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Integration in Finite Terms which Includes Exponential Integral

Utsanee Leerawat!

ABSTRACT

This paper generalizes the Liouville’s theorem on integration in finite terms by extending the class
of fields to an extension, called Ei extension, which includes the elementary extension and contains
exponential integral.
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INTRODUCTION

The problem of integration in finite terms is that given a 7y in a differential field F with derivation
D, we ask when a solution of D(v) =y can be expressed in certain special forms. The answer is given by
Liouville’s theorem: Let F'be a differential field of characteristic zero and ye F. If D(v)=" hasasolution
in an elementary extension E of F having the same subfield of constants, then there are constants ¢y, ¢5,...,c,
in F and elements :y,u5,...,u,,v in F such that

n (1.
’}/ = D(L') + ZC[ D\Ml)'

i=1 U

M. Rosenlicht gave a completely algebraic proof of Liouville’s theorem as described in his series of papers
(Rosenlicht , 1968.1972,1976).

In this paper we give a generalization of Liouville’s theorem called Ei extension, by extending the
class of fields from elementary to another class of fields containing strategically the exponential integral.
As an application, we give a sufficient condition for certain functions to be Ei integrable.

In section 2 we state a result of Rosenlicht(1976) and Rothstien and Caviness (1979) that is used in
the proof of the main result and define our extended class of fields.

In section 3 we give the main result of this paper and prove the main theorem.

All fields are assumed to be of characteristic zero. @, Z and Z + stand for the set of rational
numbers, the set of integers and the set of positive integers, respectively.

MATERIALS AND METHODS

In this section we state a result from Rosenlicht (1976) and Rothstein and Caviness (1979) that
will be used later.
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Lemma 2.1 (Rosenlicht, 1976). Let F be a differential field, K a differential extension field of F with
the same subfield of constants, with K algebraic over F(z) for some givent € K. Suppose thatcj,...,c, are
constants of F'that are linearly independent over @, thatu J,...,up, v are elements of K, with u ..., up nonzero,
and that for each given derivation D of K we have

n

Y ¢; Du/u; + D(v) € F.

i=1

If for each given derivation D of K we have D(1) € F, then uj,...,uy are algebraic over F and there exists
a constant ¢ of F such that v - ¢t is algebraic over F. If for each given derivation D of K we have D(t)/t €

Mo

F, then v is algebraic over F and there are integers mg, mj, ....my, with mg # 0, such thateach ;01"

(i = 1,...,n) is algebraic over F.
Definition. Let F be a differential field with a derivation D and E a differential extension of F.

) Dl
We say that =0 is an exponential over F if —t(—)- = D(a) for some u in F,we write 1 =

exp (a). We callt an integral over F if D)= a for some u in F; in this case we write ¢

D(u)

u

Jalf Dit) = for for some nonzero element uin F, we writet = log (u),and call ¢ logarithmic

over F. We say that 1 is simple logarithmic over F if there exist uy,u;...,u,, € F such that for

some constant ¢,
t+ ¢ € F(log(u])....,log(um )) We say that ¢ is nonsimple if it is not simple logarithmic over

F.
E is a generalized log-explicit extension of F if there exists a finite tower of fields

F=FycFKcL cF,=E such that for eachi=1,..n, F = F_(1;)

and one of the following holds :

(i) ; = exp(u;) for some u; in Fy;,

(ii) #; is integral and nonsimple over Fy;,

(i) t; = log(u;) for some nonzero element u; in Fy,

(iv)t; is algebraic over Fyj.
Lemma 2.2 (Rothstein and Caviness , 1979) . Let F = C(y,....ty ) be a generalized log-explicit
extension field of C, where C is the field of constants of F. If u#0 and v are members of F" such

D(u) . :
that —— = D(v), then there exist rational numbers r;and a constant ¢ such that
u
b= er Tre S
ielL iek 7
where L = { i/t = l()g(a[), aeF_-{0}1<i<n },

{i/ti:exp(ai),aieﬁ_l,ISiSn},

3]
1}
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and; = explay for ie E.
We now define our special class of functions.
Definition. Let F be a differential field with derivation D and C its subfield of constants . We say that
ay e F is an Ei element over F if there exist
(i) a; € C, v, algebraic over F and nonzero elements v; algebraic over F forall i € /,
(ii) b; € C, nonzero elements w;and x; algebraic over F foralli € J, such that

3 D(v;) 3 D(w;)

Vo= Do+ [ ai Ty S0,
D()Ci) .
where 7 and J are all finite indexing setsand . = D(wy) forall i € J.

We say that a differential extension E of Fis an Ei extension of F if there exists a finite tower of fields
F = Fp ¢ F; ¢ - < Fp = E such that for each i = [..n
F; = Fi_(t;) and one of the following holds:

(i) 1 is algebraic over Fj_j

(i)  D(;) or D(tp) I1; is an Ei element over Fj_j
Remarks. 1. Every elementary extension of F is an Ei extension of F

(Rosenlicht,1968,1972,1976) .
2. The Ei extension contains the exponential integral which is defined by

Eiw) = | 2

p exp(u).
Example. Let C be the field of complex numbers and let F = C(x) be the set of rational functions with
coefficients in C. Then F is a differential field under the usual derivation D =d/dx. Hence

exp(x) + l)
X

F( exp(x), log(x), j ( D(x)) is an Ei extension of F.

RESULTS

Theorem 3.1. Let F be a differential field with derivation D and subfield of constants C. Let ye F.
Assume that there exist an Ei extension E of F whose subfield of constants is C and v € E such that D(v)
= v. Then 7vis an Ei element over F.
The proof of the Theorem is by induction on the transcendence degree of E over F and it suffices to
consider only transcendental extension of degree 1 corresponding to each of the adjoined elements. These
are done in Lemmas 3.2 and 3.3.

Before proving the lemmas, it will be convenient to define the following term:
Definition. Iffand g are polynomials over a field F, and g # 0, then there exist unique polynomials ¢(X)
=ap+ajX+-+ayx" and nX) over F such that fiX)/g(X) = g(X) + n(X)/g(X), where r(X)=0 or
deg r(X) < deg g(X). Call the unique element a,, the head of f/g.
Lemma 3.2.  Let F be a differential field with derivation D and C its subfield of constants. Let ¢
be transcendental over F such that D(z)/t is an Ei element over F. Assume that the subfield of constants
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of F(t)is C. If y € FisanEielement over F(r), then 7 is also an Ei element over F.

Proof. Since yis an Ei element over F(z), then there exist

() aj € C, v, algebraic over F(r) and nonzero elements v; algebraic over F(¢) for allie I,
(i)  b; € C nonzero elements w;, and x; algebraic over F(r) foralli € J,

such that

Y b D(wl

Y = Dy, + lg‘[ a; Dvpv; P Wi .

+

D(Xi)

where /and J are all finite indexing sets, and = D(w;) forall i € J. We may assume that

it}
Fisalgebraically closed. forif F'is notalgebraically closed. thenlet  be an algebraic closure of F. Note
that 7 (1), F, F have the same subfield of constants C. Since y is an Ei element over F(¢) and F(r)
< F(, v isalsoanEielementover f(#). Inthiscase, we couldreplace F by F. Itiseasyto
see that if Y is an Ei element over F, then vy is also an Eielement over F. Foreachie J. we have

D(x;) = D(w; )x;, thenby Lemma 2.1, we have that w; € Fand there exist rational numbers O ;and p;

in Fsuch that x; = p; tY Note that we can arrange so that VU ; are actually integers. To see this,

. - D(t 1 Dft)
let U, = g;/m where g;and m are integers. Let ¢ = " Hence F 20 ———[— and F C F(1).
m

Ifwereplace 7 by 7., we still have fields of the appropriate form and furthermore. x.= p;7 “ where

g;» are integers. We shall use the old notation but from now on assume that "V ; is integer. Let K be a finite

Galois extension over F(¢) and let 6 be an element of the Galois group of K over F(r). Then

D(w;)
2 b; Ly
Y = o) = Dlovg) + /2, aj D(ovplov;) + Efj i Ww; !
Summing over all ¢ yields, for some Min Z .
D(w;)
- DN N by —= x;
(D My = D(Tvg) + [ aiDNviY(Nvy) + ME’, Cw b

where T and & denote the trace and norm of K into F{(r) respectively.

1l
Write Tv,, = > hitl + 33 (ai,-/(t-t,')i),
= .

where hj, ajjand tj are in F. Hence the head of D(Tv) is D(hy).
Foreach ie [ write Nv; = k; H(’_“})

where the OU; € Z + the k; € F\{0}, the Hj e Fand the njje Z.
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o
. D(1)
Therefore the head of E‘I a;DINv)/Nvy) is E‘I a; D(kjyk; + EI j§=:l ainjj .
Foreach i € J,recall xj = pj Vi
p, D) v 520,
Therefore the head of Z w; i s ,EJ Wi
=0
We conclude that the head of the right hand side of (1) is
D(v;) D(w; ) _
Dy 4 X d—=> . X h/—E%
l
D(%;) —
where vo .xi € F, v, w; € {0} .q;, h € Cand _(““ = Diw;)

1

Then comparing the head of (1) and dividing by M, we get the correct sum of ’
Lemma 3.3. Let F be a differential field with derivation D and C its subfield of constants. Lettbe

transcendental over F such that D(t) is an Ei element over F. Assume that the subfield of constants of F(t)
isC. If y F is an Ei element over F(t), then v is also an Ei element over F.

Proof. Since yis an Ei element over F(t), then there exist

(i) ai € C, vo algebraic over F(t) and nonzero elements vi algebraic over F(t) for all 1 *1,

(i)  bi e C, nonzero elements wi, and xi algebraic over F(t) foralli € J,

such that
D(w;)
_ i ZA
Y FDe+ i%{ aj Dy + EJ e
D(.\’l‘)
where I and J are all finite indexing sets, and x»_. = D(w;) i€l

!
Similar to Lemma 3.2, we may assume that F is algebraically closed.
Foreach i € J, we have that D(x;) = D(w;)x;,then by Lemma 2.1, we get x; € F and there exist Ai
€ C, pje F suchthat w; = A;t + p;.
Let K be a finite Galois extension over F(z) and let ¢ be an element of the Galois group of K over F(¢).
Then
D(w; )

Wi

= o(y) = D(ovg) + EI a; D(ovpl(ovy) + 2 bi

Summing over all ¢ yields, for some Min Z,

D(W,‘)

Wi ’

iel

) My = D@vg) + = aiD(Nv/(Nvp + Mizj b
€
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where T and N denote the trace and norm of K into F(f) respectively.

D(Nv;)
. a:
Consider 2 4 Ny,

o

i
Write Nv; = k; Hl(’ - :uj) where the o; € Z+, the k; € F\{0}, the y; € F and the 1 € Z.
j:

D(Nv;) D(k;)

So ¥ a——= _ Y =" , anelementin FO\F[1.
iel N iecr Kk
D(w;)
Next, consider Xh - Y. Recall w; = Agt+p; forall i e J.

!
If Ai =0 then w; € F.

D(w;) AD(r)y + D(l’i)

Assume that A; # 0. Therefore e F(O)\F(1).

From (2) we conclude that
. D(k) D(w;)
3) My = D(Tvy) + ,E'/ai v -+ M;V,Z:ob[ T, Y+ anelementin FOVFL1).
Now consider D(Tv;).
n _ ]
Write Tvo = AZCVj’ + anelement in F(H\F[1], where n is nonnegative integer and the j € Fand
J7=0
v, #0. So
= \.1 z .= - j~1
@ D1y = Pk + X (J viD(r) + D(Vj—l))"’ + an element in FO\F1].

j=1
We now prove that n < 1. Suppose that n > 1. Replacing (4)in (3), we have that the right hand side of
(3) would contain an expression of the form A with i>2.

Comparing the terms of degree n and n-1 in (3), D(y,) = 0 and
(1 3,00 + D(3,1) = 0. Since D(3,) = 0. 3, € C.

Thus D(n yt +3y-y) = 1 yaD@ + D(3, ;) = 0.

So ny,t + y,_; € C.Thusrisalgebraic over F, a contradiction.

From (4) , we get D(Tv,) = D(3, Dt + (D) + D(3,0)) + anelement in FONF[1].

Considering the degree of rin (3) ,we get 7€ C.
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Hence D(Tv,) = vID(t) + D(3,0) + anelement in F(H)\F{z].
Replacing D(Tv,) in (3) and comparing the head, we get

D(w;)
5) My-= vID(t) + D(vo) + E’, aiDkki + M Z b w; ‘.

i 2 =0

Dividing by M, we obtain the correct sum of .

Proof of Theorem 3.1. Let m = tr.deg. E/F.  The proof is by induction on m.
If m =0, then E is algebraic over F, and the theorem is trivially true. Assume that
m>0. Suppose that the theorem is true for any Eiextension L of a field F’ such that tr.deg. L/F" <
m. Since tr.deg. E/F = m, we can choose a transcendence basis ¢/,...,tm of E over Fsuchthat F=F,

Fi.j=Fjc < F(t},...tm)=F,m < Eandeach t; satisfies either D(ti) or is an Ei element over
Fi.jnE.

(Fj.] denote the algebraic closure of Fj-1).

Note that E is also a Ei extension of Fj and tr.deg. E/F; =m-1 <m. So by the induction hypothesis, we
getthat y isan Eielementover Fy. By Lemmas 3.2 and 3.3, we get the result of the theorem.
Definition. Lety be an element of a differential field F with derivation D. We call yis an Ei integrable
over F if there existan Ei extension E of F with the same subfield of constants as F such that

jy e k.

Theorem 3.4 Let C be a differential field of constants with a derivation D. Let x be transcendental
over C withD(x)=1. Let f and g be elements of C(x). If
gexp(f) is Ei integrable over C (x,exp(f)) then there exist d;d,....d, in C ,nonzero elements
wwo,...,w, in C(x) and v in C(x) such that
n wi)
g = D(v) + vD(f) + Z]—,
i=

Wi

where for each w; there exists ¢; in C such that w; = f + ¢
Proof. Let t = exp(f).
By Theorem 3.1, gt is an Ei element over C(x.r).
So there exist

(i) a; € C, v, algebraic over C(x,7) and nonzero elements v; algebraic over C(x,) for all
iel,

(i) b; € C, nonzero elements w; and x; algebraic over C(x,r) for all ie J,
such that

Dv;) D(w;)

(6) gt = D(vy) + Tdi——= + zbi_—_xi,
iel Vi ieJ Wi
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Dx;)

where 1 and J are all finite indexing sets and = D(w;) for all ieJ.

i
By Lemma 2.2 thereexist r; € Q, ¢c;€ C suchthatw; = ¢ + nf.
Similar to Lemma 3.2, we may assume that r; are integers.
D(Xl')

i

Since D(;%) = ;7 D(w;} and D(w;) = D(xil‘_ri) = 0. Thus y; = di[’i for some d; €

C. From (6), we have

Div; Dlw;) .
gt = D(v,) + Zai ‘(}l) + zbidf—f-%tn~

i i
Let F be the algebraic closure of C(x). Let K be a finite Galois extension over F(¢) andlet ¢ be anelement
of the Galois group of K over F(¢) . Then

D(ov;) D(w;) .
o = Diovy) + Tdi——— * X by ——=1"
ov; Vi
Summing over all ¢ yields , for some Min Z ,
D(Nv;) D(w;) ,
7 Mot = DTy + Sti—et + MEbd ="

g i
Using a partial fraction decomposition . comparing the terms of 7, and dividing by M., we get

. DW,’
g = Dy + ML) + Xd; ( >‘

Wy

Now let K; be a finite Galois extension over C(x) containing # , and let & be an element of the Galois
group of K; over C(x) . Then

D(w;)

¢ =o0(g = Doh + (ch)D(f) + deT,

1
Summing over all ¢ yields , for some M; in Z,

D(w,;)

(8) Mg = DTh + TWDH + M X4 ”
14

Since This in C(x), dividing equalion (8) by M; , we get the result. The proof is complete .
Example. Let C be the set of complex numbers and let F = C(x) be the set of rational functions

with coefficients in C. Then F is a differential field under the usual derivative: D = _J; . We

2, .
claim that J' ¢* is not an Ei integrable over F.
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2, .. . .
To see this, suppose that j e* is an Ei integrable over F. Then there exist dj,d,...d, in C nonzero

element wj,ws,...,w, in Fand v in F such that

D)
2
) 1 =D(v) + vD(x ) + Yd, ! ,
=1 Wi
where for each w; thereexist ¢; in C suchthat w; = x2 + ¢
m [ o dl..
Write vV = dypt+tax+L +aux +2 2————'—]
i=1 j=1(x = B;)
o; __}d
So D(V) = q+ 2a2x +L + mamxm_l + 2 7——£j]—+1
i=t =t (x=By)
Since wj = 32 + ¢;, Dw) = 2x
From (9), we have
[ o —id..
m—1 J ij
10 1 = @ +20x+L +max" "+ 3 Y ————
(o il =1 (x=B;)
LY —jd;; 2d;x
2x(al +2ax +L +ma,x"T + Y Y /%5 + .

L i=l j=I (x - [),i)jﬂ i=1 x* ¢

If the d; 'sandthed; ° s are all zero, then we get x is algebraic over C, otherwise
the expression on the right hand side of (10) would have a pole of order > 1 which is impossible

because the left-hand side of (10), being 1, can have no poles. Therefore J g/‘z is notan Ei integrable

over F.
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