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Approximation of Exponentials in the p-Adic Domain

Vichian Laohakosol!

ABSTRACT

Using a method first developed by Hermite and later improved by Mahler, we establish lower bounds for
the approximation of p-adic exponential functions evaluated at rational points.

INTRODUCTION

In 1873, Hermite (1873) gave a proof of tran-
scendence of the exponential value e. Since then his
method has been extensively refined and further
developed, notably by Siegel and Mahler. Specifically,
Mahler (1932) successfully employed this method to
prove the algebraic independence of exponential
functions evaluated at algebraic points (first proved by
Lindemann) as well as giving the measure of algebraic
independence. More precise lower bounds on the
approximation of an exponential function evaluated at
rational points have also been obtained via this method;
see e.g. Durand (1980). On the other hand, resuits
related to algebraic independence of p-adic exponen-
tial functions have previously been obtained in Serre
(1965/66), Waldschmidt (1973) and Bundschuh and
Wallisser (1979).

Stimulatedby the works of Mahler (1932, 1967),
in the present paper, we use an analogous method
developed in the p-adic fields to prove the following
result.

Theorem Let0=w <o, <...<0 =Q be dis-
tinct rational integers; p, v and b be positive integers;
aberational integral withg.c.d. (a,p) =g.c.d. (b,p) =1;
g, (21).q,,...,q, be m+1 arbitrary rational integers

p pi M0 pv+mpl(p-1) o 1/Slqolp’

then
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where S = S (p,p.Q,qmyv,ab) = 2 (m+1) bP (13
pm%et) P (p+1) q (14| p'ab [ P).

MATERIALS AND METHODS

Notation Throughout the whole paper

p denotes a fixed rational prime.

IN denotes the set of natural numbers.

ZZ denotes the ring of rational integers.

| | denotes the usual absolute valuation.

| lp denotes the p-adic valuation so normalized that
lpl,, = 1/p.

<, denotes the completion of the algebraic closure
of @ o the p-adic field.

M, Py Pys - - - Py A€ positive integers with
O =pytpy+-. -+, - 1.

Let oy, oy, ..., @ be distinct elements of <,
satisfying

lmklp < 1 (k=0,1,...,m).

Let z in@, be suchthat |z| = p P -8 where
0 = 0 (2)is a positive real number.

From linear algebra, we have the following facts
(see e.g. LeVeque (1956) or Mahler (1932)).

(i) There exist m+1 polynomials A (z,0,p) =
A 2oy .. 0, Py Py (k=0,1...,m)notall
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identically zero of degrees at most Pt Pyt
-1, respectively, such that the analytic function

. pm

R(z,0,p) = R (z,mo, Cea O, Py pm) T=

m
D Alz,0,ple k*
k=0

vanishes at z = 0 up to order .

(ii) 1f

R (z,m,p) : = Cz° + higher powers of z, is the
analytic function mentioned in (i), then C = 0.

Assumption From now on, we always take the value
C in (i) above to be C = 1/c!, and so R (z,w,p) and
A, (z,0,p) are always uniquely determined.

As seen from Bundschuh and Wallisser (1979),
Mahler (1932, 1967), most analytic identities involving
A, (z,0,p) and R (z,0,p) are actually universal alge-
braic identities, valid over any field of zero character-
istic, in particulaer, and indeed explicit formulae for A
« (z0,p) and R (z,0,0) are given by (see p. 186 of
Bundschuhand Wallisser (1979), pp. 124-125 of Mahler
(1932) or p. 203 of Mahler (1967))

m
Adz,w,p) = i=no (@4 o; P

2)
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Next, we define for | z | = p /(1) -0

R,(zop) = R (z,0g, - 00, Potdgr - - = PO
(h=0,1,.., m)
A zop) = A (Zog -0, P, - P tOm)

(hk=0,1,...,m)

D (Z) =D (Z,(D,p) = det (Ahk (Z:va))h‘k=0’1 YYYYY m
where &, denotes the familiar Kronecker symbol.
Thenwe have the following algebraicidentity (see e.g.
p. 126 of Mahler (1932))

+.+ m -
D(Z) _ pO pm _ ph

We shall now derive an estimate crucial to the proof of
our theorem.

Lemma Forzing,with|z| = p P -9 wehave

IR (zop) |, < poe.

Proof From (3) we see that | a, | p < tandsoR(z):
= R (z,0,p) is majorized by the p-adic exponential
function €*. Setting

z = p"Pwwith |w l, < 1, we know that exp
(p1/(p-1 )w)

considered as a function of w is a normal function (see
p. 297 of Adams (1966)). Therefore, R (p"/P"w) must
also be a normal function of w. Since R (z) has a zero
of order ¢ at the origin, then the normality gives (see p.
304 of Adams (1966))

IRE"PDw) | < p,
where |w | = p® and the lemma follows.

RESULTS

We now proceed to prove our theorem. We first
specialize the parameters in the last section as fol-
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lows:

0=0,<o <... <©_ = Q arerational

0 1 m
integers,

Py =Py = ... =p, = p arenaturalnumbers.

Let
m

I1
Mic= joolok-ojl, M=

j=k
Rpl2) =Ry, (z, 0, p)
L.C.M.

B j,k=0,1,...,m(wk_wi)’
j#k

N

Ankl2)=An [z, 0, p)

Take z = pYa/b to be rational with natural v satisfying
v > 1/(p-1), a rational integral, b natural with g.c.d.
(a,p) = g.cd. (b,p) = 1. Let

v =-1p-1) -6, ie. 8 = v-1/(p-1).
Forhk = 0,1...,m,put

a,(2) = BPMP NPT ol A (2).
Then from the explicit formula (1) of A, (2), we see that
a,, () is a polynomial in z with rational integral coeffi-
cients and

3y = a, (p'ab) = b’ MP NPT pIA_ (pVarb)
is rational integral. Put also

@) = b MP NP pIR (2) (h=0,1...,m)

so that

E apk exp (wkpva/b)
k=0

= rh(pva/b) =
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From the lemmawith | z | = p = p P18 we have

|Ry@ ], < prm+1es (h=0,1, ..., m)
h p

and so using |p! |, < pp' PPN (see p. 187 of Bund-

schuh and Wallisser (1979)), we get

[rh lp < pp1-p/(p-1)-(m+1)9p
- pp1- (m+1) pv+mp/(p-1) (h=0, 1., m).

Let q, (21), Gy - - - Q, be m+1 arbitrary rational

integers. Let

. max v
B = 0,1, m’qoex”(“)kp a/b) - qklp
max v
“ k=1,2,...,m qOeXp(mkp a/b) B qklp
(sincemo=0)
and

Eq = geexp(op‘ab) - q (k=0,1...,m).

Since the numbers exp (w,p*a/b), . . ., exp (0, p'a/b)
are transcendental (see Mahler (1932)), then E* > 0.

Our aim now s to estimate E* from below. First,
we note from (4) that the determinant

det (a ‘
and since the rational integers Gy Gy -G, donotalt
vanish, then there exists a suffix h such that

m
2 2nkAk #0
k=0
Now we observe that all parameters involved are ra-
tional numbers. Therefore, the universal algebraic
identities (1), (2), (3) inthe classical case yield (see pp.
202-204 of Mahler (1967))

RAl) i
Apkla)= Y Apizij!
j=0
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with
,A Pm mp(m+1](m+1)p = C, say,
so that
P i
‘Ahk(pva/b) <Ccy |0V
i=0
< C(c+1)(1+[pva/b’).
Thus
la, ] = la,(p'ab)|

+1
= |B° MPNPHT pIA . (pYab) |

< CbP MPNP*T ol (p+1) (1+4] pYarb |)

< 2bP (13pm%e®) P (p+1) (14] pYarb |P)

(see p. 208 of Mahler (1967)). Consequently, we get
for such h

m

1<| X apak|<S,
K=0

Where S = S (c,W,q,m,v,a,b) is as defined in the
statement of the theorem and so

-1
> 1/S |

m

2. anhkdk
k=0

anhk Ak [P

u M3

With this value of h, put
q n qm
Q=4dgp D, awak-E=qg ), anEk.
k=0 k=0
Then
m

ank(ak/do+Ex/aq) = Q+E.
K=0
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Now
> IqO’;1 S !

4 m
Qlp=|daoly| ¥ ankax

and

*max

Elp<E ahquIp"E |q0|p

If we have

max

" felag

then the strong triangle inequality yields
|El, = 1Ql, > 1S|qyl,
and so

’rh‘p ‘qolp

E* > }qu|p > 1/8
and the theorem follows.

DISCUSSION

We deduce from our theorem a more pleasant
looking result.

Corollary Letall notation be as setoutin the theorem.
Then there exist two positive constants K1, K2 de-

pending only on p,m,a,b,Q such that if

P’ 2 K, (logg)"™

then
e Iq&xp(wpva/b)— Qk’ b
k=1 ,2,...,m
m
>exp(-K2vp j
Proof The principal condition of the theorem is

equivalent to

q'2(2(M+1)p Iggl.) (p°*1(p+1)) (13bmeSp™ (P-1)yp

x p ™IV (14 pYasb | P),
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which is implied by

f(p) (5)

Wheref (x)

B*, X p™* with

m
|

1 = B, (pmabQ)
52 (m+1) bm@efp M) (1, 1a/p ).

It is necessary then to have

q' > min f(x) =
x>0

exp (—pm"/eB1)

P’ 2 K, (log q)'/m (6)

(The possibility of g =1 creates no difficulty for then the
corollary is easily checked and for further discussion,
we rule out this trivial case).

Also, if the condition (6) is satisfied, then since the
minimum of f (x) occurs at x = Xy = p""’/eB1, which can
certainly be made greater than or equal to 1 by
enlarging K,, we can find a positive integer p < Xy
such that (5) holds. Hence, all we need is (6) and this
provides the estimate

E*

v

B?,q"pPp™,

where B, = B,p "™ which using the value of
p (<x,) so chosen gives

E* > exp(K, v p™)

We conclude this paper with some remarks.
(a) The condition (6) in the corollary is an improvement
over the corresponding condition of Bundschuh and
Wallisser (1979) which looks something like Kjlog q
but the estimate for E* above is a little worse; the
corresponding one in Bundschuh and Wallisser is

something like exp (-K,p").

(b) There are also other methods yielding good lower
bounds for E*. For example, p-adic Baker theory (see
van der Poorten (1977)) but the results there contain
errors.
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