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Some Estimates I nvolving Density of Algebraic Numbers
and Integer Polynomials

Chanon Chuntra and Vichian Laohakosol

ABSTRACT

Nymann in 1970 derived an asymptotic formulafor the probability that k positive integers, chosen
at random from the first n natural numbers, are relatively prime. In 1996, Arno et al. introduced a new
concept called the denominator of an integer polynomial. Using this concept, Arno et al. proved theorems
establishing formulaefor determining thedenominator of any al gebrai c number andthedensity of algebraic
numberswhosedenominatorsareequal to theleading coefficientsintheir minimal polynomials. Theproofs
of Arno et al. made use of the result of Nymann . Thefirst part of this paper isan extension of the work of
Nymann done by relaxing the condition that the chosen numbers are relatively prime. In the second part,
the formulae derived in the first part are employed to find asymptotic estimates and the density of the set
of integer polynomials refining the work of Arno et al.
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INTRODUCTION

Nymann (1970) derived an asymptotic
formulafor the probability of k integers chosen at
random fromtheset{1, 2, ... ,n} toberelatively
prime. Nymann'’ sresult saysthat thisprobability is
approximately equal to 1/¢(k), where ¢ is the
Riemann zetafunction. Aninteger polynomia isa
polynomial with integral coefficients. A complex
number is an algebraic number if it isaroot of a
nonzero polynomial with rational coefficients.
Among the polynomials with rational coefficients
which havean algebraic number a asaroot, theone
whichismonic, and hastheleast degreeiscalledthe
minimal polynomial of a over () and its degreeis
called the degree of a. Multiplying this minimal
polynomial of a by the least common multiple of
thedenominatorsof itscoefficients, weget what we
call theminimal polynomial of a over Z. If aisan

algebraic number with p(x) as its minimal
polynomial, then al the roots of p(x) are called
conjugatesof a. Analgebraicintegerisanalgebraic
number whose minimal polynomial over Q hasall
itscoefficientsintegral. By thedenominator of an
algebraic number o, written den(a), we mean the
least positiveinteger n such that na isan algebraic
integer. Denominators are useful in various
approximationproblemsbecausethey satisfy certain
multiplicative and additive properties, yet their
exact calculationisdifficult. Arno et al.(1996), see
aso Laohakosol et al.(2000), introduced a new
concept of the denominator of an integer
polynomial A of degreed andwithrootsoy (1<k
<d), astheleast positiveinteger n, written den(A),
for which nay isan algebraic integer for al such k.
Working through this concept, Arno et al.(1996)
establishedformul aefor computing thedenominator
of an algebraic number and the density of those
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algebraic numbers whose denominators equa to
the leading coefficients of their minimal
polynomials. Their resultssay for examplethat this
density isabout 83%. Theproofsof Arnoetal .(1996)
make essential use of the asymptotic estimates of
Nymann (1970) mentioned above.

Therearetwo main objectivesin this paper.
First, the work of Nymann (1970) is extended by
relaxing the condition that the chosen numbersare
relatively prime. Second, the formulae derived in
the first part are used to find asymptotic estimates
and the density of the set of integer polynomials

refining thework of Arnoetal. (1996). Inthefirst
part, it is found that the probability for k integers
chosen at random from the first n natural numbers
to have their greatest common divisor equa togis
approximately 1/gk¢(k). In the second part, it is
found in particular that the probability that an
integer polynomial, with its last two coefficients
having their greatest common divisor equal to a
square-freeinteger g, hasits denominator equal to
its leading coefficient is approximately egqual to
[1(g)gl/ M (p+1), wherepistheM 6biusfunctionand
the product extends over all primes p dividing g.

MATERIALS AND METHODS

Definition. Let a bean algebraic number whose minimal polynomial over Z isA(x) = agxd+...+ag 0 Z[x].

The height of ais defined as
H(a) =max {|ag|: 0<i<d}.

The following terminology will be kept standard throughout the entire paper.

the number of k-tuples <m;,...,m> of integers such that all |m;| <t,

the number of k-tuples <mjy,...,my> of integers such that all |m;| <t,

Z,9(1)

(mq,....m) =gandmg#0
Z,(19(t)

(myq,....my) =1, (Mm,Miq) =gand mz0
Prob, (9(n)

the probability that k integers chosen randomly from the set

{0,x1,+2,...,.#n} have (my,...,m) =gand mg# 0
Prob,(19)(n) the probability that k integers chosen randomly from the set
{0,£1,#2,....#n} have (My,...,mE) =1, (M,my.1) =gand mg #0

d .
Pq(H) ={AX) = iZoaix' OZ[x] : ag %0, Ja| < H, (ag,...,aq) = 1}

d .
PO = (A0 = 5 aix' DPyH) : (Fa240) = )

. d .
Pa(H) ={A() = igoaixl 0 Pg(H) : den(A) = fagl}

PO (H) = {A() = éoaixi ORI (H) : den(A) = Jadl

Sr={A(x) O Pq(H) : r Jag.rlag-1}

9={AM= 3 aix' DP9 (H) : 12 Jag,rlag.1}
i=0

Ag4(H) ={a: a isan algebraic number, deg (a) =d, H(a) < H}
A4(H) ={a O A4(H) : den a = leading coefficient of a over 7}

Ug(H) = {A(X) = % ax DI[X] : a9 %0, [a] < H (0 <i < d)}
i=0



212 Kasetsart J. (Nat. Sci.) 35 (2)

Ud(H) = {A(X) = Z aix' OUg(H) : den(A) = fal)
Lemma 1. Letg>1 bef|xed Fort=1, we have

k-1
200= 20 2 (t g (=9 @ D=0 @ , (—I og )
(k) %¢(2)
Proof. We first treat the case g = 1. Observe that
zPwm= ¥ 1 €
(mq,....my)=1
—t<mj <t,my #0
and
21t (2t +1)kL = > 1= 3 > 1 2
—t<mj<t,m#0  1<d<t (mq,...my)=d
i=1,2K k -t<mj <t,my #0

Since (My,...,m) =d ifandonly if (m4/d,...,mi/d) =1, thenthereisaone-to-one correspondence between
the k-tuples <my,...,m> with (mq,...,m) =d, t<m;<t, mg # 0 and the k-tuples <my’,...,my'> with
(my,...m)=1,t/d<m <t/d, my £ 0. By definition, the number of such k-tuples<my’,...,my' > is

z{ (é). From (1) and (2) we get

Oto
K Qo (©)

Applying the Mdbius inversion formulato (3) yields
ZPO= 3 wot/d+3< At/ dl= > pd)2t/d+ow)
I<dst I<dst

20t (2[t]+1)kL = 2.2

=@ 3 & B, onyk- o 3 (d))+ “(@00( 3 19, +0( 3 1 4

From Apostol (1976), we know that

p(d) _ 1 N 1
= O , 5
Gt o ©
k
and then thefirst term on theright-hand side of equation (4) isequal to % + o(zk t). Fromequation (5),
G
we have
3 “(fj) =01  (2<i<k-), 6)
1=dst d
while, see Apostol (1976),
| > &E > £=Iogt+y+0(1/t), (7)
i<dst d - 1<d<td
whereyisthe Euler’s constant, and

> 1=[t]=0(1). (8
1<dst
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Using equations (4)-(8), we arrive at

zZ0() = (2(0) +O(t) + Oty + O(tk2) + ... + O(t2) + O(t logt) + O().
0 k
E—(z(ti) +O(t*Y), k=3
=0
o2 ,
O(tlogt), k=2
B
Next, we observethat  Z{9(t) = s 1= s 1= 3 1.,
(mg,...mk)=g M My (my,...mi)=1
—t<mj <t,my 20 g g —L<mi<- my#0
_temit Mk g
9 9 g9
Replacing t by t/g in the preceding discussion, we get
0 (2t gkt
H(() i(k) gk
Z(g)(t) Z(l)( ) (QZt) g
( log )k 2
Ho%@ g
asto be proved. Q.E.D.
Lemma?2. Let g=1 befixed. Fort= 1, we have
209 =2 ma- L +O<£Iog L (9, ax
() (2) plg p g
789ty = @y, O(tlogt).
¢(2)
Proof. Observe that
A R S ! 9
(mq,....my)=1
(mk,mg-1)=9

—t<mj <t,my #0

and, applying the case k = 2 of Lemma 1 to the last two coordinates, we have

2t
(@’ +0(—Iog )}(2[t]+1)“- s 1=y 3y 1 (0
9%¢(2) (mg.mg-1)=g  1=dst (my _my)=d
—t<m;j <t,mg #0 (mg,mk-1)=9
i=12,...k ~t<m; <t,my 20

Since (myq,...,my)=difandonlyif (m4/d,..., m/d) =1, thenthereisaone-to-onecorrespondence between
the k-tuples <mq,...,m> with (mq,....m) =d,-t<m;<t, mg#z0, (mg,my.1) =g and the k-tuples
<my’,...m'>with (m{',....m) =1, t/d<m <t/d, m 0, (m¢',mk.1') = g/d, d|g. By definition, the
g
(=
number of such k-tuples <my’,...,my’ >isequal to Z, d (é). By equations (9) and (10), we obtain
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2t)? t ot _
{(zczz)+0(5|oga)}(2[t]+1)k ?= 3 zk bt 9. (11)

dlg

Applying the Mébius inversion formulato equation (11), we deduce that

(L9) () = k-2, 1 2t/d)p  t/d _ t/d
Zi= (M) ]%%Stu(d){Z[t/d]H} {C(Z)( o/d ) +O(g/d|0gg/d)}
g

= {@)<? :(d)+<2t)k o 3 ”( @), 20 3 “(d))+0< 2 D
1<d<t

dlg dlg dlg dlg
1 2t t
x +0O(—log—)} 12)
{c(2)(g) & Ogg)}
Since, see Apostol (1976),
H(d) _ (13)
1<d<t d” |‘|(1 pX~ 2)
dlg
“(f’) o(1) @2<i< k-3), (14)
1<ds<t d
dlg
> &=O(Iogt), (15)
1<ds<t d
dlg
and
=[tg] = O(tg), (16)
1<dst
dlg

then from equations (12)-(16), we havefor k > 3

k-1 3 k-1
(Zt) na- )+O( 2 ) +K +O(—Iogt) +O(t—) +O(—Iog )

(2 plg P

k-2 £2 t2
+O(—Iog )+ +O(—Iogalogt) +O(—Iog )

Z(l.g) t) =

k k-1
(21) n<1—pk12>+0<t—log ),

whilefor k = 2, from equation (12), we have

(22 g L
> u(d)+0(glogg),

269 = 1o Liog Ly) =
t= Z _u(d)( ( ) O(log g ) = 0%c(2) 1ot
dlg dlg

(2) 9
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which can berewrittenby using > p(d) =[1/g] as
1<dst
dig
(o, g>1

U
29 (1) = Ha? . QED.

B_C(Z) + O(tlogt), g=1

Lemma3. Letd=2 and g befixed integers. Then

(2H)4L d

0PP (0=~ 7 1 (- 3T : )+O(H log )
& "o g7

Proof. Fromits definition, see also Polyaand Szegs (1976),  PO(H) = z{9(t), with t=H,d=
k-1.Using Lemma 2, we get
(2H)d+1 1« 1 ) +0 (Hdl H)

-—T) + ——log =). .E.D.
2g® g p a* g 9 Q

Lemmad4. Letd =2, g=1befixedintegers,and 1< r <H. Then for u = (r, g/mr), we have

0P (H)O=

d+l 1 1 Hlu  H
1) [l (1‘pd1 ) +O4 (—|09_)

1+
it TP P

(2H)
(g’

0 Sr(g) 0=

Proof. First consider the caser = 1. Since $1(9) = P4@(H), then the theorem istrue in this case. Assumer
> 2. For brevity, we omit writing the hypothesis 0 < i < d underneath the summation sign. Thus

0s9 o= 1= 3 5 W =
' |a|<% a0 lglsta 20 Ki(ay-3) Hio = Ia.I<H ad#) k?(m)
r |ad,r|a 1 r |a r|a r |a r|
(ad """ al§:l ( (a ad 1) g
(8y3y.0)79
= kgH u(k) Z , (writing & = kby)
ke Ib; |<Rb #0
9 r |kb r|kb
(by d-l)
=2 2 K Z H(ms) Z 1,
sir lT:r})I Sp( ) |b||<Rb #0 % |b| bd::o
5( r|kb KDy g (m s) 1 —Imb Imbd-l
(by d_l)—— mlg (b, )= 9
Dy 1) g

with k = ms. Note that the term p(ms) ensures that (m,s) = 1. This together with (m,r/s) = 1 is equivalent
to (m,r) =1, and so (r%/s)|by and (r/s)|bg.1. Put (r2/s)cy= by, (1/s)cq-1 =bg.1 and ¢; = b (0<i<d-2). Thus,
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0s90=3 wy 3 wm 3 L (17)
sfr msH lel< L (0si<d-2)
(m, r) 1
mlg 0<|°d|5ﬁ2 (=
(rCqCy.0) = %

Claim1: Forx,y OZ, r,g OZ,r=2,with0< [x| < C; and |y| < Cy, thenumber of ordered pairs<x,y> satisfying

4C.C.u 1 C, Cu
172° + O(—=2,—% log(C
@e W G+ Ogh g 109G
where u=(r,g) and O(A1,A5) = max ( O(A1) , O(A2) ).
To seethis, consider x,y for which (rx ,y) = g. There are two possible cases.
Casel: (r,g9) =1

(rx,y) =g is

C,
If y =+kgand (k,r) = 1, then, see Pélyaand Szego (1976), the total number of possiblex’ SISZ|: oK) 9 }

k
¢( ) € :
=2(—— )+O(1) and possible values of k are 1,...,2[C,/g]. Thus, the number of possible ordered
2
9 k) C
pairs <x ,y>is 22 (2¢() gl+O(l))
(kr) L

[CZJ

i ¢(k) C c,C 1 c, ¢, C
= a(3 )2 +0(=2) = 4(——2) [ (qqpp) +O (5~ log—5-) -

4 9 ¢(2g® i
Case 2: u=(rg)>1.
Letr=uRandg=uGwhereR,GOZ, (R,G)=1. Similar to the arguments used in Case 1, the number of

AT

possible ordered pairs<x \y>is 2 Z{ T—gl+0(1)}

c2

9 (k) 1 C, Cu G
4C,IG + O(C =4 £ = |og—=%
= ( 2/)2 " (C,/9) ( (2)92)F|)_||_r( 1+1/p)+o(g —g 095
(kR) 1 u

From Claim 1, let x = cyand y = c4.1. Then the number of ordered pairs <cy,cq.1> with (rcg,Cq.1) = g/mr,
0< |cgl < H/mr2 and |cg.1] < H/mr isequal to
4 HZ 1 H Hu, H 4 HZ

1
)+ O (G g l09g) = ( )+O( U log £,
2 rg? ‘l)?_ 1+1p 91" 7987 2 1 ;lJ_llﬁ 1+1p 9

withu=(r, g/mr), and sinces<r and g = s, we have
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4 Hu?
100 = N )+ 0 (HY 1og Hyy (2 Loyt
Ie, |smﬂs(05isd-2) (2 rg2 p 1+1/p 9 9
u
Ol 1y <
_9
(rcdvcd-l)_ﬁ
(2H) 1 He H
= T ( )+ Oy ( T log —).
2rg(m9“* ply = 1+lp rg(ms) 9

Substituting into equation (17) and separate into two terms M, (@ and R,(9, we have

d+1
0s9 o= % ue 3 pm){ (@H) " u
Sr <H

1 .0 1y o
@me™ 11 Crgp) "ol gmert !0 g )

|_
(m,r§:1 !
mig
d
_ (2H)*1y 1 (s um) | HA% H
= S m) O log —).
¢2rg? p||1 ( 1+1/p )sz|r s+ mgHis md-1 %r HE mgH/S H(m) d(W g 9)
u (rm,r)-l (m,r)=1
9 mig
= M9+ R/9),
where
2H)4 1y 1
M @ = ¢ 2) 7« )S SLé(ls) 5 Hm)
gc@r pf,  Itlp " s <Hls m
mig
d+1 0 d+1
=(2H)+u|-! 1 )zsg(f)z u(gq)_(ZHVul-‘l 1 )Zsﬁ(ls)z u(gnl)
2 - < - 2 - -1
g°c@r pi,  ItUp s M=y m G?qdr pl  1+Up T mobis m
mig mig
. . m) _ d-
clamz 3 BE) - o8¢
m>H/s M
(m,n)=1
mig

To seethis, putg = pfl ... PRt C(r). Asrlg, (pi, 1) = 1, C(r) isthe factor of g relatively primetor. Letr =

q...q$. Sincerlg,theng= qgit... g pit... pft,1; < ti,andso C(r) = gt ... ges. If (m,r)=1andmlg,
thenm = pfl p?‘ where 0 < 3j < aj. Now

a3 p(m)

B Bt B Dd'l 1 1
¢1 0 =0 3 % B%H 331 < g
(m. |r_)V:SlmIgr:Jn 0sB<a;  (py...pp )™t B=0 B=0
e p?l...pE’SH/s
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u(s) (m) _ @15
L A d-1 s Mm) _pPg
as claimed. Using gr o1 |'| (12-/p*H and (Tnzrl)zlmd'l = Iﬂ (1_l/pd_1),wehave
mig

gz‘j‘? 3, nff,"l)— > 1Y 0@ () =0(-gr) A

(mr)sl

mig

d+1

Mo = VY ) N @+ 0, ().

c(2)gzr ,0|l_fJ 1+1l/p  plg

Similarly for d = 2, we get

Hd d
R(9 = z u(s) ¥ (m)o(—u_log(H/g)):od(Hg—rul og(Hig) 3 ‘;gsl) H/ ”(m))
m< S

ms<H/s gr(ms)OI 1 md-1
(m,r)=1
mig mlg
d-1 H H
=0, (—Iog(H/g) |‘| (1-Up )+ o Y Hog EDHd—)‘O (—rg—Hog 5 5 ),
and the desired result follows. Q.E.D.

Lemma. If A(x) = agxd+...+8y OZ[X] hascontent ¢ > 1, then den(A) # ag] and Uy(H) = Py(H).

Proof. SinceA(x) , (/c)A(x) OZ[x] both havethesameset of roots and (1/c)A(x) is primitive, then den(A)
=den((1/c)A). By Theorem 1 of Arno et al. (1996), den((L/c)A) divides ag/c and den(A) = den((L/c)A) <
[agl’'c < lagl implying that den(A) # |agl. Next, let A(x) OZ[x] have c asits content. Assume that A(x) O

Ug4(H). If c> 1, then den(A) # |agl, and so A(x)0 U 4(H), which isacontradiction. Thus, ¢ = 1 and so A(X)
0 Py(H) yielding U4(H) O Py(H). Finally, weassumethat A(x) 0 Py (H). Thus, A(x) 0 U 4 (H) which gives

Py(H) O Ug(H). Hence, Uq(H) = Py(H). QED.
RESULTS

Theorem 1. Let g = 1 befixed. Then for n O N, we have

. (@) 1 2n x k-1
Prob¥ (n) = —— )"+ O(——— ), when k=3,
® O feto | 2m gl
iy Prop® 2, N g}
M o () = W( 2n+1 ) O( g(2n+1)2 log g ), and

i)y lim Prob@(n) =
n- o (k)
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7(9)
Proof. Since PrOb(kg)(n) ﬁ then from Lemma 1, for k > 3, we have
n+
k-1
@ o) -1
(2n+1)" gg(k) 2n+1" g 2n+1)
whilefor k = 2, we have
2
(9) (gn()Z) O(glogg) 1 2n n n
Prob,”(n) = 2.5 = (- )2 +0(————log-),
(2n+1) 9°¢(2) 2n+1 9(2n+1) 9
and (iii) follows immediately from (i) and (ii). Q.E.D.

Theorem 2. Let g= 1 befixed and p be aprime. Then for n 0N, we have

. ProbL9 (ny = 1 2n g 1 nk-1 loa ). whenk = 3
0) ob, ™ (n 2c(2) 2n+l) r%(l pk'2)+o(g(2n+l)k ogg),w enk > 3,
. (1,9) 2 n

Pri ==
@) Pty = ) +Ol o loa ).

(i) lim Prob{"9(n) =

na- k2)when k=3, and

g c(2)pg p
. . (1,9 1
(iv)  lim Proby ™~ (n)= —.
now @
o, _ Ze9n)
Proof. Since Prob, " (n) = (2— then from Lemma 2 for the case k = 3, we get
n+
UM )+ —log?)
prob(lg)(n) _ g°cQpo P
(2n+1)
1 2n g nk-1 n
= ) Na- ) +0O( log—),
g%(2) 2n+1" pg p" = g2n+D g

while for the case k = 2, we get

2
(19 (f(nz)) ronloon) o, n
Pr ! = =
2 (2n+1)2 @ n+1 +O((2n+1)2|og -
Lastly , (iii) and (iv) follow directly from (i) and (ii). QED.

Theorem 3.Letd=>1and g= 1 befixed. For H = 2, we have

219
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d+1 d
pO) (| = IM@I(2H) 1- LT ya- Lo Mgy
RO | o M)+ 0u log )

Proof. For d = 1, we have |51(g) (H) = Pl(g) (H). Therefore, the theorem istruein this case. Assumed > 2.
Using Theorem 1 (i) and the proof of Theorem 2 of Arno et al. (1996), we get den (A) # |ag| = thereisa
prime p such that p | ag and n = ay/p satisfies
(nYag)A(x/n) 0 Z[x]
~ thereisaprime p|ag and (1, ag-1/p, a¢-2ad/P? ag-3342/P>, ... , apag®Y/pd) O 79+,
Since A(x) is primitive, then den (A) # |ag| is equivalent to p2|ag and plag.1. Thus,
d .
{A() = 3 ax' OPSO(H) : den(A) [agl= U SP
i=0 p<H '
d .
where S ={A(x) = _Zoaix' 0P (H): p[ag, plag-1} - Observe from its definition that
d .
s(rg) ={A(X) :_Zoaix' DPég)(H): r2|ad,r|ad_1}_
i=
Thus, Si9 = PO (H), SO = | S(pg), withr > 2, r square-free, and S\9 = 0 when
pIr

r>vH . Since PP (H)=s9 - U S9, then by the inclusion-exclusion principle,
p<H

IPOHE=1S9- U@ = 1S+ 3 unll S91= 5 w9
p<H 2<r<H plr 1<r<H

Apply Lemma 4 and separate the sum into two parts Mg and R to get

POMH)= 5 u(r)((ZH)d+1 M- [0 5p) +0 (—dlog—»
d Jr|_<gr5H ¢(2g°r plg IOd ! d N ‘
Mg+Ry wheeMg= 3 pp perrliey
g g g~ | 1<r<H c(2)92 1+1/p d -1
rg u
_ (ZH)d+l (r)u 1
(29 rIJ_Ilg( p” 1)1”—gf£< ' pll_li(“l/p).
() _ p(ru _
Set Fy EEH e ) and T, ) p||_|(1+1/p)

rlg u
Letg= pl1 K pkk Asrlg, thenr = pi’l K pEk ,0<bj<g. Thus,
biK by

H(pl ), a;-b; ob L H(pk ), a, by bk P~ Pk
JPPK ,
Pyt o : z pR* (Pi )T[(( 1Py pk TPk pPLg pﬁk))'

1
F(r) - z
g b=0
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ED' (B> 1— g notsquare- free— p(g)=0
= 1
D|—|| (1-p_+1),mai= 1~ gsquare-free- |p(g)|=1
g

1
= 1-—=).
IH(Q)IFI)'llg( |0+1)

d+1
Ths, Mg = B@ICDTE 0y 10 1) g
¢(2)g pla P p+1
H% H HY H
Rg= 3 M(r)O4(——log—)=0q4(—log—),
1<r<H ar g g g
rlg
d d
using Fl10gH 5 BO -6, H 1691y and the resuit follows QED.
g Ji<rsH I g g
rlg
p(9) p(9)
Theorem4.Letdzlandgzlbefixed.FoerZ,wehavew:1,andwhend22,w
IPEO(H)| PP ()|

1 g H .
= |1(9) |9 1 (——) + O4(= log—), where g is square-free.
o P+l TH g

Proof. For d = 1, we have P9 (H) = P9 (H), i.e. the result is true in this case.

Assumed = 2. From Theorem 3, and Lemma 3 we see that

p(9) 7«2)92 d+1 d
IRPH - )™ @)™ - 11 o HY HY
lp(gg)(H)l ﬂ(l—di)l c(2)92 F|>-|¢!J( pd—l)( p+1) d( g gg)}
-1
pg P
1
x{—
1 _H
1+Od(ﬁ|095)
= L +0 g| E = i +0 g| ﬂ’
Iu(g)lglg(erl) d(H ogg) Iu(g)lgplilg(pﬂ) d(H ogg)
asgissquare-free. Q.E.D.

Theorem 5. Let d=1,H>2andpbeprime. Then lim Iim [Ya(H)[ = 1

deoHoo |Ug(H)|  o(3)

Proof. From Lemma 5, Od(H) = |5d(H), and from Theorem 3,
_ (2H)d+1 H(l_i(l_ll pd—l)

«d+D) p p*a-1/pT
Using |Ug(H)| = (2H)3*1 + O4(HY), we deduce that

|Py(H) | +Og(Hdl0g2H).
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:SZEE;: ) (2H§d+l{(c2(|;)4:)l I;'( - S:ZEZ;QHO"(HMOQZ H)}1+Od1(l/H)
= e :%)md(@%
s I, :Sgg:;: @ Ejg)
- n(l—%)n(l—p—ﬁ%) - n(l—%—ﬁ%d—{z)-
Consequently, fim _lim 10g(H1 _ = Na--%5)=—. QED.

d-wH-w [Ug(H)| p  p> <O

DISCUSSION

Thefirst group of results obtained in this paper is

Prob@m= 1 2n g nk1 k>3
O FoAm koo 2n+ TG T g =3

1 2n o n n
+O(———— = log—).
202y 2+ " Nganrp? %9

1y Probd(n) =

. (9)
(- fim Prob(n) = ke iy

This extends the results of Nymann (1970) which correspond to the case g = 1.
The second group of results obtained in thiswork is

p(9)
M_“‘(QHQH( )+Od(g|09 )ford>2
[P (H) | plg P

104(H)| _ 1
2 lim i I
AP UL Ty YRRRC 3) €

both provide refinements to the following results of Arno et al. (1996)

N1 1) Y P R o V] i
O r T T R

Iog H)

Oq( ). dz2.

UAk(H)
(i) lim lim s .
- H- ‘UAk(H) RE)

k<d
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