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INTRODUCTION

 Highly pathogenic avian influenza 
(HPAI) H5N1 is an infectious disease that can be 
transmitted from animals to humans.  The disease 
is widely spread throughout the world, including 
Thailand.  The fi rst offi cial outbreaks of HPAI H5N1 

in Thailand occurred in early 2004 (Department 
of Livestock Development, 2008).  The original 
source of the pathogen is unknown, but scientists 
suspect that wild birds carried a causative agent 
from an infected country into Thailand, where 
the virus subsequently spread to the domestic 
bird and poultry populations (Department of 

Spatial Analysis and Mapping of Highly Pathogenic Avian 
Infl uenza in Thailand Using National Outbreak Data: 

An Area-Based Risk Orientation

Chaithep Poolkhet1,2,*, Pornsri Chairatanayuth3, Sukanya Thongratsakul2

Weerapong Thanapongthum4 and Theera Rakkwamsuk5

ABSTRACT

 Highly pathogenic avian infl uenza (HPAI) H5N1 is an infectious disease that can be transmitted 
from animals to humans.  The disease is widely spread throughout the world, including Thailand.  Many 
researchers have studied the risk factors associated with the presence of H5N1 and spatial techniques 
are commonly used for evaluation.  The present study investigated outbreaks of HPAI H5N1 in Thailand 
between January 2004 and November 2005 using kernel smoothing and Kulldorff’s scan statistics.  A 
total of 1,493 HPAI H5N1 outbreak points from 288 districts in 60 provinces around Thailand were 
recorded using national outbreak data.  For the kernel smoothing, the provinces with the highest risk 
were Phitsanulok, Phichit, Suphan Buri, Ang Thong, Samut Prakan, Bangkok, Chon Buri, Kamphaeng 
Phet and Saraburi.  Kulldorff’s spatial scan statistics showed that the high-risk districts were in the 
central and lower northern parts of Thailand.  The  fi ndings confi rmed that central Thailand had the 
highest risk for HPAI H5N1 outbreaks.  The appropriate authorities should focus on this area for disease 
control and prevention, and should pay special attention to this area when outbreaks occur in neighboring 
countries.  This may help authorities to prevent outbreaks or decrease the magnitude of outbreaks when 
they occur.
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Livestock Development, 2008).  Many studies 
on the risk factors associated with HPAI H5N1 
use spatial analysis, which has indicated that the 
central part of Thailand and the connecting areas, 
such as northern Thailand, have the highest risks 
of infection.  They revealed that the relationship 
between free-grazing duck husbandry and rice 
paddy fi elds is a major risk factor (Gilbert, 2005; 
Gilbert et al., 2006; Songserm et al., 2006; Gilbert 
et al., 2007; Gilbert et al., 2008).  During the 
2004 outbreak, the relative risk of outbreak in the 
central region was 3.7 (95% confi dence interval 
= 3.4–4.1), which was higher than for other 
regions (Tiensin et al., 2005).  Many free-grazing 
ducks in the central regions of Thailand graze in 
the rice paddy fi elds, and the movement of the 
ducks from fi eld to fi eld is a major risk factor for 
the spread of HPAI H5N1.  Based on Thailand’s 
national outbreak data between 2004 and 2005, 
Tiensin et al. (2009) used Bayesian smoothing 
and a local spatial cluster statistical test to measure 
the incidence of HPAI H5N1 and to detect the 
signifi cant spatial clusters at the subdistrict level.  
They found that the central region contained 
multi-clusters as well as the highest incidence of 
the disease.  The Q statistic was used to evaluate 
the risk of the neighborhood infection of H7N1 
(Mulatti et al., 2010).  In addition, Paul et al. 
(2010) used Bayesian spatial analysis to defi ne 
the HPAI H5N1 risk area between July 2004 
and May 2005 and found the highest level of 
relative risk was in the central part of Thailand.  
Moreover, they found that areas with free-grazing 
ducks and rice production were at a higher risk for 
HPAI H5N1.
 Ordinary statistical methods, such as 
descriptive statistics and inferential statistics, 
may not be adequate to analyze disease patterns 
because such patterns always involve spatial 
factors.  Spatial analysis or spatial statistics use 
many different techniques to analyze the different 
properties of spatial data.  Previous studies have 
only used some techniques of spatial analysis to 

visualize and quantify the risk of HPAI H5N1.  
This study investigated the outbreak density 
(using kernel smoothing to evaluate an outbreak 
point pattern) and examined the local spatial-
point clustering using Kulldorff’s scan statistic 
for the HPAI H5N1 outbreak at the district level 
in Thailand between January 2004 and November 
2005.  This study determined whether the central 
and lower northern parts of Thailand are high-risk 
areas for HPAI H5N1.

MATERIALS AND METHODS

Data collection
 The national outbreak data were 
sourced from the Thai Department of Livestock 
Development (DLD), which also served as 
the database for the present study. The data 
were collected between January 23, 2004 and 
November 9, 2005 during which time there were 
three outbreak waves of HPAI H5N1: January 
2004–June 2004 (wave 1), July 2004–June 2005 
(wave 2) and July 2005–November 2005 (wave 
3). The outbreak data contained the date of disease 
detection, the location and coordinate points. 
The poultry population census was also obtained 
from the DLD website (http://www.dld.go.th). To 
analyze the data for the whole study period and the 
second wave, the average from the poultry census 
for 2004 and 2005 was used. For the fi rst and third 
waves, the number of poultry in 2004 and 2005, 
respectively, was used. A map of Thailand was 
obtained from the DLD.

Statistical analysis
 Detection of spatial variation
 Kernel smoothing is a nonparametric 
estimation of the probability density function that 
can be used for spatial point processing (Bailey and 
Gatrell, 1995; Gatrell and Bailey, 1996; Dohoo et 
al., 2010). The present study analyzed all outbreak 
points in each wave as well as the total outbreaks 
in Thailand. Default grid cells, bandwidth and the 
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nearest neighbor pyramid re-sampling method in 
ArcGIS (version 10; (Esri; Redlands, CA, USA)) 
were used for the technique calculation and 
mapping at the provincial level. Bailey and Gatrell 
(1995), Gatrell and Bailey (1996) and Barreto et 
al. (2008) previously described the calculation 
formula (Equation1):
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 where ˆ ()λτ  is the kernel density estimator 
that estimates the outbreak areas, τ is the bandwidth 
or smoothing parameter, k() is the kernel weighting 
function, s is the center of the outbreak area and si 
is the location of each outbreak point. 

 Detection of local point clustering 
 A spatial cluster analysis for infectious 
diseases can be used to investigate questions 
related to causal risk factors. A disease cluster 
means that there is a localized risk factor. Normally, 
spatial processes can be characterized in terms of 
fi rst-order and second-order properties (Bailey 
and Gatrell, 1995). The fi rst-order properties are 
associated with studies that examine the entire 
region of interest. However, both fi rst-order and 
second-order properties are involved in studies 
that take place within a specifi c study period. 
The second-order properties imply a relationship 
between the number of events and a subregion. 
The present study used Kulldorff’s spatial scan 
statistics to detect the second-order properties 
of the HPAI H5N1 outbreak pattern (Kulldorff 
and Nargarwalla, 1995). Similar to the kernel 
smoothing analysis, an overall outbreak status and 
each individual outbreak wave were calculated. 
The unit of interest was the district level, and the 
test statistic was based on the previously described 
discrete Poisson models (Waller and Gotway, 
2004; Dohoo et al., 2010). SaTScan, version 9.1 
(Kulldorff, 2009) was used to calculate the spatial 
scan test. The software detected all the outbreak 
points by simulated circles based on geography. 

The circular scans were used on all the areas that 
had the outbreak points. The circular size ran from 
zero to the maximal default using the space-time 
permutation in the exponential model in Equation 
2 (Bivand et al., 2008):
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 where K = Kulldorf’s statistic, z is the 
outbreak point of Zi in each cluster, O is the 
observed outbreak points in each cluster, E is the 
expected outbreak points in each cluster and max 
indicates that this model uses the highest value of 
the likelihood ratio.
 Kulldorf’s statistic calculates the radius 
of clusters as an outcome. The relative risk is 
used to compare the outbreak points inside the 
circle which is then divided by the outbreak points 
outside the circle. The null hypothesis is that no 
clustering will illustrate the relative risk as one.  
In a case where the relative risk is higher than 
one, this indicates that the outbreak points in the 
circle are clustering (Bivand et al., 2008). ArcGIS, 
version 10 was used for the map display.

RESULTS AND DISCUSSION

 A total of 1,493 HPAI H5N1 outbreak 
points in 288 districts from 60 provinces around 
Thailand were recorded. Nine records from three 
districts were removed from the analysis because 
of incomplete data.  

Mapping and spatial variation
 Kernel smoothing was used to calculate 
the fi rst-order spatial property for HPAI H5N1 
outbreaks in Thailand between January 2004 
and November 2005. An overall distribution 
of outbreak points was projected on the central 
and lower northern parts of Thailand. The four 
provinces with the highest risk were Phitsanulok, 
Phichit, Suphan Buri and Ang Thong. When each 
epidemic wave was considered, it was found that 
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Phitsanulok had the highest density area in the 
fi rst and second waves, while Suphan Buri had a 
high density of H5N1 cases in the second and third 
waves. Other provinces, including Samut Prakan, 
Bangkok, Chon Buri, Ang Thong, Kamphaeng 
Phet and Saraburi only experienced one wave of 
HPAI H5N1 outbreak. The present study showed 
that most of the outbreaks occurred in the central 
and lower northern parts of Thailand (Figure 1), 
which  confi rmed previous studies by showing that 
these provinces were high-risk areas (Tiensin et 
al., 2007; Paul et al., 2010; Souris et al., 2010). 
Moreover, these results correlated with Gilbert et 

al. (2007) who indicated that high-risk areas have 
more free-grazing ducks due to the paddy fi elds 
in the regions. Based on the current analysis, the 
governmental authority should provide an early 
warning system and institute special disease 
control measures to prevent outbreaks in these 
areas. To this end, an active surveillance system 
must be implemented for disease detection.  
 Previous studies have used the empirical 
Bayes smoothing method to measure the incidence 
of HPAI H5N1 in Thailand (Tiensin et al., 2009). 
This technique is suitable for aggregated data; 
however, this study analyzed point data. Therefore, 

Figure 1 Spatial distribution of HPAI H5N1 outbreaks in Thailand between January 2004 and November 
2005 (1a–4a) and a comparison of kernel smoothing (1b–4b) in the: (1) whole period; (2) fi rst 
wave; (3) second wave; and (4) third wave.  The outbreak points are represented by different 
shades for each analysis.
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kernel smoothing was a more suitable method 
(kernel smoothing was not used for the adjusted 
disease rates because of the lack of high-quality 
data on the at-risk populations). Savill et al. 
(2006) used the kernel density based on Euclidean 
distance to detect the spatial pattern of transport 
links during the outbreak of foot and mouth 
disease in UK. They found that the multiplicity 
of transmission routes was a signifi cant factor 
for the spreading of diseases. In terms of human 
epidemic diseases, Barreto et al. (2008) used 
these techniques to evaluate the pattern of the 
spreading dengue epidemic in Brazil. The results 
showed that the disease occurred in common areas. 
Furthermore, Chaikaew et al. (2009) predicted the 
areas where diarrhea would be prevalent in Chiang 
Mai, Thailand.
 The advantage of the kernel smoothing 
method is that it allows analyses to be performed 
with optimal bandwidth. Hjort and Walker (2001) 
found that if a result lies outside the confidence 
interval around the empirical distribution function, 
then the probability tends toward one as the 
sample size increases.  To avoid this problem, 
the researcher should not provide an optimal 
bandwidth when analyzing the data.

Local point clustering
 Table 1 presents the results for Kulldorff’s 
spatial scan statistics at the district level. Throughout 
the study period, 10 disease clusters were found in 
various regions of Thailand. The highest clustering 
or the most likely cluster was cluster 1, which 
was located in the Ko Sichang district in Chon 
Buri province. This cluster had a high strength of 
association (relative risk >100, P < 0.001), which 
means that a member district in the cluster has a 
signifi cantly greater risk of being infected (that is, 
more than 100-times greater risk). Furthermore, 
this was an isolated district with 81 outbreaks 
during the study period. It is important to note that 
the disease is easier to control when the outbreaks 
occur in isolated districts. However, when the 

avian population of the area was considered, only 
626 birds in cluster 1 were found. Therefore, the 
number of outbreaks in Ko Sichang seemed very 
high given the low avian population. Alternatively, 
there could have been a problem in the data 
collection for the avian census. The local offi cials 
may have misunderstood the case defi nition. For 
example, they may have counted a chicken as 
one outbreak equally, or one geographical point 
may have had multiple outbreaks during the same 
period. These factors could explain the relative 
high values of risk observed.  This point should be 
considered in the disease reporting system. Most 
of the other signifi cant clusters were located in 
districts in the central part of Thailand; however, 
some were located in the lower northern part of 
the country and elsewhere. The radii of the clusters 
ranged from 11.64 km to more than 100 km, except 
for clusters 6 and 10. The disease was more widely 
spread in the clusters with larger areas. The number 
of poultry in the different areas varied from 626 to 
6,956,465 birds. Some areas had lower numbers of 
infected districts but higher numbers of outbreaks 
with smaller populations. These areas may have 
had more backyard poultry. Therefore, control 
measures for outbreaks should be different in areas 
that have more commercial farms. 
 For the fi rst wave, four clusters were 
located in the central part of Thailand connected 
to the lower northern part of Thailand. The most 
likely cluster was cluster 1, which was located in 
the Bangkoknoi district in Bangkok province and 
the Bangphi district in the Samut Prakan province 
with a 31.47 km radius. This cluster had a relative 
risk that was greater than 100 (P < 0.001) and 
the interpretation was similar to that previously 
described. In addition, districts in one cluster could 
share risk factors with districts in another cluster. 
Furthermore, the number of poultry in the fi rst 
wave varied from 9,196 to 371,236 birds.  
 In the second wave, six clusters were 
found throughout Thailand. The most likely 
cluster was cluster 1, which was located in the 
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Ko Sichang district in Chon Buri province. This 
cluster had a relative risk that was greater than 
100 (P < 0.001) and one outbreak. In addition, the 
number of poultry in the second wave varied from 
626 to 15,206,646 birds. In the third wave, three 
clusters were found, most of which were located 
in the central part of Thailand. The most likely 
cluster was cluster 1, which included eight districts 
in three provinces with a radius greater than 100 
km. This cluster had a relative risk value that was 
greater than 100 (P < 0.001) and 29 outbreaks. 
Furthermore, the number of poultry in the third 

wave varied from 312,999 to 889,509 birds (Table 
1).  
 Previous studies have shown that most 
clusters at the subdistrict level were located in 
the central part of Thailand (Tiensin et al., 2009). 
The current study confi rmed these results. The 
outbreak points in the same cluster indicate that 
each point could share the same risk factors of 
disease occurrence. In terms of disease control 
and prevention, the relevant authorities should 
implement control measures for all outbreak 
points in the cluster. For example, the DLD 

Table 1 Results of Kulldorff’s spatial scan statistics showing signifi cant clusters of HPAI H5N1 
outbreaks in Thailand between January 2004 and November 2005.

    Number of       
  Cluster    districts in  Number of   Relative  P-
  number   the  poultry  risk value
     outbreak 
 Jan 04 – Nov 05 1 1 81 626 0 >100 <0.001
 (whole period) 2 47 260 6,264,557 >100 6.02 <0.001
  3 8 42 31,731 19.61 >100 <0.001
  4 7 108 2,578,012 27.29 5.37 <0.001
  5 42 165 6,956,465 >100 3.11 <0.001
  6 1 32 626,535 0 6.21 <0.001
  7 5 11 151,986 22.44 8.67 <0.001
  8 2 12 244,637 11.64 5.88 0.002
  9 12 31 1,423,489 >100 2.63 0.004
  10 1 9 182,500 0 5.90 0.024
 Jan 04 –Jun 04 1 2 2 13,868 31.47 >100 <0.001
 (fi rst wave) 2 6 6 371,236 68.48 12.54 <0.001
  3 4 4 68,138 68.20 14.62 <0.001
  4 2 2 9,196 40.95 53.27 0.003
 Jul 04 – Jun 05 1 1 81 626 0 >100 <0.001
 (second wave) 2 71 375 15,206,646 >100 3.96 <0.001
  3 45 164 5,839,376 >100 3.62 <0.001
  4 7 21 17,862 19.61 >100 <0.001
  5 2 12 244,637 11.64 5.57 0.003
  6 1 9 182,500 0 5.59 0.040
 Jul 05 – Nov 05 1 8 29 662,859 >100 8.25 <0.001
 (third wave) 2 7 12 312,999 >100 5.60 <0.001
  3 3 16 889,509 22.62 2.63 0.045

   Number of   Cluster
 Study period  districts in   radius
   the cluster   (km)
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must destroy all poultry in the cluster within the 
radius indicated in Table 1. These results may 
indicate the benefi ts of using spatial tools for 
disease control. However, the authorities must 
also consider control measures for the entire 
country. The results of both studies are valuable 
for improving knowledge and understanding of the 
spatial patterns of HPAI H5N1 by indicating that 
the disease is likely to occur in specifi c areas. In 
addition, Tiensin et al. (2009) suggested that the 
disease may spread across Thailand during the fi rst 
wave, but is likely to spread locally thereafter. In 
a similar way, Viel et al. (2000) use Kulldorff’s 
statistic to evaluate the cases of soft-tissue sarcoma 
and non-Hodgkin’s lymphoma in France. They 
found that the most likely cluster was located 
around the municipal solid waste incinerator. In 
veterinary science, researchers have conducted 
similar studies on infectious diseases. For 
example, Schwermer et al. (2007) detected clusters 
of bovine spongiform encephalopathy surrounding 
feed producers. However, a purely spatial analysis 
should be applied to future analyses, because the 
method is not suitable for calculating many years 
of data due to the low power of statistical analysis. 
This is especially true for detecting diseases in 
an emerging cluster. Space-time scan statistics 
are suitable for analyzing many years of data 
(Kulldorff, 2001).  
 Future studies should focus on a disease 
pattern that makes use of advanced spatial methods. 
Furthermore, it is necessary to construct a model 
for disease prediction that can be used to describe 
spatial variability. An example is the Bayesian 
spatial regression model, which introduces prior 
knowledge to a data-driven property. Indeed, 
information on the risk of an outbreak can be 
defi ned using existing data.

CONCLUSION

 Two techniques were used to confi rm that 
the central and connected lower northern areas of 
Thailand were high-risk areas. The focus was on 

two provinces—Suphanburi and Phitsanulok—
that require an early warning system. The human 
network for the rapid reporting and monitoring of 
diseases is an easy and effective potential method. 
The cluster detection demonstrated that disease 
control measures must be improved. In particular, 
the radius around the infected area for preemptive 
culling and restricted animal movement should be 
varied in different areas because the disease pattern 
is usually spatially different. The results from this 
study will be useful for effectively controlling 
HPAI H5N1 in Thailand.
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