

Effects of Filter Cake on Phosphate Status in a Submerged Acid Sulfate Soil (Rangsit Soil)

Jongruk Chanchareonsook¹ and Hidenori Wada²

ABSTRACT

The effects of filter cake on phosphate status in a submerged acid sulfate soil (Rangsit soil) were studies. In addition, effects of filter cake on pH and reduction state of acid sulfate soil were also included. Rangsit soil was amended with filter cake or KH_2PO_4 or $\text{KH}_2\text{PO}_4 + \text{CaCO}_3$ in the rate of 0 and 2.868 mg P/10g of dried soil and 0, 9.5 mg Ca/10g of dried soil. Filter cake increased the amount of available P in the submerged acid sulfate soil (Rangsit soil). The effectiveness of filter cake in increasing available P in acid sulfate soil was more or less the same as that of KH_2PO_4 . Filter cake also increased pH of acid sulfate soil. Furthermore the ability of filter cake in increasing pH of acid sulfate soil was similar to that of CaCO_3 . Filter cake did not enhance reduction state of submerged acid sulfate soil.

INTRODUCTION

Filter cake is a kind of waste materials from sugar mill factory which was obtained from the process of clarifying cane juice. Utilization of filter cake as nitrogen source for paddy in Thailand was recently studied (Vacharotayan *et al.*, 1985). The experimental results indicated that filter cake increased small amount of $\text{NH}_4^+ \text{-N}$ in paddy soils (Chanchareonsook *et al.*, 1985); however the content of phosphorus in rice plant grown in an acid sulfate soil amended with filter cake was found to be remarkably high (Panichsakpatana *et al.* 1985).

This research was conducted as to investigate the effects of filter cake on the amount of available phosphorus in submerged acid sulfate soil (Rangsit soil). In addition the effects of filter cake on pH and reduction state of an acid sulfate soil were also elucidated.

MATERIALS AND METHODS

Soil sample (acid sulfate soil, Sulfic Tropaeupt, Rangsit soil) was collected from Pathumthani Rice Experiment Center, Thailand. This soil was air-dried and crushed to pass through a 2 mm. sieve. Its properties are shown in Table 1. Filter

cake was collected from sugar mill factory in Thailand. It was air dried and crushed to pass through a 0.5 mm. sieve. The properties of filter cake is shown in Table 1.

Table 1 Properties of soil sample (Rangsit soil) and filter cake.

Properties of soil sample (Rangsit soil)		Properties of filter cake	
pH (1:1 Soil : H_2O)	3.9	pH	7.5
Total N (%)	0.150	Total P (%)	2.41
Total C (%)	1.466	Total C (%)	11.3
CEC (me/100g. soil)	37.5	Total N (%)	1.01
Free Fe (%)	0.92	C/N	11
Available P (Bray II)	14 (ppm)	Ca (%)	8

Ten grams of air dried soil amended with filter cake or KH_2PO_4 or $\text{KH}_2\text{PO}_4 + \text{CaCO}_3$ in the rate of 0, 2.868 mg P/10 g. of dried soil and 0, 9.5 mg Ca/10 g. of dried soil (details of these treatments are shown in Table 2) were incubated in the test tube under submerged condition (using H. Wada's technique (Tsuchiya *et al.*, 1986)) at 30°C for 0, 7, 14 and 18 day. pH, CO_2 water-soluble P (most labile fraction),

1 Dept. of Soils, Faculty of Agriculture, Kasetsart Univ.

2 Dept. of Agricultural Chemistry, The University of Tokyo, Tokyo, Japan.

Table 2 Details of the treatments

Treatment	Rate of P	Rate of Ca	KH ₂ PO ₄	Filter cake	
				mg/100g of dried soil	
Check	0	0	0	0	0
Filter cake	2.868	9.5	0	119	0
KH ₂ PO ₄	2.868	0	12.5	0	0
KH ₂ PO ₄ + CaCO ₃	2.868	9.5	12.5	0	24

adsorbed P (labile fraction), water-soluble Fe²⁺, and adsorbed Fe²⁺ were determined. Methods of soil analysis are shown in Table 3.

Table 3 Method of soil analysis

Item	Extraction	Determination
pH	—	Glass electrode
CO ₂	—	CO ₂ analyzer
Water soluble P	H ₂ O	Colorimetry (Watanabe and Olsen, 1965)
Adsorbed P	Bray II	Colorimetry (Watanabe and Olsen, 1965)
Water soluble Fe ²⁺	H ₂ O	Colorimetry (Kumada and Asami, 1958)
Adsorbed Fe ²⁺	CaCl ₂	Colorimetry (Kumada and Asami, 1958)

RESULTS AND DISCUSSION

1. Effects of filter cake on available phosphorus in the submerged acid sulfate soil

The amount of water-soluble P, adsorbed P and Bray II P (water-soluble P + adsorbed P) in each treatment are shown in Table 4. The amount of adsorbed P and the amount of Bray II P (water-soluble P + adsorbed P) were decreased in the following order : KH₂PO₄ + CaCO₃ > KH₂PO₄, Filter cake >> Check. This suggests that filter cake increases the amount of available P in the submerged acid sulfate soil. It was found that the effectiveness of filter cake in increasing available P in acid sulfate soil was more or less the same as that of KH₂PO₄. Application of KH₂PO₄ in combination with CaCO₃ enhanced the effectiveness of KH₂PO₄ in increasing the amount of available P in submerged acid sulfate soil, though the amount of water-soluble P was decreased by application of CaCO₃.

2. Effects of filter cake on neutralization and reduction state of the submerged acid sulfate soil

pH of water-extracts are shown in Table 5. It was found that pH of water-extract of the soil amended with filter cake was rather similar to that of the soil amended with KH₂PO₄ + CaCO₃ but higher than those of the soils amended with KH₂PO₄ and Check. This indicates that filter cake has rather similar ability to increase pH of acid sulfate soil as CaCO₃.

On the basis of the amount of water-soluble Fe²⁺, adsorbed Fe²⁺ and CaCl₂ extractable Fe²⁺ (water-soluble Fe²⁺ + adsorbed Fe²⁺)

Table 4 The amount of water-soluble P, adsorbed P and Bray II P (water-soluble P + adsorbed P) in each treatment

Treatment	Water-soluble P (ppm)				Adsorbed P (ppm)				Bray II P (water soluble P + Adsorbed P) (ppm)			
	Time of Incubation (day)				Time of Incubation (day)				Time of Incubation (day)			
	0	7	14	18	0	7	14	18	0	7	14	18
Check	0.736	0.193	0.129	0.129	15	15	22	16	15.736	15.193	22.129	16.129
Filter cake	0.904	0.883	1.012	0.546	103	124	139	138	103.904	124.883	140.012	138.546
KH_2PO_4	5.930	3.482	0.789	0.211	94	137	147	124	99.930	140.482	147.789	124.211
$\text{KH}_2\text{PO}_4 + \text{CaCO}_3$	0.417	0.508	0.654	0.652	94	142	169	149	94.417	142.508	169.654	149.652

(Table 6), we can say that filter cake does not enhance reduction state of submerged acid sulfate soil. Application of filter cake increased the amount of CO_2 in acid sulfate soil (Table 7). This must be due to the dissolution of CaCO_3 contained in filter cake in the submerged acid sulfate soil.

Table 5 pH of water-extracts

Treatment	Time of Incubation (day)			
	0	7	14	18
Check	3.9	3.9	3.9	3.9
Filter cake	4.8	5.4	5.2	5.8
KH_2PO_4	3.9	3.8	3.9	4.0
$\text{KH}_2\text{PO}_4 + \text{CaCO}_3$	6.1	5.1	5.2	5.3

Table 6 The amount of water-soluble Fe^{2+} , adsorbed Fe^{2+} and CaCl_2 extractable Fe^{2+} (water-soluble Fe^{2+} + adsorbed Fe^{2+}) in each treatment

Treatment	Water-soluble Fe^{2+} (ppm)				Adsorbed Fe^{2+} (ppm)				CaCl_2 extractable Fe^{2+} (Water-soluble Fe^{2+} + Adsorbed Fe^{2+}) (ppm)			
	Time of Incubation (day)				Time of Incubation (day)				Time of Incubation (ppm)			
	0	7	14	18	0	7	14	18	0	7	14	18
Check	0	21	35	43	1	213	444	n.d.*	1	234	479	n.d.*
Filter cake	0	14	34	42	1	127	424	n.d.	1	141	458	n.d.
KH_2PO_4	0	16	26	40	2	185	387	n.d.	2	201	413	n.d.
$\text{KH}_2\text{PO}_4 + \text{CaCO}_3$	0	15	26	38	1	139	328	n.d.	1	154	354	n.d.

* not determined

Table 7 The amount of CO_2 in each treatment (mg/100 g soil)

Treatment	Time of Incubation (day)			
	0	7	14	18
Check	0	n.d.*	21	23
Filter cake	trace	n.d.	119	139
KH_2PO_4	trace	n.d.	21	19
$\text{KH}_2\text{PO}_4 + \text{CaCO}_3$	0	n.d.	131	96

* not determined

CONCLUSION

Filter cake increased available phosphate as indicated by Bray II, in acid sulfate soil more or less the same as KH_2PO_4 which reveals filter cake is a promising phosphate source for paddy in acid sulfate soils.

ACKNOWLEDGEMENT

The authors wish to acknowledge The Japan Society for The Promotion of Science for the generous financial support of this research.

LITERATURE CITED

Chanchareonsook, J., H. Wada, S. Mankarmde and S. Vacharotayan. 1985. Effects of organic waste materials on paddy soil dynamics, pp.8-120. *In* S. Vacharotayan and T. Yoshida (eds.). Utilization of Organic Waste Materials in Agriculture : With the Reference of NRCT-JSPS Cooperative Research in Thailand, Tokyo, Japan.

Kumada, K. and T. Asami. 1958. A new method for determining ferrous iron in paddy soils. *Soil Plant Food* 3: 187-193.

Panichsakpatana, S., S. Sassanarakkit and T. Yoshida. 1985. Effects of organic waste materials on the growth and yield of rice,

pp.121-198. *In* S. Vacharotayan and T. Yoshida (eds.). Utilization of Organic Waste Materials in Agriculture : With the Reference of NRCT-JSPS Cooperative Research in Thailand. Tokyo, Japan.

Tsuchiya, K., H. Wada and Y. Takai. 1986. Leaching of substance from paddy soil (part 4) : water solubilization of inorganic components in submerged soils. *Japanese J. of Soil Sci and Plant Nutr.* 57(6) : 593-597.

Vacharotayan, S and T. Yoshida. 1985. Utilization of Organic Waste Materials in Agriculture : With the Reference of NRCT-JSPS Cooperative Research in Thailand. Tokyo, Japan. 228 p.

Watanabe, F.S. and S.R. Olsen. 1965. Test of ascorbic acid method for determining phosphorus in water and NaHCO_3 extract from soil. *Soil Sci. Soc. Am. Pro.* 29:677-678.