purified using an mRNA purification kit (Gibco BRL; Grand Island, NY, USA and GE Healthcare; Waukesha, WI, USA, respectively) according to each manufacturer's protocol. The 5' end ready to use first-stand cDNA, (5'-rapid amplification cDNA end) using the specific primer *Mr-2 α 2M* for rapid amplification of cDNA ends (RACE) as shown in Table 1, DNA cloning and sequencing were performed with the same protocol as described by Toe et al. (2012). Nucleotide and protein sequence similarities and identities of the full length of an obtained cDNA were evaluated with the BLAST algorithm (BlastX and BlastN programs) on the National Center for

Biotechnology Information server (<http://www.ncbi.nlm.nih.gov/BLAST>). The deduced amino acid sequences of giant freshwater prawn α 2M were analyzed using the Expert Protein Analysis System (<http://us.expasy.org/>). Signal peptides were predicted using the SignalP 3.0 program (<http://www.cbs.dtu.dk/services/SignalP/>). N-link glycosylation sites were predicted using the NetNGlyc 1.0 Server (<http://www.cbs.dtu.dk/services/NetNGlyc/>).

Phylogenetic analysis

The nucleotide and amino acid sequences of α 2M in giant freshwater prawn were compared to those of previously identified α 2Ms using the Matrix Alignment Tool software (MatGAT), version 2.02 (<http://ww3.bergen.edu/faculty/jsmalley/matgat.html>). These sequences were retrieved from the NCBI GenBank databases for further analysis using the ClustalW multiple alignment program (<http://www.ebi.ac.uk/clustalw/>). A phylogenetic tree was created based on the deduced amino acid sequences using the neighbor-joining algorithm in the MEGA software (version 5; <http://www.megasoftware.net>). The reliability of branching was tested using bootstrap re-sampling with 1000 bootstrap-replicates.

Tissue distribution analysis of α 2M mRNA by quantitative real-time reverse-transcription polymerase chain reaction assay

Adult male and female giant freshwater prawns prepared previously were used for tissue distribution analysis. Samples of 14 tissues (eyestalk, foregut, gills, heart, hepatopancreas, hemocytes, hindgut, midgut, muscle, ovary, subcuticular epithelium, testis, thoracic ganglion and *vas deferens*) were dissected from these healthy prawns. Approximately 100 mg of each collected tissue preserved in 1 mL of TRIzol reagent was homogenized, and total RNA was extracted as described above. Hemocytes were collected as described previously, and tissues were homogenized in TRIzol reagent (Gibco BRL; Grand Island, NY, USA) using an automatic tissue extractor (MP Biomedicals; Santa Anna, CA, USA). First strand cDNA of each organ was prepared as described in Toe et al. (2012).

One microliter of first-strand cDNA from each of the 14 prawn tissues was subjected to qRT-PCR using a SYBR™ Green kit (Stratagene; La Jolla, CA, USA). Each reaction was performed in a final volume of 25 μ L containing 1 μ L of first-strand cDNA, 12.5 μ L of 2X SYBR Green qPCR Master Mix, 9.5 μ L of dH₂O and 1 μ L (10 μ M) of each specific primer (*Mr-2 α 2M* F1 and *Mr-2 α 2M* R1, Table 1). The reactions were performed in triplicate in a MX3005P real-time PCR machine (Stratagene; La Jolla, CA, USA). The expression level of β -actin was also quantified using the specific primers β -actin F2 and β -actin R2 (Table 1) with the same protocol as in the *Mr-2 α 2M* experiment. The relative expression ratios of the α 2M mRNAs were analyzed using the MxPro qPCR software (Stratagene; La Jolla, CA,

Table 1
Specific primers used in the experiments.

Primer name	Sequences 5' → 3'	nt ^a	Amplicon size	Experiment ^b
β -actin F1	CATCGTTACTAACTGGGACG	20	593 bp	RT-PCR
β -actin R1	AGGATTCCATACCCAGGAAG	20		RT-PCR
β -actin F2	TTCACCATCGGCATTGAGAGGTC	24	197 bp	Real-time PCR
β -actin R2	CACGTCGCACTTCATGATGGAGTT	24		Real-time PCR
<i>Mr-2α2M</i> RACE	GCACTCTACTGCAACAGCATCA	24	4 Kb	5'RACE PCR
<i>Mr-2α2M</i> F1	GATATGAAGTTGATGGAAA	19	154 bp	Real-time PCR (F1,R1)
<i>Mr-2α2M</i> R1	GTGAACCTGGCTGGTACTAA	21		
<i>Mr-2α2M</i> F2	TCTTACTGGAATCTGGTGAGCC	24	385 bp	
<i>Mr-2α2M</i> R2	TGCCACAACTGTATCTGGGTAGA	24		Southern blot analysis (F2,R2)

^a Nucleotide number.

^b RT-PCR = reverse-transcription polymerase chain reaction, RACE = rapid amplification cDNA end.

USA). The relative copy numbers of the target mRNAs were calculated according to the $2^{(-\Delta\Delta Ct)}$ method (Livak and Schmittgen, 2001). The difference in the cycle threshold (C_t) value of the *Mr-2A2M* gene and β -actin (housekeeping gene) was ΔCt . The relative expression levels of α 2M in each tissue were compared to hemocytes as a calibrator. ANOVA was performed to analyze the variations of the relative expression ratios of *Mr-2 α 2M* in each tissue. The expression ratios of *Mr-2 α 2M* in each organ were determined using Duncan's new multiple range test (DMRT) at a significance level of 0.05.

Expression analysis of *Mr-1α2M* and *Mr-2α2M* mRNA in the gills, hepatopancreas and hemocytes of prawn challenged with *A. hydrophila* by quantitative real-time reverse-transcription polymerase chain reaction assay

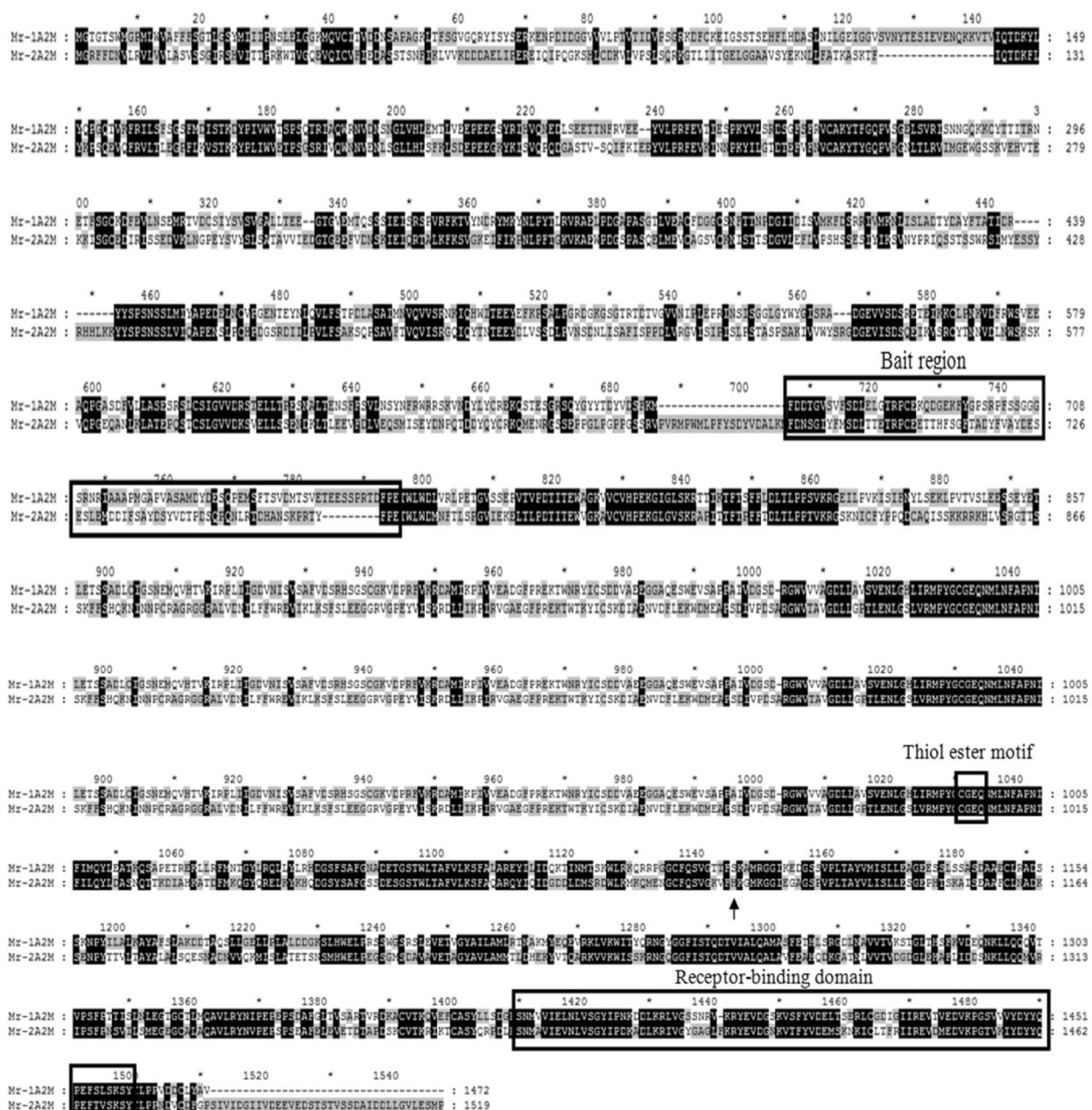
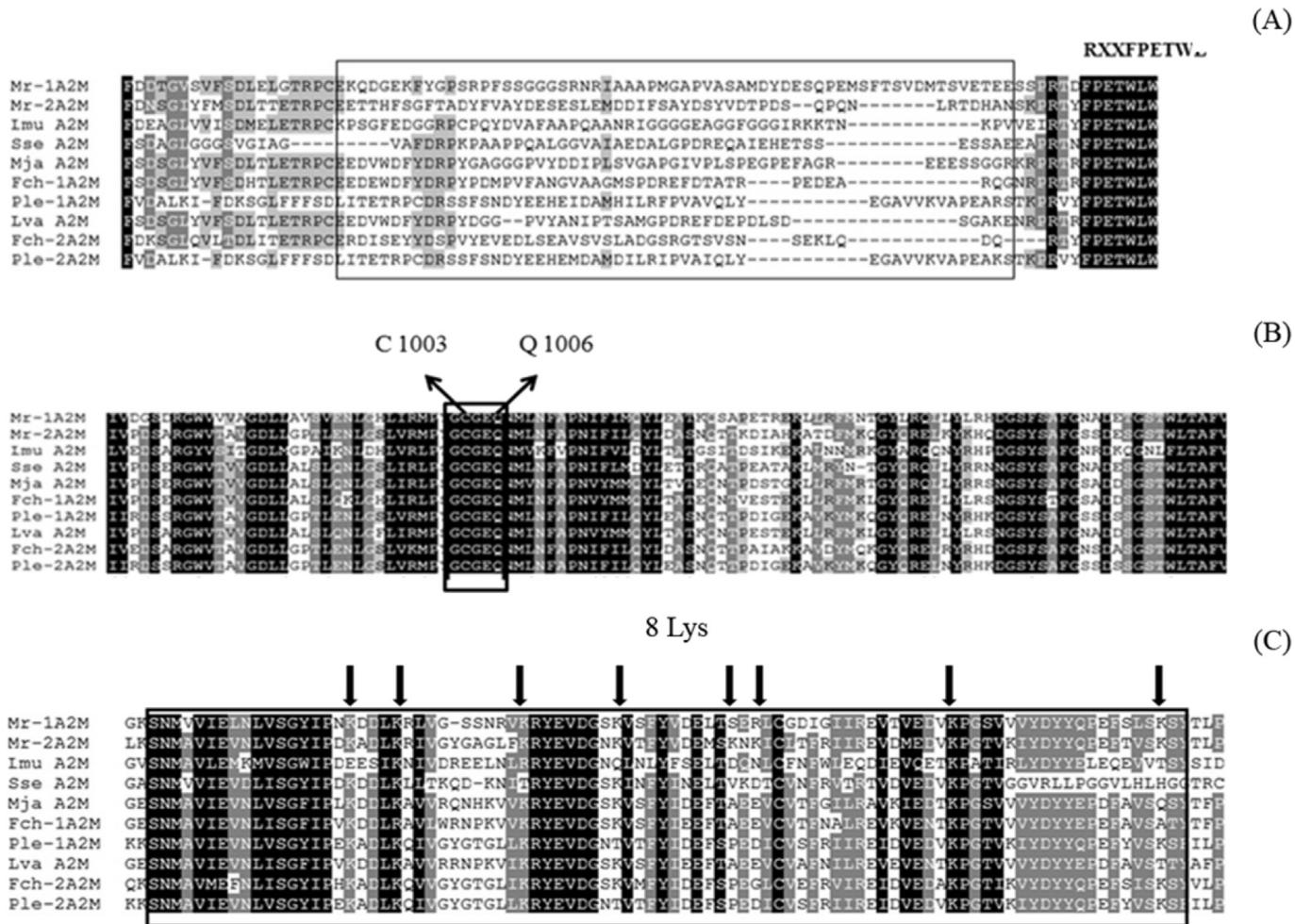

A sample of 72 healthy adult giant freshwater prawns was acclimated in three different fiberglass tanks (24 prawns each) under optimal aeration conditions as previously described for 7 d. During this period, prawns were fed at 7% body weight with a commercial feed twice daily. A single colony of *A. hydrophila* strain

Fig. 1. Nucleotide (above) and deduced amino acid sequences (below) of giant freshwater prawn *Mr-2α2M*. The start and stop codons are in bold. The signal peptide is denoted by a single underline. The asterisk indicates the stop codon. The polyadenylation signals (ATTTAA, CATTAA, and AATAAA) are indicated in bold italic letters. The conserved thioester motif (GCQEQQNM) is shown in a gray background. The putative bait region sequence and the receptor-binding domain are indicated by dotted and solid boxes, respectively. Potential N-link glycosylation sites are in boxed italic letters. The full sequence of *Mr-2α2M* has been submitted to GenBank database under accession number KJ540280.


AQAH01 which is pathogenic to giant freshwater prawn, was obtained from the Laboratory of Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand. It was subcultured in tryptic soy agar (Merck; Kenilworth, NJ, USA) and used to prepare bacterial stocks in tryptic soy broth (Merck; Kenilworth, NJ, USA). The bacterial stock solution was prepared in 0.85% NaCl to obtain an optical density at 540 nm of 0.75, which corresponds to approximately 1×10^{12} colony-forming units (CFU) per mL. This stock was used for subsequent experiments.

Three experimental groups were used. In group I, the control (no bacterial inoculation) was applied. Experimental prawns were intramuscularly injected with 200 μ L of 0.85% NaCl in the 3rd abdominal segment. In groups II and III, all prawns were injected with 200 μ L of *A. hydrophila* solution prepared in 0.85% NaCl

containing 1×10^6 CFU/mL or 1×10^9 CFU/mL of pathogenic bacteria, respectively. The gills, hepatopancreas and hemocytes of three prawns from each group were collected at 0 h, 6 h, 12 h, 24 h, 48 h and 96 h to isolate total RNA and perform first-strand cDNA synthesis as previously described. One microgram of first-strand cDNA from each group of prawns collected at various time points was subjected to qRT-PCR using the specific primers pairs Qpcr-A2M and Qpcr-A2M for *Mr-1 α 2M* (Ho et al., 2009) and *Mr-2 α 2M* F1 and *Mr-2 α 2M* R1 for *Mr-2 α 2M* with the same protocol described previously. The control group was used to calibrate the mRNA expression levels of the normal prawns and the *A. hydrophila* challenge groups. Statistically significant differences between groups at different time points were compared by ANOVA and DMRT, respectively, at a significance level of 0.05.

Fig. 2. Multiple sequence alignment of the amino acid sequences of *M. rosenbergii* 1 α 2M (Mr-1 α 2M, ABK60046) and *M. rosenbergii* 2 α 2M (Mr-2 α 2M, KJ540280). The black-shaded sequences indicate positions that share the same amino acid residues; gray-shaded sequences indicate conserved amino acid substitutions, and light gray-shaded sequences indicate semi-conserved amino acid substitutions. An arrow indicates the amino acids in the corresponding catalytic His position of Mr-2 α 2M.

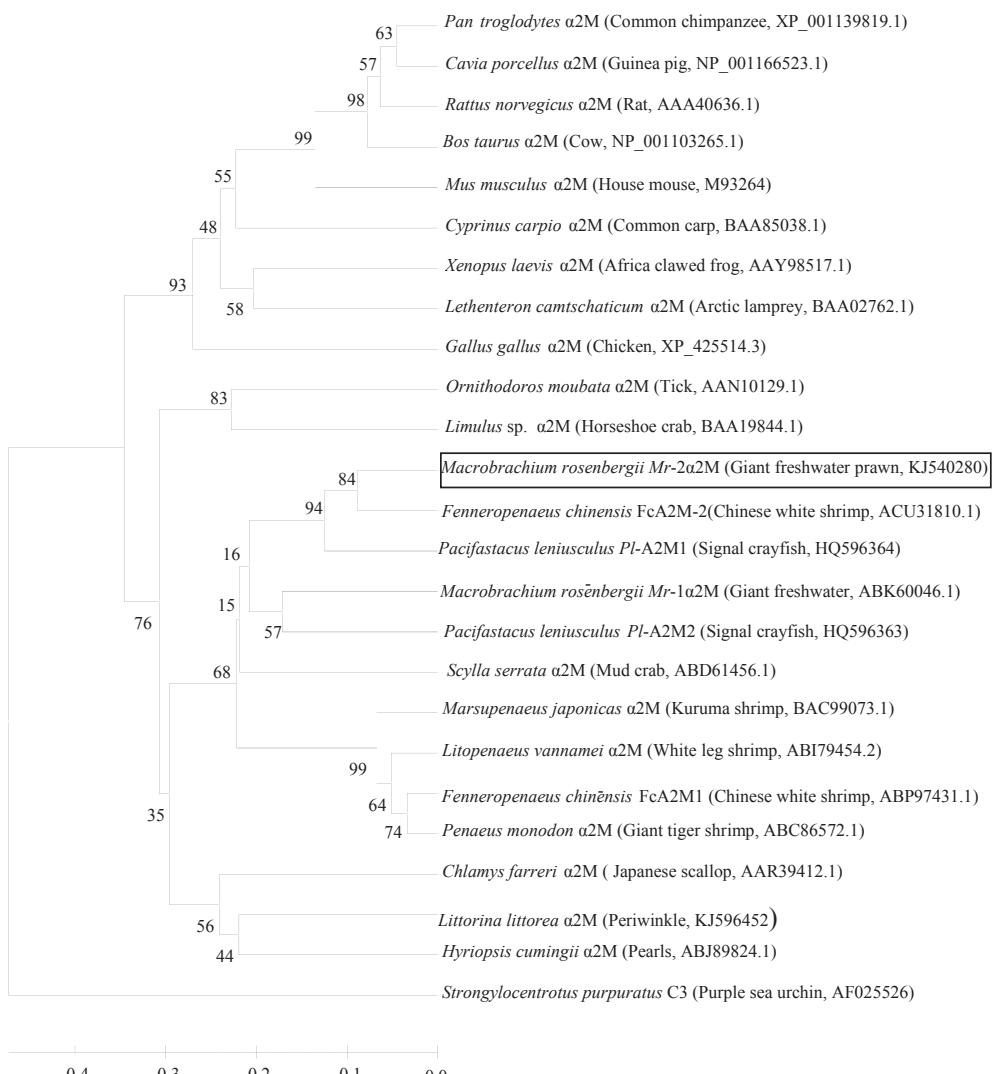
Fig. 3. Multiple alignment of *Mr-2α2M* with other α 2M proteins indicating the conserved domain structure of the bait region (A), thioester motif (B) and receptor binding domain (C). The black-shaded sequences indicate positions that share the same amino acid residues; the gray-shaded sequences indicate conserved amino acid substitutions, and the light gray-shaded sequences indicate semi-conserved amino acid substitutions. Down arrows indicate consensus lysine residues.

Table 2
Comparison of nucleotide and amino acid sequences of *Mr-2α2M* and α 2Ms of other organisms.

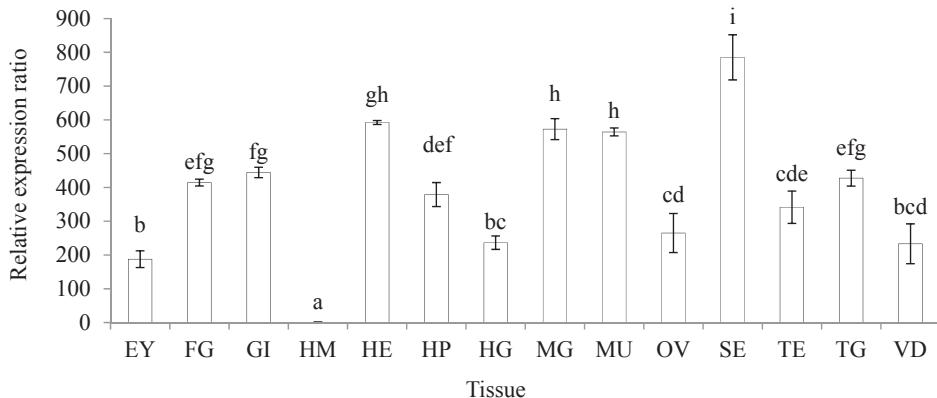
Common name	Species	Abbreviation	Accession number	Amino acid		Nucleotide Identity (%)
				Similarity (%)	Identity (%)	
Mammal						
Common chimpanzee	<i>Pan troglodytes</i>	Pt- α 2M	XP_001139819.1	51.4	30.4	49.2
Cow	<i>Bos taurus</i>	Bt- α 2M	NP_001103265.1	52.1	30.2	48.9
Guinea pig	<i>Cavia porcellus</i>	Cp- α 2M	NP_001166523.1	51.9	30.3	50.1
Rat	<i>Rattus norvegicus</i>	Rn- α 2M	AAA40636.1	51.0	29.7	49.1
House mouse	<i>Mus musculus</i>	Mm- α 2M	M93264	51.1	28.7	49.1
Aves						
Chicken	<i>Gallus gallus</i>	Gg- α 2M	XP_425514.3	42.4	22.5	47.8
Amphibian						
Africa clawed frog	<i>Xenopus laevis</i>	XI- α 2M	AAV98517.1	50.8	29.8	50.5
Fish						
Arctic lamprey	<i>Lethenteron camtschaticum</i>	Lc- α 2M	BAA85038.1	49.4	28.6	47.1
Common carp	<i>Cyprinus carpio</i>	Cc- α 2M	BAA85038.1	48.7	28.2	49.4
Insect						
Tick	<i>Ornithodoros moubata</i>	Om- α 2M	AAN10129.1	53.5	32.7	49.4
Crustaceans						
Horseshoe crab	<i>Limulus</i> sp.	Lmu α 2M	BAA19844.1	52.9	31.6	51.2
Chinese white shrimp	<i>Fenneropenaeus chinensis</i>	Fc- α 2M-1	ABP97431	62.1	40.9	51.9
Chinese white shrimp	<i>Fenneropenaeus chinensis</i>	Fc- α 2M-2	ACU31810.1	74.3	58.8	55.9
Signal crayfish	<i>Pacifastacus leniusculus</i>	Pl- α 2M1	HQ596364	72.5	56.6	54.0
Signal crayfish	<i>Pacifastacus leniusculus</i>	Pl- α 2M2	HQ596363	66.4	47.0	54.9
Giant freshwater prawn	<i>Macrobrachium rosenbergii</i>	Mr- α 2M	ABK60046.1	62.0	43.4	54.4

(continued on next page)

Table 2 (continued)


Common name	Species	Abbreviation	Accession number	Amino acid		Nucleotide Identity (%)
				Similarity (%)	Identity (%)	
Kuruma shrimp	<i>Marsupenaeus japonicus</i>	Mj- α 2M	BAC99073.1	62.8	41.1	51.3
Pacific white shrimp	<i>Litopenaeus vannamei</i>	Lv- α 2M	AB179454.2	62.7	41.4	56.2
Mud crab	<i>Scylla serrata</i>	Ss- α 2M	ABD61456.1	54.6	35.4	45.2
Mollusca						
Scallop	<i>Chlamy farreri</i>	Cf- α 2M	AAR39412.1	48.6	28.5	43.5
Periwinkle	<i>Littorina littorea</i>	Ll- α 2M	KJ596452	45.3	28.4	38.0
Pearls	<i>Hyriopsis cumingii</i>	Hc- α 2M	ABJ89824.1	50.7	29.6	49.1

Results and discussion


Cloning and characterization of the cDNA encoding a second α 2M gene from giant freshwater prawn

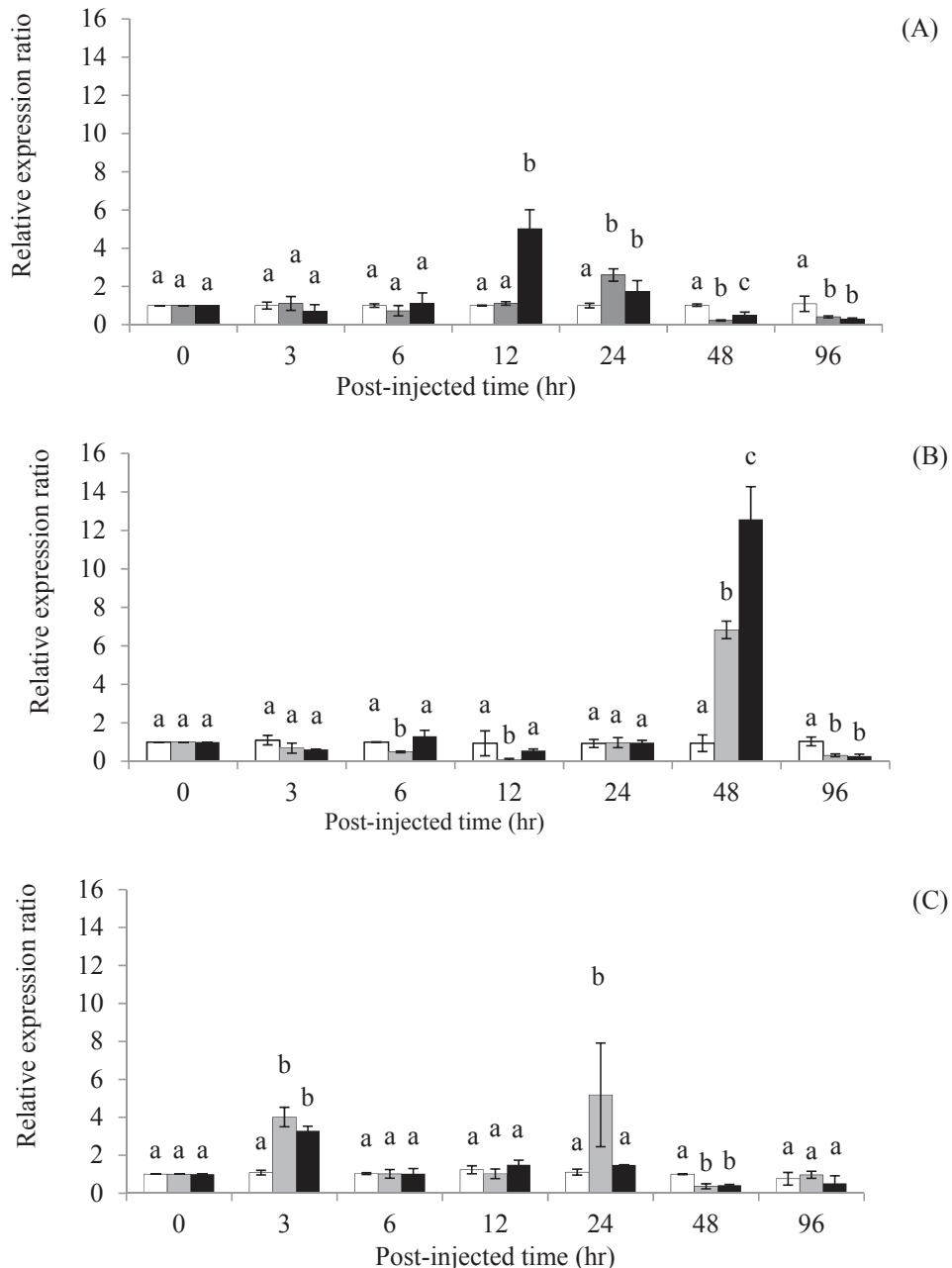
Previous expressed-sequence tag (EST) analyses by the laboratory of Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University (On-ming et al., 2007) revealed 29 sequences with high homology to “Mr-1 α 2M”, which was first identified in

giant freshwater prawn by Ho et al. (2009). Of these sequences, the EST clone “EB210” (accession no. GH624335) was unique because it exhibited some similarity with other α 2M molecules from other organisms. Therefore, the present study sought to reveal novel aspects of the immune system of giant freshwater prawn. Based on comparative analysis of information generated in the present study and by Ho et al. (2009), a full-length cDNA encoding a novel α 2M gene in giant freshwater prawn named *Mr-2 α 2M* was successfully cloned and characterized using the 5' RACE PCR technique.

Fig. 4. Phylogenetic tree of α 2M genes. The values for each internal branch were determined using a neighbor-joining method with 1000 replicates. The common names and accession numbers of each species are provided in brackets after the scientific names.

Fig. 5. Expression profiles of *Mr-2α2M* in various tissues determined by quantitative real-time reverse transcription polymerase chain reaction assay. Columns with different letters indicate significant differences ($p < 0.05$) and error bars show \pm SD. EY = Eyestalk, FG = Foregut, GI = Gills, HM = Hemocytes, HE = Heart, HP = Hepatopancreas, HG = Hindgut, MG = Midgut, MU = Muscle, OV = Ovary, SE = Subcuticular epithelium, TE = Testis, TG = Thoracic ganglion, VD = *Vas deferens*.

Additionally, the analysis of the sequence of *Mr-2α2M* revealed interesting and important information about its structure, evolutionary relationships and expression profiles under both normal and bacterial infection conditions.


The full-length cDNA encoding a new α 2M gene from giant freshwater prawn (*Mr-2α2M*) was cloned using 5' RACE techniques. The full-length *Mr-2α2M* cDNA was 5194 bp (GenBank accession no. KJ540280) and includes an open reading frame (ORF) of 4560 bp, a 5' untranslated region (UTR) of 81 bp, a 3' UTR of 653 bp, and a 16-bp poly A tail at its 3' end (Fig. 1). Five putative polyadenylation signals were characterized, consisting of 1 AATAAA, 1 CATTAAA and 3 ATTAAA. *Mr-2α2M* encodes a protein of 1519 amino acids with a 19-amino-acid N-terminal signal peptide. Structural analysis indicated that the mature *Mr-2α2M* protein has 1500 amino acid residues, a calculated molecular mass of 168.8 kDa, and an estimated *pI* of 5.14. Six putative N-linked glycosylation sites were identified (Fig. 1).

Structurally, there are three different regions in the α 2M molecule. The first is the bait region, which is short and located on the surface of the α 2M molecule. The bait region is normally cleaved after the binding of α 2M to a protease (Ma et al., 2010). The bait region of *Mr-2α2M* is 37 amino acids longer than *Mr-1α2M* (Fig. 2) and shares low identity with α 2Ms of other species and diverges in both sequence and length. These differences strongly indicate that the α 2Ms of giant freshwater prawn vary their bait regions, similar to the α 2Ms of Chinese shrimp (Ma et al., 2010) and freshwater crayfish (Wu et al., 2012). The bait region contains a splice variant to enable reaction with a broad spectrum of proteases (Ma et al., 2010; Rattanachai et al., 2004; Armstrong, 2001). Alternative splicing has also been suggested to generate diversity (Ma et al., 2010; Wu et al., 2012). In addition, variation within the bait region of α 2M increases the diversity of immune recognition (Ma et al., 2010). Thus, the variation of the bait region may affect the expression response to pathogen infection and pathogen reaction with internal proteases. Additionally, sequence diversity within the bait region may reflect evolutionary pressure to react with proteases produced from various pathogens while avoiding inhibiting various essential proteases of the host (Armstrong and Quigley, 1999).

The second region of α 2M is a thioester motif encoded by "GCGEQNM". The covalent binding of this motif to the microbial surface induces phagocytosis or lysis of pathogenic cells (Wu et al., 2012). The thioester motif of *Mr-2α2M* exhibits high identity to the corresponding regions in other α 2Ms (Fig. 3). The thiol ester bond of *Mr-2α2M* forms between Cys1003 and Gln1006, and several conserved amino acid sequences are located near these residues, suggesting that these amino acids may have important functional

or structural roles in protease entrapment (Lin et al., 2008; Qin et al., 2010) as shown in Figs. 2 and 3. In the catalytic position, *Mr-1α2M* contains a catalytic serine (Ser), whereas *Mr-2α2M* contains a catalytic histidine (His) as shown in Figs. 2 and 3. In the Chinese shrimp *Fenneropenaeus chinesis*, there are multiple forms of α 2M (FcA2M-1, FcA2M-2 and FcA2M-3) according to Ma et al. (2010). FcA2M-1 and FcA2M-3 have a catalytic serine (Ser), as in *Mr-1α2M*, and FcA2M-2 contains a catalytic histidine (His), as in *Mr-2α2M*. The functional characteristics of these residues may confer opsonic activity (Ma et al., 2010). Additionally, the catalytic His residue increases the reaction rate of covalent binding of the thioester to hydroxyl groups and water (Nonaka, 2000; Mutsuro et al., 2000). Moreover, *in vitro* mutagenesis of human C3 and C4 has revealed that altering the catalytic His to less nucleophilic residues (Ala, Asn, Ser, and Asp) has similar effects on the substrate specificity of the thioester (Ren et al., 1995; Gadjeva et al., 1998).

Finally, the receptor binding domain (RBD), which is located near the C-terminus, functions in binding to the lipoprotein receptor-related protein (LRP). This component is generally a receptor in macrophages, fibroblasts and hepatic cells of higher vertebrates (Bonacci et al., 2007). After entrapping target proteases, the α 2M-proteinase complex is cleared via the lysosome system of these cells (Bonacci et al., 2007; Ma et al., 2010). The sequence in the C-terminal region of the RBD of *Mr-2α2M* is highly conserved among α 2Ms (Fig. 3), indicating an essential functional role in binding to cell surface receptors for receptor-mediated endocytosis (Nonaka, 2000). In mammals, the sequence "GFIPLKPTVK" in the C-terminus plays a major role in mammalian receptor binding. The RBD in the C-terminal ends of *Fenneropenaeus indicus*, *Litopenaeus vannamei* and *Penaeus monodon* includes the sequence "GFIPVKDDLK" (Shanthi and Vaseeharan, 2014). Conversely, the sequences in the C-terminal ends of the RBDs of *Mr-1α2M* and *Mr-2α2M* were slightly different—"GYIPNKKDLK" and "GYIPDKADLK", respectively. In *Mr-2α2M*, there were eight conserved Lys residues, and four Lys positions were conserved in other crustacean α 2Ms. The conserved Lys play a major role in binding to cell surface receptors in the α 2Ms of mammals (Nielsen et al., 1996) and crustaceans (Van Leuven et al., 1986; Huang et al., 1986). Additionally, compared with *Mr-1α2M*, the RBD of *Mr-2α2M* contained an extra 37 amino acids in the C-terminal region (Fig. 2). This difference in sequence length reflects the specific functional role of this region in binding to specific receptors on the surface membrane of phagocytes. The conservation of the Lys residue and length of the RBD have been suggested to be the results of evolutionary pressure (Huang et al., 1998; Qin et al., 2010).

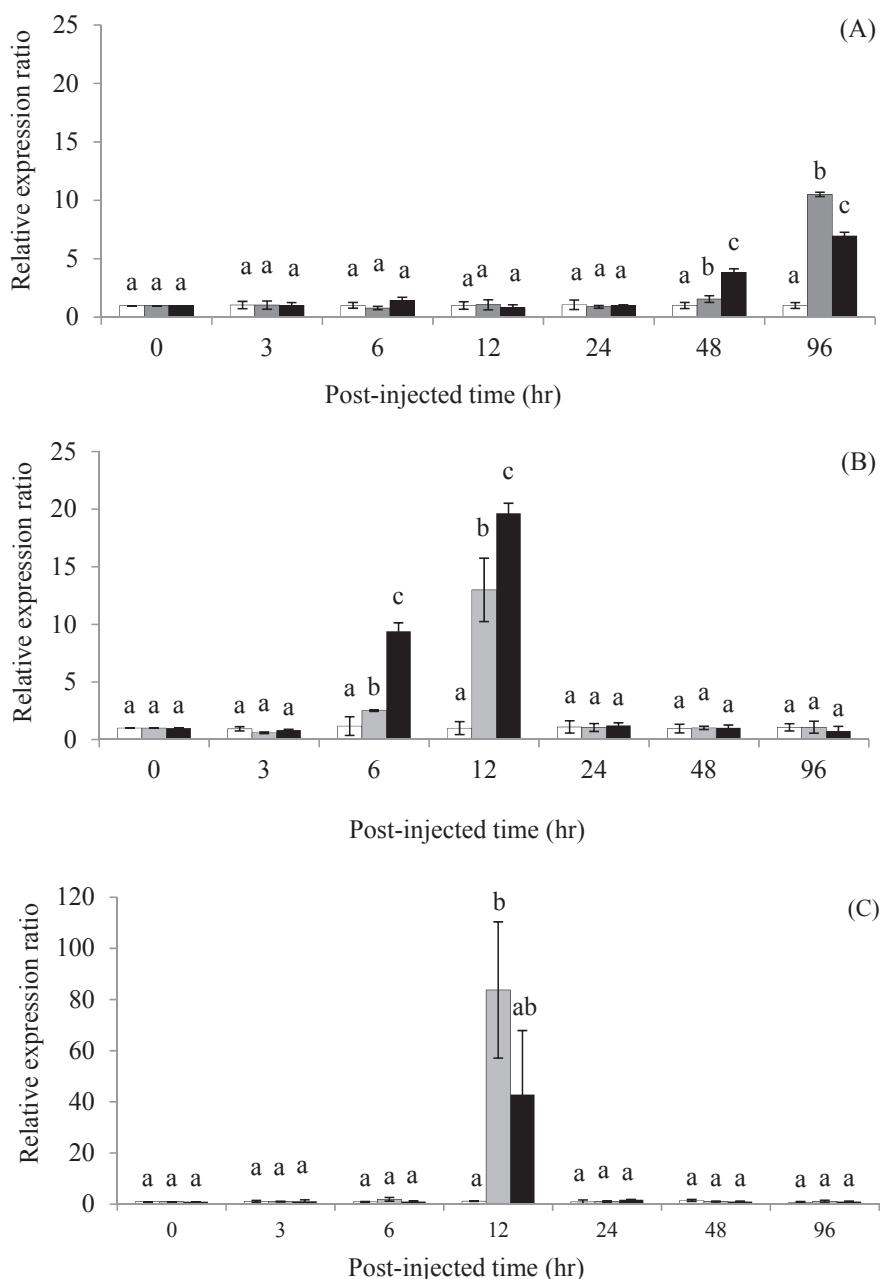
Fig. 6. Quantitative real-time reverse transcription polymerase chain reaction analysis of expression of *Mr-1α2M* of giant freshwater prawns challenged with 1×10^6 CFU/mL and 1×10^9 CFU/mL of *A. hydrophila* in the gills (A), hepatopancreas (B) and hemocytes (C). Data are presented as mean \pm SD. Different lowercase letters above each bar indicate significant differences at the same time point ($p < 0.05$). Black filled bar = 1×10^9 CFU/mL of *A. hydrophila*, gray filled bar = 1×10^6 CFU/mL of *A. hydrophila*, white filled bar = control.

Comparison analysis of nucleotide and amino acid sequences

The *Mr-2α2M* sequence was compared to other known α2Ms and displayed moderate to low amino acid identities of 58.8%, 56.6%, 47.4%, 41.4% and 41.1% with α2Ms from Chinese white shrimp *Fca2M-2*, signal crayfish *Pl-A2M1*, signal crayfish *Pl-A2M2*, Pacific white shrimp and kuruma shrimp, respectively (Table 2). In addition, *Mr-2α2M* displayed relatively low nucleotide and amino acid identities to *Mr-1α2M* of 54.4 and 43.4%, respectively.

Phylogenetic analysis of alpha-2 macroglobulin genes

Consistent with the above results, phylogenetic analysis revealed that *Mr-2α2M* is more closely related to *Fenneropenaeus*


chinensis *FcA2M-2* and *Pacifastacus leniusculus* *Pl-A2M1* than to *Mr-1α2M*. However, *Mr-1α2M* is more closely related to *P. leniusculus* *Pl-A2M2* (Fig. 4). The evolutionary tree also implied two different major clusters of vertebrate and invertebrate α2Ms. This tree clearly demonstrated that the α2Ms of vertebrates diverged before the differentiation of invertebrates investigated in Ma et al. (2010). In the invertebrate cluster, tick and horseshoe crab α2Ms may have diverged first, followed by crustacean α2Ms and finally molluscan α2Ms as the most primitive group (Fig. 4). The current phylogenetic analysis conflicts with that reported by Ho et al. (2009), who examined the evolutionary relationships of α2M genes in crustaceans and observed separate clustering into marine and freshwater clades. With many more sequences, the current tree implies that the α2M gene in invertebrates is not completely differentiated by

marine and freshwater characteristics. The upper crustacean α 2M subgroup contains the α 2Ms of *F. chinensis*, *Scylla serrata* and freshwater species (Fig. 4). The other lower subcluster includes α 2M members from marine crustaceans. Further analysis with an adequate number of sequences is needed to clarify these results.

Tissue distribution of *Mr-2 α 2M* mRNA expression

Previous expression analysis of α 2M in giant freshwater prawn under normal conditions indicated that *Mr-1 α 2M* was highly expressed in hemocytes, moderately expressed in the hepatopancreas and weakly expressed in the muscles, highgut and foregut (Ho et al., 2009). By comparison, *Mr-2 α 2M* is highly expressed in the

subcuticular epithelium, heart, midgut and muscle approximately 785-fold, 592-fold, 572-fold and 564-fold greater than in hemocytes (Fig. 5), indicating that it might have crucial roles in regulating internal proteases of the prawn. However, low expression of *Mr-2 α 2M* was observed in the hepatopancreas, ovary and hemocytes. Based on the expression profiles of α 2M genes under normal conditions in this experiment and others (Rattanachai et al., 2004; Ma et al., 2010; Wu et al., 2012), crustaceans likely possess at least two functionally different α 2Ms. The first group is typically highly expressed in hemocytes to function in immunosurveillance. The other group is absent or expressed at low levels in hemocytes and expressed highly in other tissues to support local immune responses in parts of the crustacean body.

Fig. 7. Quantitative real-time reverse transcription polymerase chain reaction analysis of expression of *Mr-2 α 2M* of giant freshwater prawns challenged with 1×10^9 CFU/mL and 1×10^6 CFU/mL of *A. hydrophila* in the gills (A), hepatopancreas (B) and hemocytes (C). Data are presented as means \pm SD. Different lowercase letters above each bar indicate significant differences at the same time point ($p < 0.05$). Black filled bar = 1×10^9 CFU/mL of *A. hydrophila*, gray filled bar = 1×10^6 CFU/mL of *A. hydrophila*, white filled bar = control.

Expression analysis of *Mr-1 α 2M* and *Mr-2 α 2M* mRNA in giant freshwater prawn infected with *A. hydrophila*

A. hydrophila is a major pathogenic bacterium that can cause serious disease outbreaks in giant freshwater prawn. *A. hydrophila* is an opportunistic pathogen that results in “black-spot” necrosis and gill obstruction in the prawn (Sung et al., 2000; Sahoo et al., 2007). *A. hydrophila* can produce many virulence factors, such as hemolysins, cytotoxins, aerolysin-related cytotoxic enterotoxin (Act), proteases, lipases, leucocidins and other endotoxins (Sung and Hong, 1997). These factors affect the prawn via different mechanisms. This bacterium is rapidly circulated to different tissues, such as the gills, heart, hemocytes and hepatopancreas, within 1 h after injection and is rapidly cleared from the circulation system within 12 h after injection (Sahoo et al., 2007). In the present study, *Mr-1 α 2M* and *Mr-2 α 2M* expression in response to different concentrations of *A. hydrophila* was investigated in the gills, hepatopancreas and hemocytes. *Mr-1 α 2M* was slightly increased in these organs but clearly down-regulated at 48–96 h in the gills and hemocytes and at 6 h, 12 h and 96 h in the hepatopancreas ($p < 0.05$) as shown in Fig. 6A–C. This result suggested that *A. hydrophila* oppositely affects the expression of *Mr-1 α 2M* in these organs. Conversely, in the hepatopancreas and hemocytes, *Mr-2 α 2M* expression levels were strongly induced during the early stages of infection (6 and 12 h; $p < 0.05$) as shown in Fig. 7B and C. In the gills, *Mr-2 α 2M* expression increased in the last stages of infection (48 h and 96 h; $p < 0.05$) as shown in Fig. 7A. No suppressed expression was observed. These results suggested that *Mr-2 α 2M* may have crucial roles in rapidly protecting the prawn from *A. hydrophila* infection and compensating for the down-regulated effects of *Mr-1 α 2M* to scavenge the harmful proteases released from the pathogen. This information is similar to many reports involving, for example, Chinese shrimp (Ma et al., 2010) and the Indian white shrimp, *F. indicus* (Shanthi and Vaseeharan, 2014). Taken together with the present results, these findings suggest that α 2Ms in crustaceans are acute phase-response molecules responsible for regulating harmful proteases from pathogens and internal proteases in the crustacean immune system.

Notably, the present study observed that *Mr-2 α 2M* expression was low in hemocytes under normal conditions but strongly elevated to high expression levels (83.72-fold change and 42.83-fold-change; $p < 0.05$) in only one short period (12 h) in hemocytes after infectious stimulation by *A. hydrophila* (Fig. 7C). This result suggested that *Mr-2 α 2M* is crucial for rapid compensatory effects when *Mr-1 α 2M* is suppressed in all tested tissues. Additionally, the different concentrations of injected bacteria (1×10^6 CFU/mL and 1×10^9 CFU/mL of *A. hydrophila*) elicited different patterns of *Mr-1 α 2M* and *Mr-2 α 2M* expression at various time points. These results indicated that higher concentrations of bacteria more strongly elevate the expression levels of these two α 2Ms of giant freshwater prawns than lower concentrations, albeit with different patterns in different organs.

Based on the characterization, sequence, phylogenetic, and expression analyses by qRT-PCR under both normal and infectious conditions in the present study, a second α 2M gene (*Mr-2 α 2M*) has been clearly identified in giant freshwater prawn. Similar to other reported α 2Ms in crustaceans, *Mr-1 α 2M* and *Mr-2 α 2M* acutely responded to pathogenic infection during the early phase of infection. α 2Ms in crustaceans crucially function as acute-phase molecules important in pattern recognition protein processing for the rapid regulation of external and internal proteases in the immune system. This information is vital for a greater understanding of the functions, molecular evolution and immunological mechanisms of the α 2M gene in crustaceans.

Conflict of interest

The authors declare no conflicts of interest. The authors alone are responsible for the content of this manuscript.

Acknowledgments

This research was supported by the National Science and Technology Development Agency (NSTDA P-10-10779) and a scholarship provided by the Commission on Higher Education in 2007.

References

- Armstrong, P.B., Quigley, J.P., 1999. α 2-macroglobulin: an evolutionarily conserved arm of the innate immune system. *Dev. Comp. Immunol.* 23, 375–390.
- Armstrong, P.B., 2001. The contribution of proteinase inhibitors to immune defense. *Trends Immunol.* 22, 47–52.
- Aspán, A., Hall, M., Söderhäll, K., 1990. The effect of endogenous proteinase inhibitors on the prophenoloxidase activating enzyme, a serine proteinase from crayfish haemocytes. *Insect Biochem.* 20, 485–492.
- Bonacci, G.R., Cáceres, L.C., Sánchez, M.C., Chiabrando, G.A., 2007. Activated alpha(2)-macroglobulin induces cell proliferation and mitogen-activated protein kinase activation by LRP-1 in the J774 macrophage-derived cell line. *Arch. Biochem. Biophys.* 460, 100–106.
- Gadjeva, M., Dodds, A.W., Taniguchi-Sidle, A., Willis, A.C., Isenman, D.E., Law, S.K., 1998. The covalent binding reaction of complement component C3. *J. Immunol.* 161, 985–990.
- Ho, P.Y., Cheng, C.H., Cheng, W., 2009. Identification and cloning of the α 2-macroglobulin of giant freshwater prawn *Macrobrachium rosenbergii* and its expression in relation with the molt stage and bacteria injection. *Fish. Shellfish Immunol.* 26, 459–466.
- Huang, W., Dolmer, K., Liao, X., Gettins, P.G., Van den Berghe, H., 1986. Localization of basic residues required for receptor binding to the single alpha 2-macroglobulin: isolation after limited proteolysis with a bacterial proteinase. *J. Biol. Chem.* 261, 11369–11373.
- Huang, W., Dolmer, K., Liao, X., Gettins, P.G., 1998. Localization of basic residues required for receptor binding to the single alpha-helix of the receptor binding domain of human alpha2-macroglobulin. *Protein Sci.* 7, 2602–2612.
- Lengbumrung, J., Somsiri, T., Tandavanitj, S., 2007. Motile *Aeromonas* septicemia infection in giant freshwater prawn, *Macrobrachium rosenbergii*. *Thail. Fish. Gaz.* 60, 147–151.
- Lin, Y.C., Vaseeharan, B., Chen, J.C., 2008. Molecular cloning and phylogenetic analysis on alpha2-macroglobulin (alpha2-M) of white shrimp *Litopenaeus vannamei*. *Dev. Comp. Immunol.* 32, 317–329.
- Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(Δ Delta C(T)) method. *Methods* 25, 402–408.
- Ma, H., Wang, B., Zhang, J., Li, F., Xiang, J., 2010. Multiple forms of alpha-2 macro-globulin in shrimp *Fenneropenaeus chinensis* and their transcriptional response to WSSV or Vibrio pathogen infection. *Dev. Comp. Immunol.* 34, 677–684.
- Mutsuro, J., Nakao, M., Fujiki, K., Yano, T., 2000. Multiple forms of α 2-macroglobulin from a bony fish, the common carp (*Cyprinus carpio*): striking sequence diversity in functional sites. *Immunogenetics* 51, 841–855.
- Na-Nakorn, U., Jintasataporn, O., 2012. Current status and prospects of farming the giant river prawn (*Macrobrachium rosenbergii* de Man 1879) in Thailand. *Aquat. Res.* 43, 1015–1022.
- Nielsen, K.L., Holtet, T.L., Etzerodt, M., Moestrup, S.K., Gliemann, J., Sottrup-Jensen, L., 1996. Identification of residues in alpha2-macroglobulins important for binding to the alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein. *J. Biol. Chem.* 271, 12909–12912.
- Nonaka, M., 2000. Origin and evolution of the complement system. *Curr. Top. Microbiol. Immunol.* 248, 37–50.
- On-ming, S., Areechon, N., Thunyanuki, S., Srisapoome, P., 2007. Discovery and sequence analyses of immune-related genes expressed from hemocytes of giant freshwater prawn (*Macrobrachium rosenbergii*), 183–194. In: Proceedings of 45th Kasetsart University Annual Conference, Fisheries Section. Kasetsart University, Bangkok.
- Qin, C., Chen, L., Qin, J.G., Zhao, D., Zhang, H., Wu, P., Li, E., Yu, N., 2010. Molecular cloning and characterization of alpha 2-macroglobulin (α 2-M) from the haemocytes of Chinese mitten crab *Eriocheir sinensis*. *Fish. Shellfish Immunol.* 29, 195–203.
- Rattanachai, A., Hirono, I., Ohira, T., Takahashi, Y., AoKi, T., 2004. Molecular cloning and expression analysis of α 2-macroglobulin in the kuruma shrimp, *Marsupenaeus japonicus*. *Fish. Shellfish Immunol.* 16, 599–611.
- Ren, X.D., Dodds, A.W., Enghild, J.J., Chu, C.T., Law, S.K., 1995. The effect of residue 1106 on the thioester-mediated covalent binding reaction of human complement protein C4 and the monomeric rat alpha-macroglobulin alpha 1 I3. *FEBS Lett.* 368, 87–91.
- Sahoo, P.K., Pillai, B.R., Mohanty, J., Kumari, J., Mohanty, S., Mishra, B.K., 2007. *In vivo* humoral and cellular reactions, and fate of injected bacteria *Aeromonas*

hydropila in freshwater prawn *Macrobrachium rosenbergii*. Fish. Shellfish Immunol. 23, 327–340.

Shanthy, S., Vaseeharan, B., 2014. Alpha 2 macroglobulin gene and their expression in response to GFP tagged *Vibrio parahaemolyticus* and WSSV pathogens in Indian white shrimp *Fenneropenaeus indicus*. Aquaculture 418, 48–54.

Söderhäll, K., Aspan, A., Duvic, B., 1990. The proPO-system and associated proteins; role in cellular communication in arthropods. Res. Immunol. 141, 896–907.

Sung, H.H., Hong, T.Y., 1997. The Gram-negative bacterial flora in hepatopancreas of giant freshwater prawn (*Macrobrachium rosenbergii*): antibiotic sensitivities and production of extracellular products. J. Fish. Soc. Taiwan 24, 211–223.

Sung, H.H., Hwang, S.F., Tasi, F.M., 2000. Responses of giant freshwater prawn (*Macrobrachium rosenbergii*) to challenge by two strains of *Aeromonas* spp. J. Invertebr. Pathol. 76, 278–284.

Toe, A., Areechon, N., Srisapoome, P., 2012. Molecular characterization and immunological response analysis of a novel transferrin-like, pacifastin heavy chain protein in giant freshwater prawn, *Macrobrachium rosenbergii* (De Man, 1879). Fish. Shellfish Immunol. 33, 801–812.

Van Leuven, F., Marynen, P., Sottrup-jensen, L., Cassiman, J.J., Van den Berghe, H., 1986. The receptor-binding domain of human alpha 2-macroglobulin. Isolation after limited proteolysis with a bacterial proteinase. J. Biol. Chem. 261, 11369–11373.

Wu, C., Noonin, C., Jiravanichpaisal, P., Söderhäll, I., Söderhäll, K., 2012. An insect TEP in a crustacean is specific for cuticular tissues and involved in intestinal defense. Insect Biochem. Mol. Biol. 42, 71–80.

Yoganandhan, K., Leartvibhas, M., Sriwongpuk, S., Limsuwan, C., 2006. White tail disease of the giant freshwater prawn *Macrobrachium rosenbergii* in Thailand. Dis. Aquat. Org. 69, 255–258.