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Some Estimates Involving Density of Algebraic Numbers
and Integer Polynomials

Chanon Chuntra  and Vichian  Laohakosol

ABSTRACT

Nymann in 1970 derived an asymptotic formula for the probability that k positive integers, chosen

at random from the first n natural numbers, are relatively prime. In 1996, Arno et al. introduced a new

concept called the denominator of an integer polynomial. Using this concept, Arno et al. proved theorems
establishing formulae for determining the denominator of any algebraic number and the density of algebraic

numbers whose denominators are equal to the leading coefficients in their minimal polynomials. The proofs

of Arno et al. made use of the result of Nymann . The first part of this paper is an extension of the work of
Nymann done by relaxing the condition that the chosen numbers are relatively prime. In the second part,

the formulae derived in the first part are employed to find asymptotic estimates and the density of the set

of integer polynomials refining the work of Arno et al.
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INTRODUCTION

Nymann (1970) derived an asymptotic
formula for the probability of k integers chosen at

random from the set {1, 2, … , n}   to be relatively

prime. Nymann’s result says that this probability is
approximately equal to 1/ς(k), where ς is the

Riemann zeta function. An integer polynomial is a

polynomial with integral coefficients. A complex
number is an algebraic number if it is a root of a

nonzero polynomial with rational coefficients.

Among the polynomials with rational coefficients
which have an algebraic number α as a root, the one

which is monic, and has the least degree is called the

minimal polynomial of α over  and its degree is
called the degree of α. Multiplying this minimal

polynomial of α by the least common multiple of

the denominators of its coefficients, we get what we
call the minimal polynomial of ααααα over . If α is an

algebraic number with p(x) as its minimal

polynomial, then all the roots of p(x)  are called

conjugates of α. An algebraic integer is an algebraic
number whose minimal polynomial over  has all

its coefficients integral. By the denominator of an

algebraic number α, written den(α), we mean the
least positive integer n such that nα is an algebraic

integer. Denominators are useful in various

approximation problems because they satisfy certain
multiplicative and additive properties, yet their

exact calculation is difficult. Arno et al.(1996), see

also Laohakosol et al.(2000), introduced a new
concept of the denominator of an integer
polynomial  A of degree d and with roots αk (1 ≤ k

≤ d), as the least positive integer n, written den(A),
for which nαk is an algebraic integer for all such k.

Working through this concept, Arno et al.(1996)

established formulae for computing the denominator
of an algebraic number and the density of those
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algebraic numbers whose denominators equal to

the leading coefficients of their minimal
polynomials.  Their results say for example that this

density is about 83%. The proofs of Arno et al.(1996)

make essential use of the asymptotic estimates of
Nymann (1970) mentioned above.

There are two main objectives in this paper.

First, the work of Nymann (1970) is extended by
relaxing the condition that the chosen numbers are

relatively prime. Second, the formulae derived in

the first part are used to find asymptotic estimates
and the density of the set of integer polynomials

refining the work of Arno et al.  (1996). In the first

part, it is found that the probability for k integers
chosen at random from the first n natural numbers

to have their greatest common divisor equal to g is

approximately 1/gkς(k). In the second part, it is
found in particular that the probability that an

integer polynomial, with its last two coefficients

having their greatest common divisor equal to a
square-free integer g, has its denominator equal to

its leading coefficient is approximately equal to

|µ(g)g|/ Π(p+1), where µ is the Möbius function and
the product extends over all primes p dividing g.

MATERIALS  AND  METHODS

Definition. Let α be an algebraic number whose minimal polynomial over  is A(x) = adxd +…+ a0 ∈  [x].
The height of a is defined as

H(α) = max {|ai| : 0 ≤ i ≤ d}.

The following terminology will be kept standard throughout the entire paper.
Zk

(g)(t) the number of k-tuples <m1,…,mk> of integers such that all |mi| ≤ t,

(m1,…,mk) = g and mk ≠ 0

Zk
(1,g)(t) the number of  k-tuples <m1,…,mk> of integers such that all  |mi| ≤ t,

(m1,…,mk) = 1, (mk,mk-1) = g and  mk ≠ 0

Probk
(g)(n) the probability that k integers chosen randomly from the set

{0,±1,±2,…,±n } have  (m1,…,mk) = g and mk ≠ 0
Probk

(1,g)(n) the probability that k integers chosen randomly from the set

{0,±1,±2,…,±n } have  (m1,…,mk) = 1, (mk,mk-1) = g and mk ≠ 0

Pd(H) = {A(x) = ∑
=i

d

i
ia x

0
∈ [x] : ad ≠ 0, |ai| ≤ H, (a0,…,ad) = 1}

Pd
g( ) (H) = {A(x) = ∑

=i

d

i
ia x

0
∈ Pd(H) : (ad,ad-1) = g}

P̂d (H) = {A(x) = ∑
=i

d

i
ia x

0
∈ Pd(H) : den(A) = |ad|}

ˆ ( )Pd
g (H) = {A(x) = ∑

=i

d

i
ia x

0
∈ Pd

g( ) (H) : den(A) = |ad|}

Sr = {A(x) ∈  Pd(H) : r2 |ad,r|ad-1}

Sr
g( )= { A(x) =  ∑

=i

d

i
ia x

0
∈ Pd

g( ) (H) : r2 |ad,r|ad-1}

Ad(H) = {α : α is an algebraic number, deg (α) = d , H(α) ≤ H}
Âd(H) = {α ∈  Ad(H) : den α = leading coefficient of α over }

Ud(H) = {A(x) = ∑
=i

d

i
ia x

0
∈ [x] : ad ≠ 0 , |ai| ≤ H (0 ≤ i ≤ d)}
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Ûd(H) = {A(x) =  ∑
=i

d

i
ia x

0
∈ Ud(H) : den(A) = |ad|}

Lemma 1. Let g ≥ 1  be fixed. For t ≥ 1, we have

Z t
t

g k
O

t

gk
g

k

k

k

k
( )( )

( )

( )
( )= +

−

−
2 1

1ς
     (k ≥ 3),  and   Z t

t

g
O

t

g

t

g
g

2

2

2
2

2
( )( )

( )

( )
( log )= +

ς
.

Proof. We first treat the case g = 1. Observe that

Z tk
m mk
t mi t m k

( )

( ,..., )
( )

,

1

11
0

1= ∑
=

− ≤ ≤ ≠

(1)

and

2[t](2[t]+1)k–1 = ∑ = ∑ ∑
− ≤ ≤ ≠ ≤ ≤ =

= − ≤ ≤ ≠
t m t m d t m m di k

i k
k

t mi t m k

, ( ,..., )
, , , ,

0 1
1 2

1
0

1 1

K

(2)

Since  (m1,…,mk) = d  if and only if  (m1/d,…,mk/d) = 1, then there is a one-to-one correspondence between
the k-tuples <m1,…,mk> with  (m1,…,mk) = d,  –t ≤ mi ≤ t , mk ≠ 0 and the k-tuples <m1′,…,mk′> with

(m1′,…,mk′) = 1 , –t/d ≤ mi′ ≤ t/d , mk′ ≠ 0. By definition, the number of such k-tuples <m1′,…,mk′ > is

Z
t

dk
( )( )1 . From (1) and (2) we get

2[t](2[t]+1)k–1 = ∑ 



≤ ≤1

1

d t
kZ

t

d
( ) . (3)

Applying the Möbius inversion formula to (3) yields

Zk
( )1 (t) = ∑ [ ] + = ∑ +

≤ ≤

−

≤ ≤1

1

1
2 1 2 2 1

d t

k

d t

kd t d t d d t d Oµ µ( ){ / } [ / ] ( ){ / ( )}

= ∑ + ∑ + + ∑ + ∑
≤ ≤

−

≤ ≤ − ≤ ≤ ≤ ≤
( )

( )
( ) (

( )
) ... ( ) (

( )
) ( )2 2 2 1

1

1

1
1

1 1
t

d

d
t O

d

d
t O

d

d
Ok

d t
k

k

d t
k

d t d t

µ µ µ
(4)

From Apostol (1976), we know that

∑ = +
≤ ≤ −

1
1

1 1

d t
k k
d

d k
O

t

µ
ς

( )

( )
( ) , (5)

and then the first term on the right-hand side of equation (4) is equal to ( )

( )
( )

2
2

t

k
O t

k
k

ς
+ . From equation (5),

we have

∑
≤ ≤1 d t

i
d

d

µ( )
 = O(1)          (2 ≤ i ≤ k–1), (6)

while, see Apostol (1976),

|
( )

| log ( / ),∑ ≤ ∑ = + +
≤ ≤ ≤ ≤1 1

1
1

d t d t

d

d d
t O t

µ γ (7)

where γ is the Euler’s constant, and

∑ = =
≤ ≤1

1
d t

t O t[ ] ( ) . (8)



Kasetsart J. (Nat. Sci.) 35 (2) 213

Using equations (4)-(8), we arrive at

Zk
( )1 (t) = 

( )

( )

2t

k

k

ς
+ O(t) + O(tk-1) + O(tk-2) + … + O(t2) + O(t logt) + O(t).

 = 

( )

( )
( ),

( )

( )
( log ),

2
3

2

2
2

1

2

t

k
O t k

t
O t t k

k
k

ς

ς

+ ≥

+ =










−

.

Next, we observe that    Z tk
g

m m g m

g

m

g
m mk

t mi t m k

k

t

g

mi
g

t

g

m k
g

k
t

g
mi

t

g
m k

( )

( ,..., ) ( ,..., ) ( ,..., )
( ) .

,

,

,

= ∑ = ∑ = ∑
= = ′ ′ =

− ≤ ≤ ≠

− ≤ ≤ ≠
− ≤ ′ ≤ ′ ≠

1
0

1

0

1

0

1 1 1
1 1

.

Replacing t by t/g in the preceding discussion, we get

Z t Z
g

t

g k
O

t

g
k

t

g
O

t

g

t

g
k

k
g

k

k

k

k

k

k
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
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−

−
1
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1
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1

2
3

2

2
2

ς

ς

as to be proved. Q.E.D.

Lemma 2.  Let g ≥ 1 be fixed. For t ≥ 1, we have

Z t
t

g p
O

t

g

t

gk
g

k

k
p

k
( , )

lg

( )
( )

( ) ( )
( – ) ( log )1

2 2

12

2
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−
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1
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2
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Proof. Observe that

Z tk
g

m mk
m k m k g
t mi t m k

( , )

( ,..., )
( ) ,

( , )
,

1

11
1

0

1∑
=

− =
− ≤ ≤ ≠

(9)

and, applying the case k = 2 of Lemma 1 to the last two coordinates, we have

{
( )

( )
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2
2t
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− ≤ ≤ ≠
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m k m k g
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1 2

1
1

0

1 1
1

(10)

Since   (m1 ,…, mk) = d  if and only if  (m1/d ,…, mk/d) = 1, then there is a one-to-one correspondence between

the k-tuples  <m1,…,mk>  with   (m1,…,mk) = d, –t ≤ m i ≤ t , mk ≠ 0,  (mk ,mk-1) = g  and the k-tuples
<m1′,…,mk′> with  (m1′,…,mk′) = 1, –t/d ≤ mi′ ≤ t/d , mk′ ≠ 0 , (mk′,mk-1′) = g/d,  d | g. By definition, the

number of such k-tuples  <m1′,…,mk′ > is equal to Z
t

dk

g

d
( , )

( )
1

. By equations (9) and (10), we obtain
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{
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( log )}( [ ] ) ( )
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Applying the Möbius inversion formula to equation (11), we deduce that
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Since, see Apostol (1976),
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then from equations (12)-(16), we have for k ≥ 3

Z t
t

g p
O

t

g
O

t

g
t O

t

g
O

t

g

t

gk
g

k

p
k

k k
( , )

lg
( )

( )

( )
( ) ( ) ( log ) ( ) ( log )1

2 2

1

2

3

2

3

3

12

2
1

1= ∏ − + + + + +−

− −

ς
K

+ + + +
−

O
t

g

t

g
O

t

g

t

g
t O

t

g

t

g

k
( log ) ... ( log log ) ( log )

2 2 2

2

   = 
( )

( ) ( )
( ) ( log )

lg

2

2
1

1
2 2

1t

g p
O

t

g

t

g

k

p
k

k

ς
∏ − +−

−
,

while for k = 2, from equation (12), we have
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which can be rewritten by using ∑
1≤d≤t
d|g

 µ(d) = [1/g] as

(1,g)
2

Z (t) = 

0 , g>1

(2t)2

g=1ς(2)





+ O(tlogt),

. Q.E.D.

Lemma 3.  Let d ≥ 2  and  g  be fixed integers. Then

 (g)
dP (H)   = 

(2H)d+1

ς(2)g2 p|g

1

pd-1∏ +
Hd

Od ( logg
H
g .) )(1−

Proof.  From its definition, see also Pólya and Szegö (1976),       P H td
g( )( ) ( )    Zk

(1,g)= , with  t = H , d =

k-1.Using Lemma 2, we get

 (g)
dP (H)   = 

(2H)d+1

ς(2)g2 p|g

1

pd-1∏ +
Hd

Od ( logg
H
g .) )(1− Q.E.D.

Lemma 4.  Let d  ≥ 2, g ≥ 1 be fixed integers, and 1 ≤  r ≤ H. Then for u = (r, g/mr), we have

 (g)
rS   = 

d+1(2H) u

ς(2)g2r rp|
u

1
( 1

1 p+
∏

p|g

1

pd-1∏ +
Hdu

Od ( log
gr

H

g
.) ) )(1−

Proof. First consider the case r = 1. Since S1
(g) = Pd

(g)(H), then the theorem is true in this case. Assume r
≥ 2. For brevity, we omit writing the hypothesis 0 ≤ i ≤ d underneath the summation sign. Thus

 (g)
rS   = 

|ai|≤H,ad≠0

r2|a
d
,r|a

d-1

(a
d
,a

d-1
)=g

(a
d
,...,a

0
)=1

1∑  = 
|ai|≤H,a

d
≠0

∑ µ(k)∑

r2|a
d
,r|a

d-1
(a

d
,a
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)=g

k|(a
d
,...,a

0
)

  = ∑
k|a

i
(∀ i)

µ(k)∑
|ai|≤H,ad≠0

r2|a
d
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(a

d
,a
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)=g
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µ(k)∑
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d
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k
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d
,r|kb
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g(b

d
,b
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k

1∑    ,   (writing  ai = kbi)

= 
s|r

k|g

µ(k)∑∑ 1∑
k≤H
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H|bi|≤ ,b
d
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k
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d
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g(b

d
,b
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d
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r
s

1
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ms

g(b
d
,b
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)=
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) 1

   ,

with k = ms. Note that the term µ(ms) ensures that (m,s) = 1. This together with (m,r/s) = 1 is equivalent

to (m,r) = 1, and so  (r2/s)|bd  and (r/s)|bd-1. Put   (r2/s)cd = bd , (r/s)cd-1 = bd-1  and ci = bi  (0≤ i ≤d-2). Thus,
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 (g)
rS   = 

s|r
µ(s)∑

Hm≤ s
(m,r)=1
m|g

µ(m)∑
H

H H

|c
i
|≤ms

0<|c
d
|≤

mrmr2
g
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1.

=

∑
(0≤i≤d-2)

|c
d-1

|≤

(rc
d
,c
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)

(17)

Claim 1: For x,y ∈ ,  r,g  ∈ , r ≥ 2, with 0< |x| ≤ C1  and |y| ≤ C2, the number of ordered pairs <x,y> satisfying

(rx,y) = g  is 
4C1C2u

ς(2)g2 r
u

p|

1
(∏ + O(

C2 C1u
,g g log(C2/g)),)

1+1/p

where  u = (r,g)  and  O(λ1 , λ2) =  max ( O(λ1) , O(λ2) ).

To see this, consider x,y for which (rx ,y) = g. There are two possible cases.
Case 1: (r, g) = 1.

If y = ±kg and (k,r) = 1, then, see Pólya and Szegö (1976), the total number of possible x’s is 2
C1ϕ(k)

k g

= 
C12

(k)
( k

ϕ
)

g  + O(1), and possible values of k are ±1,…,±[C2/g]. Thus, the number of possible ordered

pairs <x ,y> is  2

C
2[ ]g C1

k=1

(k )
(2 O(1))

k
ϕ

+∑
(k,r)=1
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( ) O(g k g
ϕ

+

C
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ς(2)g2 p|r

1
1+1/p

∏ +
C2 C1 C2O logg g g .) ( ) ( ),

Case 2: u = (r,g) > 1.

Let r = uR and g = uG where R,G ∈  ,  (R,G) = 1. Similar to the arguments used in Case 1, the number of

possible ordered pairs <x ,y> is      2

[C
2
/g]

k=1

(k)
{2 k

ϕ∑ C1
g + O(1)}

= (4C2/G)
(k)

k

ϕ
+ O(C2/g)

C
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k=1
∑

(k,R)=1

  = 4
C1C2u

(
ς(2)g2 rp|

u

1

1+1/p
∏) ( )

C2 C1u C2+O logg g g .,( )

From Claim 1, let x = cd and y = cd-1. Then the number of ordered pairs  <cd,cd-1>  with (rcd,cd-1) = g/mr,

0< |cd| ≤ H/mr2 and |cd-1| ≤ H/mr  is equal to

4 H2u

ς(2) rg2 rp|
u

1

1+1/p
∏ + O H HHu, logg grg( ) ( )  = 

4 H2u

ς(2) rg2 rp|
u

1

1+1/p
∏ + O HHu log grg( ) ( ),

with u = (r, g/mr), and since s ≤ r and g ≥ s, we have
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=
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Substituting into equation (17) and separate into two terms Mr
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s|r

µ(s)

sd-1 md-1
∑

m≤H/s
(m,r)=1
m|g

m≤H/s
(m,r)=1
m|g

µ(m)∑ ∑ ∑ + 
s|r

µ(s) µ(m)) Od (
Hdu

log
rg(ms)d-1 )

H
g .

=  Mr
(g) + Rr

(g),
where

Mr
(g) = 

(2H)d+1u

g2ς(2)r rp|
u

1
(

1+1/p
∏

s|r

µ(s)
sd-1

∑ µ(m)
md-1

∑)
m≤H/s
(m,r)=1
m|g

=
∞(2H)d+1u

g2ς(2)r rp|
u

1
(

1+1/p
∏

s|r
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u

1
(

1+1/p
∏

s|r

µ(s)
sd-1

∑ µ(m)
md-1

∑)
m>H/s
(m,r)=1
m|g

− .

Claim 2:
µ(m)

md-1∑
m>H/s
(m,r)=1
m|g

  = O(g( s
H

)d-1).

To see this, put g = p1
1α … pt

tα C(r). As r|g,  (pi, r) = 1, C(r) is the factor of g relatively prime to r. Let r =

qr1 … qs
rs . Since r|g, then g = qt

1
1 … qs

ts  p1
1α … pt

tα , ri  ≤  ti, and so C(r) = qt
1
1 … qs

ts . If  (m, r) = 1 and m|g,

then m = p1
1β … pt

tβ  where 0 ≤ βi ≤ αi. Now

µ(m)

md-1∑
m>H/s
(m,r)=1,m|g

µ(m)

md-1∑    = 
t1

t1

t1

1 t

0≤β
i
≤α

i 1
p ...p

(p ...p   )

(p ... pt  )
d-1

β1 βt

ββ

ββ

>H/s

∑
µ

  ≤
d-1

1 1
1

s ...
H β

t
=0β

1
=0

 
  

∑ ∑ ≤ g(s/H)d-1,
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as claimed. Using 
s|r

µ(s)

sd-1
∑  = 

p|r
(1-1/pd-1)∏  and µ(m)

md-1

∞
∑

m=1
(m,r)=1
m|g

  = 
p|g

p|r

(1-1/pd-1)

(1-1/pd-1)

∏

∏
, we have

s|r

µ(s)

sd-1
∑

H
s

µ(m)
md-1∑

m>
(m,r)=1
m|g

 = sO(g (
Hs|r

µ(s)
sd-1∑ ))

d-1
 = 

g
O(

Hd-1 ), and so

Mr
(g) = 

(2H)d+1u

ς(2)g2r r p|gp|
u

1
( ) (1-1/pd-1)

1 +1/p
∏ ∏  + 

H2u
Od ( gr .)

Similarly for d ≥ 2, we get

Rr
(g) = 

s|r
µ(s)∑ µ(m)∑ O(

Hdu

gr(ms)d-1
log(H/g))

m≤H/s
(m,r)=1
m|g

 = Od (
Hdu
gr  log(H/g)

s|r

µ(s)
sd-1

∑
µ(m)
md-1

∑ )
m≤H/s
(m,r)=1
m|g

= Od (
Hdu
gr

log(H/g)
p|g

(1 1/pd-1)-∏ +
Hdu H

log
gr g⋅ ⋅

Hd-1

g
) = Od (

Hdu H
log grg ⋅ ),

and the desired result follows. Q.E.D.

Lemma 5. If A(x) = adxd+…+a0 ∈ [x]  has content c > 1, then  den(A) ≠ |ad|  and Ûd (H) = P̂d (H).

Proof. Since A(x) , (1/c)A(x)  ∈ [x]  both have the same set of roots  and (1/c)A(x) is  primitive, then  den(A)

= den((1/c)A). By Theorem 1 of Arno et al. (1996), den((1/c)A) divides  ad/c and den(A) = den((1/c)A) ≤
|ad|/c < |ad|  implying that  den(A) ≠ |ad|. Next, let A(x) ∈ [x]  have c as its content. Assume that A(x) ∈

Ûd (H). If c > 1, then den(A) ≠ |ad|, and so A(x)∉ Ûd (H), which is a contradiction. Thus, c = 1 and so A(x)

∈ P̂d (H)  yielding Ûd (H) ⊆  P̂d (H). Finally, we assume that A(x) ∈ P̂d (H). Thus, A(x) ∈ Ûd (H) which gives

P̂d (H) ⊆  Ûd (H). Hence, Ûd (H) = P̂d (H). Q.E.D.

RESULTS

Theorem 1. Let g ≥ 1 be fixed. Then for n ∈  , we have

(i) Probk
(g)

(n) = 
k1 2n

(
gkς(k) 2n+1

+ O(
nk-1

gk-1(2n+1)k
)) , when  k ≥ 3 ,

(ii) Prob2
(g)

(n) = log
21 2n

(
g2ς(2) 2n+1

+ O(
n n

g(2n+1)2
) )

g , and

(iii) lim
n→∞

Probk
(g)

(n) = 
1

gkς(k)
.
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Proof. Since Probk
(g)

(n) = 
Z n

n
k
g

k

( )( )

( )2 1+
, then from Lemma 1, for k ≥ 3, we have

Probk
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(n) = 

( )

( )
( )

( )

2

2 1

2

1

1
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1 2

2 1 2 1

1

1g k
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( )
)

+
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− ,

while for k = 2, we have
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(g)

(n) = 

( )

( )
( log )

( )

2

2

2 1

2

2
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+
 = 1

2
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2 1 2 12
2

2g

n

n
O

n

g n

n

gς( )
( ) (

( )
log )

+
+

+
,

and (iii) follows immediately from (i) and (ii). Q.E.D.

Theorem 2.  Let g ≥ 1 be fixed and p be a prime. Then for n ∈  , we have

(i) Probk
(1,g)

(n) = 
1

2

2

2 1
1

1

2 12 2

1

g

n

n p
O

n

g n

n

g
k

p g
k

k

kς( )
( ) ( ) (

( )
log )

|+
∏ − +

+−

−
, when k ≥ 3,

(ii) Prob2
(1,g)

(n) = 
1

2

2

2 1 2 1
2

2ς( )
( ) (

( )
log )

n

n
O

n

n+
+

+
 n ,

(iii) lim
n→∞

Probk
(1,g)

(n) = 
1

2
1

1
2 2g pp g

kς( )
( )

|
∏ − − , when  k ≥ 3, and

(iv) lim
n→∞

Prob2
(1,g)

(n) = 
1

2ς( )
.

Proof. Since Probk
(1,g)

(n) = 
Z n

n
k

g

k

( , )( )

( )

1

2 1+
, then from Lemma 2 for the case k ≥ 3, we get

Probk
(1,g)

(n) = 

( )

( )
( ) ( log )

( )

|

2

2
1

1

2 1

2 2

1n

g p
O

n

g

n

g

n

k

p g
k

k

k
ς

∏ − +

+

−

−

= 
1

2

2

2 1
1

1

2 12 2

1

g

n

n p
O

n

g n

n

g
k

p g
k

k

kς( )
( ) ( ) (

( )
log )

|+
∏ − +

+−

−
,

while for the case k = 2, we get

Prob2
(1,g)

(n) = 

( )

( )
(

2

2

2n
O n

ς
+   logn)

(2n +1)2
 = 

1

2

2

2 1 2 1
2

2ς( )
( ) (

( )
log

n

n
O

n

n+
+

+
 n) .

Lastly , (iii) and (iv) follow directly from (i) and (ii). Q.E.D.
Theorem  3. Let d ≥ 1 and g ≥ 1 be fixed. For H ≥ 2, we have
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  ˆ ( )( )P Hd
g

 = 
µ

ς
( ) ( )

( )
( )( ) ( log )

|

g H

g p p
O

H

g

H

g

d

p g
d d

d2

2
1

1
1

1

1

1

2 1

+

−∏ − −
+

+ .

Proof. For d = 1, we have ˆ ( )P g
1 (H) = P g

1
( ) (H). Therefore, the theorem is true in this case. Assume d ≥ 2 .

Using Theorem 1 (i) and the proof of Theorem 2 of Arno et al. (1996), we get den (A) ≠ |ad| ⇔ there is a

prime  p such that p | ad and n = ad/p satisfies
(nd/ad)A(x/n) ∈  [x]

⇔ there is a prime  p | ad  and  (1, ad-1/p, ad-2ad/p2, ad-3ad
2/p3, … , a0ad

d-1/pd ) ∈  d+1.

Since A(x) is primitive, then  den (A) ≠ |ad| is equivalent to p2|ad and p|ad-1. Thus ,

{ ( ) ( ) }( ) ( )A x a x P H a S
i

d

i
i

d
g

d
p H

p
g= ∑ ∈ ≠ =

= ≤0
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g

i
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i
i
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g

d d
( ) ( ){ ( ) ( ): , }= = ∑ ∈
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0
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−

0
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d
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g
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Apply Lemma 4 and separate the sum into two parts Mg and Rg to get
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.

Let g = pa
1

1 K pk
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k
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1
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= 

0 1

1
1

1
1

,
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|

          a  not square - free (g) = 0

 square - free | (g) |= 1
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+
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




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p
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p g
i

µ
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+
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.
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, and

Rg = ∑ =
≤ ≤1 r H

r g

d

d

d

d
r O

H u

gr

H

g
O

H

g

H

g
|

( ) ( log ) ( log )µ ,
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H u

g

H

g

r

r
O

H

g

H

g

d

r H
r g

d

d
log
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( log )

|

∑ =
≤ ≤1

µ
, and the result follows. Q.E.D.

Theorem 4. Let d ≥ 1 and g ≥ 1 be fixed. For H ≥ 2, we have 
| ˆ ( ) |

| ( ) |

( )

( )

P H

P H
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g
1

1

 = 1, and when d ≥ 2, 
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+
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1
, where g is square-free.

Proof. For d = 1, we have ˆ ( ) ( )( ) ( )P H P Hg g
1 1= , i.e. the result is true in this case.

Assume d ≥ 2. From Theorem 3, and Lemma 3 we see that
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,

as g is square-free. Q.E.D.

Theorem 5.  Let  d ≥ 1 , H ≥ 2 and p be prime. Then lim
d→∞

lim
H→∞

| ˆ ( ) |

| ( ) |

U H

U H
d

d

 = 1

3ς( )
.

Proof. From Lemma 5, Ûd (H) = P̂d (H), and from Theorem 3,

| ˆ ( ) |P Hd  = 
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Using  |Ud(H)| = (2H)d+1 + Od(Hd), we deduce that
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and so lim
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Consequently, lim
d→∞

lim
H→∞
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. Q.E.D.

DISCUSSION

The first group of results obtained in this paper is

(I) Probk
(g)

(n) = 1 2

2 1 2 1

1

1g k

n

n
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n

g nk
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−
, k ≥ 3.

(II) Prob2
(g)

(n) = 
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2 1 2 12
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gς( )
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.

(III) lim
n→∞

Probk
(g)

(n) = 
1

g kkς( )
.

This extends the results of Nymann (1970) which correspond to the case g = 1.

The second group of results obtained in this work is

(1)
| ˆ ( ) |
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1
 for  d ≥ 2.

(2) lim
d→∞

lim
H→∞
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| ( ) |

U H
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d
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 = ∏ − =
p p
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( )

1
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33 ς
;

both provide refinements to the following results of Arno et al. (1996)
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(ii) lim
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lim
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