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Spatial Analysis and Mapping of Highly Pathogenic Avian
Influenza in Thailand Using National Outbreak Data:
An Area-Based Risk Orientation
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ABSTRACT

Highly pathogenic avian influenza (HPAI) HSN1 is an infectious disease that can be transmitted
from animals to humans. The disease is widely spread throughout the world, including Thailand. Many
researchers have studied the risk factors associated with the presence of HSN1 and spatial techniques
are commonly used for evaluation. The present study investigated outbreaks of HPAI HSN1 in Thailand
between January 2004 and November 2005 using kernel smoothing and Kulldorff’s scan statistics. A
total of 1,493 HPAI H5N1 outbreak points from 288 districts in 60 provinces around Thailand were
recorded using national outbreak data. For the kernel smoothing, the provinces with the highest risk
were Phitsanulok, Phichit, Suphan Buri, Ang Thong, Samut Prakan, Bangkok, Chon Buri, Kamphaeng
Phet and Saraburi. Kulldorff’s spatial scan statistics showed that the high-risk districts were in the
central and lower northern parts of Thailand. The findings confirmed that central Thailand had the
highest risk for HPAI HSN1 outbreaks. The appropriate authorities should focus on this area for disease
control and prevention, and should pay special attention to this area when outbreaks occur in neighboring
countries. This may help authorities to prevent outbreaks or decrease the magnitude of outbreaks when
they occur.
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INTRODUCTION in Thailand occurred in early 2004 (Department

of Livestock Development, 2008). The original

Highly pathogenic avian influenza  source of the pathogen is unknown, but scientists

(HPAI) HSNI is an infectious disease that can be  suspect that wild birds carried a causative agent
transmitted from animals to humans. The disease ~ from an infected country into Thailand, where
is widely spread throughout the world, including  the virus subsequently spread to the domestic
Thailand. The first official outbreaks of HPAIHSN1  bird and poultry populations (Department of
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Livestock Development, 2008). Many studies
on the risk factors associated with HPAI HS5N1
use spatial analysis, which has indicated that the
central part of Thailand and the connecting areas,
such as northern Thailand, have the highest risks
of infection. They revealed that the relationship
between free-grazing duck husbandry and rice
paddy fields is a major risk factor (Gilbert, 2005;
Gilbert et al., 2006; Songserm et al., 2006; Gilbert
et al., 2007; Gilbert et al., 2008). During the
2004 outbreak, the relative risk of outbreak in the
central region was 3.7 (95% confidence interval
= 3.4-4.1), which was higher than for other
regions (Tiensin et al., 2005). Many free-grazing
ducks in the central regions of Thailand graze in
the rice paddy fields, and the movement of the
ducks from field to field is a major risk factor for
the spread of HPAI H5N1. Based on Thailand’s
national outbreak data between 2004 and 2005,
Tiensin et al. (2009) used Bayesian smoothing
and a local spatial cluster statistical test to measure
the incidence of HPAI H5N1 and to detect the
significant spatial clusters at the subdistrict level.
They found that the central region contained
multi-clusters as well as the highest incidence of
the disease. The Q statistic was used to evaluate
the risk of the neighborhood infection of H7N1
(Mulatti et al., 2010). In addition, Paul et al.
(2010) used Bayesian spatial analysis to define
the HPAI H5NI risk area between July 2004
and May 2005 and found the highest level of
relative risk was in the central part of Thailand.
Moreover, they found that areas with free-grazing
ducks and rice production were at a higher risk for
HPAT H5N1.

Ordinary statistical methods, such as
descriptive statistics and inferential statistics,
may not be adequate to analyze disease patterns
because such patterns always involve spatial
factors. Spatial analysis or spatial statistics use
many different techniques to analyze the different
properties of spatial data. Previous studies have
only used some techniques of spatial analysis to

visualize and quantify the risk of HPAT H5NI.
This study investigated the outbreak density
(using kernel smoothing to evaluate an outbreak
point pattern) and examined the local spatial-
point clustering using Kulldorff’s scan statistic
for the HPAI H5N1 outbreak at the district level
in Thailand between January 2004 and November
2005. This study determined whether the central
and lower northern parts of Thailand are high-risk
areas for HPAI H5N1.

MATERIALS AND METHODS

Data collection

The national outbreak data were
sourced from the Thai Department of Livestock
Development (DLD), which also served as
the database for the present study. The data
were collected between January 23, 2004 and
November 9, 2005 during which time there were
three outbreak waves of HPAI H5N1: January
2004—June 2004 (wave 1), July 2004—June 2005
(wave 2) and July 2005-November 2005 (wave
3). The outbreak data contained the date of disease
detection, the location and coordinate points.
The poultry population census was also obtained
from the DLD website (http://www.dld.go.th). To
analyze the data for the whole study period and the
second wave, the average from the poultry census
for 2004 and 2005 was used. For the first and third
waves, the number of poultry in 2004 and 2005,
respectively, was used. A map of Thailand was
obtained from the DLD.

Statistical analysis

Detection of spatial variation

Kernel smoothing is a nonparametric
estimation of the probability density function that
can be used for spatial point processing (Bailey and
Gatrell, 1995; Gatrell and Bailey, 1996; Dohoo et
al.,2010). The present study analyzed all outbreak
points in each wave as well as the total outbreaks
in Thailand. Default grid cells, bandwidth and the
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nearest neighbor pyramid re-sampling method in
ArcGIS (version 10; (Esri; Redlands, CA, USA))
were used for the technique calculation and
mapping at the provincial level. Bailey and Gatrell
(1995), Gatrell and Bailey (1996) and Barreto et
al. (2008) previously described the calculation
formula (Equationl):

A()= i%k(ﬂj (1)
i=1T T

where if () is the kernel density estimator
that estimates the outbreak areas, 7 is the bandwidth
or smoothing parameter, &() is the kernel weighting
function, s is the center of the outbreak area and s;
is the location of each outbreak point.

Detection of local point clustering

A spatial cluster analysis for infectious
diseases can be used to investigate questions
related to causal risk factors. A disease cluster
means that there is a localized risk factor. Normally,
spatial processes can be characterized in terms of
first-order and second-order properties (Bailey
and Gatrell, 1995). The first-order properties are
associated with studies that examine the entire
region of interest. However, both first-order and
second-order properties are involved in studies
that take place within a specific study period.
The second-order properties imply a relationship
between the number of events and a subregion.
The present study used Kulldorff’s spatial scan
statistics to detect the second-order properties
of the HPAI H5N1 outbreak pattern (Kulldorff
and Nargarwalla, 1995). Similar to the kernel
smoothing analysis, an overall outbreak status and
each individual outbreak wave were calculated.
The unit of interest was the district level, and the
test statistic was based on the previously described
discrete Poisson models (Waller and Gotway,
2004; Dohoo et al., 2010). SaTScan, version 9.1
(Kulldorff, 2009) was used to calculate the spatial
scan test. The software detected all the outbreak
points by simulated circles based on geography.

The circular scans were used on all the areas that
had the outbreak points. The circular size ran from
zero to the maximal default using the space-time
permutation in the exponential model in Equation
2 (Bivand et al., 2008):

0y 0,-0y
K = max 9, 0.-0; ()
E, E . -E,

where K = Kulldorf’s statistic, z is the
outbreak point of Z; in each cluster, O is the
observed outbreak points in each cluster, £ is the
expected outbreak points in each cluster and max
indicates that this model uses the highest value of
the likelihood ratio.

Kulldorf’s statistic calculates the radius
of clusters as an outcome. The relative risk is
used to compare the outbreak points inside the
circle which is then divided by the outbreak points
outside the circle. The null hypothesis is that no
clustering will illustrate the relative risk as one.
In a case where the relative risk is higher than
one, this indicates that the outbreak points in the
circle are clustering (Bivand et al., 2008). ArcGIS,
version 10 was used for the map display.

RESULTS AND DISCUSSION

A total of 1,493 HPAI H5N1 outbreak
points in 288 districts from 60 provinces around
Thailand were recorded. Nine records from three
districts were removed from the analysis because
of incomplete data.

Mapping and spatial variation

Kernel smoothing was used to calculate
the first-order spatial property for HPAI H5N1
outbreaks in Thailand between January 2004
and November 2005. An overall distribution
of outbreak points was projected on the central
and lower northern parts of Thailand. The four
provinces with the highest risk were Phitsanulok,
Phichit, Suphan Buri and Ang Thong. When each
epidemic wave was considered, it was found that
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Phitsanulok had the highest density area in the
first and second waves, while Suphan Buri had a
high density of HSN1 cases in the second and third
waves. Other provinces, including Samut Prakan,
Bangkok, Chon Buri, Ang Thong, Kamphaeng
Phet and Saraburi only experienced one wave of
HPAI H5N1 outbreak. The present study showed
that most of the outbreaks occurred in the central
and lower northern parts of Thailand (Figure 1),
which confirmed previous studies by showing that
these provinces were high-risk areas (Tiensin et
al., 2007; Paul et al., 2010; Souris et al., 2010).
Moreover, these results correlated with Gilbert et
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al. (2007) who indicated that high-risk areas have
more free-grazing ducks due to the paddy fields
in the regions. Based on the current analysis, the
governmental authority should provide an early
warning system and institute special disease
control measures to prevent outbreaks in these
areas. To this end, an active surveillance system
must be implemented for disease detection.
Previous studies have used the empirical
Bayes smoothing method to measure the incidence
of HPAI H5N1 in Thailand (Tiensin ef al., 2009).
This technique is suitable for aggregated data;
however, this study analyzed point data. Therefore,
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Figure 1 Spatial distribution of HPAI HSN1 outbreaks in Thailand between January 2004 and November
2005 (1a—4a) and a comparison of kernel smoothing (1b—4b) in the: (1) whole period; (2) first
wave; (3) second wave; and (4) third wave. The outbreak points are represented by different
shades for each analysis.
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kernel smoothing was a more suitable method
(kernel smoothing was not used for the adjusted
disease rates because of the lack of high-quality
data on the at-risk populations). Savill et al.
(2006) used the kernel density based on Euclidean
distance to detect the spatial pattern of transport
links during the outbreak of foot and mouth
disease in UK. They found that the multiplicity
of transmission routes was a significant factor
for the spreading of diseases. In terms of human
epidemic diseases, Barreto et al. (2008) used
these techniques to evaluate the pattern of the
spreading dengue epidemic in Brazil. The results
showed that the disease occurred in common areas.
Furthermore, Chaikaew et al. (2009) predicted the
areas where diarrhea would be prevalent in Chiang
Mai, Thailand.

The advantage of the kernel smoothing
method is that it allows analyses to be performed
with optimal bandwidth. Hjort and Walker (2001)
found that if a result lies outside the confidence
interval around the empirical distribution function,
then the probability tends toward one as the
sample size increases. To avoid this problem,
the researcher should not provide an optimal
bandwidth when analyzing the data.

Local point clustering

Table 1 presents the results for Kulldorff’s
spatial scan statistics at the district level. Throughout
the study period, 10 disease clusters were found in
various regions of Thailand. The highest clustering
or the most likely cluster was cluster 1, which
was located in the Ko Sichang district in Chon
Buri province. This cluster had a high strength of
association (relative risk >100, P <0.001), which
means that a member district in the cluster has a
significantly greater risk of being infected (that is,
more than 100-times greater risk). Furthermore,
this was an isolated district with 81 outbreaks
during the study period. It is important to note that
the disease is easier to control when the outbreaks
occur in isolated districts. However, when the

avian population of the area was considered, only
626 birds in cluster 1 were found. Therefore, the
number of outbreaks in Ko Sichang seemed very
high given the low avian population. Alternatively,
there could have been a problem in the data
collection for the avian census. The local officials
may have misunderstood the case definition. For
example, they may have counted a chicken as
one outbreak equally, or one geographical point
may have had multiple outbreaks during the same
period. These factors could explain the relative
high values of risk observed. This point should be
considered in the disease reporting system. Most
of the other significant clusters were located in
districts in the central part of Thailand; however,
some were located in the lower northern part of
the country and elsewhere. The radii of the clusters
ranged from 11.64 km to more than 100 km, except
for clusters 6 and 10. The disease was more widely
spread in the clusters with larger areas. The number
of poultry in the different areas varied from 626 to
6,956,465 birds. Some areas had lower numbers of
infected districts but higher numbers of outbreaks
with smaller populations. These areas may have
had more backyard poultry. Therefore, control
measures for outbreaks should be different in areas
that have more commercial farms.

For the first wave, four clusters were
located in the central part of Thailand connected
to the lower northern part of Thailand. The most
likely cluster was cluster 1, which was located in
the Bangkoknoi district in Bangkok province and
the Bangphi district in the Samut Prakan province
with a 31.47 km radius. This cluster had a relative
risk that was greater than 100 (P < 0.001) and
the interpretation was similar to that previously
described. In addition, districts in one cluster could
share risk factors with districts in another cluster.
Furthermore, the number of poultry in the first
wave varied from 9,196 to 371,236 birds.

In the second wave, six clusters were
found throughout Thailand. The most likely
cluster was cluster 1, which was located in the
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Ko Sichang district in Chon Buri province. This
cluster had a relative risk that was greater than
100 (P <0.001) and one outbreak. In addition, the
number of poultry in the second wave varied from
626 to 15,206,646 birds. In the third wave, three
clusters were found, most of which were located
in the central part of Thailand. The most likely
cluster was cluster 1, which included eight districts
in three provinces with a radius greater than 100
km. This cluster had a relative risk value that was
greater than 100 (P < 0.001) and 29 outbreaks.
Furthermore, the number of poultry in the third
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wave varied from 312,999 to 889,509 birds (Table
1).

Previous studies have shown that most
clusters at the subdistrict level were located in
the central part of Thailand (Tiensin ef al., 2009).
The current study confirmed these results. The
outbreak points in the same cluster indicate that
each point could share the same risk factors of
disease occurrence. In terms of disease control
and prevention, the relevant authorities should
implement control measures for all outbreak
points in the cluster. For example, the DLD

Table 1 Results of Kulldorff’s spatial scan statistics showing significant clusters of HPAI HS5N1
outbreaks in Thailand between January 2004 and November 2005.

Number of

. Cluster N}lmjt)er ?f districts in ~ Number of Cluéter Relative  P-
Study period districts in radius .
number the poultry risk value
the cluster (km)
outbreak

Jan 04 — Nov 05 1 1 81 626 0 >100 <0.001
(whole period) 2 47 260 6,264,557 >100 6.02 <0.001
3 8 42 31,731 19.61 >100 <0.001
4 108 2,578,012 27.29 5.37 <0.001
5 42 165 6,956,465 >100 3.11 <0.001
6 1 32 626,535 0 6.21 <0.001
7 5 11 151,986 22.44 8.67 <0.001
8 2 12 244,637 11.64 5.88  0.002
9 12 31 1,423,489 >100 2.63  0.004
10 1 9 182,500 0 590 0.024
Jan 04 —Jun 04 1 2 2 13,868 31.47 >100 <0.001
(first wave) 2 6 6 371,236 68.48 12.54 <0.001
3 4 4 68,138 68.20 14.62 <0.001
4 2 2 9,196 40.95 53.27  0.003
Jul 04 — Jun 05 1 1 81 626 0 >100 <0.001
(second wave) 2 71 375 15,206,646 >100 3.96 <0.001
3 45 164 5,839,376 >100 3.62 <0.001
4 7 21 17,862 19.61 >100 <0.001
5 2 12 244,637 11.64 5.57  0.003
6 1 9 182,500 0 5.59  0.040
Jul 05 — Nov 05 1 8 29 662,859 >100 8.25 <0.001
(third wave) 2 7 12 312,999 >100 5.60 <0.001
3 3 16 889,509 22.62 2.63  0.045
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must destroy all poultry in the cluster within the
radius indicated in Table 1. These results may
indicate the benefits of using spatial tools for
disease control. However, the authorities must
also consider control measures for the entire
country. The results of both studies are valuable
for improving knowledge and understanding of the
spatial patterns of HPAI HSN1 by indicating that
the disease is likely to occur in specific areas. In
addition, Tiensin ef al. (2009) suggested that the
disease may spread across Thailand during the first
wave, but is likely to spread locally thereafter. In
a similar way, Viel et al. (2000) use Kulldorff’s
statistic to evaluate the cases of soft-tissue sarcoma
and non-Hodgkin’s lymphoma in France. They
found that the most likely cluster was located
around the municipal solid waste incinerator. In
veterinary science, researchers have conducted
similar studies on infectious diseases. For
example, Schwermer et al. (2007) detected clusters
of’bovine spongiform encephalopathy surrounding
feed producers. However, a purely spatial analysis
should be applied to future analyses, because the
method is not suitable for calculating many years
of data due to the low power of statistical analysis.
This is especially true for detecting diseases in
an emerging cluster. Space-time scan statistics
are suitable for analyzing many years of data
(Kulldorff, 2001).

Future studies should focus on a disease
pattern that makes use of advanced spatial methods.
Furthermore, it is necessary to construct a model
for disease prediction that can be used to describe
spatial variability. An example is the Bayesian
spatial regression model, which introduces prior
knowledge to a data-driven property. Indeed,
information on the risk of an outbreak can be
defined using existing data.

CONCLUSION
Two techniques were used to confirm that

the central and connected lower northern areas of
Thailand were high-risk areas. The focus was on

two provinces—Suphanburi and Phitsanulok—
that require an early warning system. The human
network for the rapid reporting and monitoring of
diseases is an easy and effective potential method.
The cluster detection demonstrated that disease
control measures must be improved. In particular,
the radius around the infected area for preemptive
culling and restricted animal movement should be
varied in different areas because the disease pattern
is usually spatially different. The results from this
study will be useful for effectively controlling
HPAI H5N1 in Thailand.
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