

Genetic Parameters for Weaning Weight, Weaning Hip Height and Weaning Body Length of Crossbred Beef Cattle in Thailand

**Tamirat Tessema^{1,2}, Panwadee Sopannarath^{2,*}, Sorntep Tumwasorn²
and Taweeprorn Raungprim³**

ABSTRACT

Genetic parameters for weaning weight (WWT), weaning hip height (WHH) and weaning body length (WBL) of crossbred beef cattle among the Thai Native, Brahman and Charolais breeds raised in central Thailand were estimated using a derivative-free, restricted maximum likelihood algorithm. Multivariate animal models were employed to estimate the direct heritability (h^2) of WWT, WHH and WBL and to estimate the maternal heritability (m^2), the direct-maternal genetic correlation (r_{am}), and the fraction of variance due to maternal permanent environmental effect (c^2) only for WWT. The model fitted contemporary group (CG) and sex as fixed effects and weaning age and breed fractions of Brahman and Charolais as fixed covariates. Estimates of h^2 ranged from 0.54 to 0.68, 0.68 to 0.93 and 0.33 to 0.48 for WWT, WHH and WBL, respectively. The estimates of m^2 , r_{am} and c^2 for WWT ranged from 0.20 to 0.23, -0.38 to -0.36 and 0.00 to 0.08, respectively. The direct genetic correlations between traits ranged from 0.59 to 0.98. The high genetic correlations between traits indicated the possibility of performing selection for WWT based on the information from WHH and WBL. A simple direct genetic effect model was determined to be appropriate for analyzing the current data set based on the likelihood ratio test but the estimates of h^2 for traits might bias upward.

Keywords: beef cattle, genetic parameter, weaning weight, weaning body measurement, Thailand

INTRODUCTION

A crossbred type of beef cattle between Thai Native, Brahman and Charolais breeds through a crossbreeding system is widely distributed in central and near central Thailand (Tumwasorn *et al.*, 1993). This breed was initially developed by Kasetsart University at the Buffalo and Beef Production Research and Development Center aiming for the complementation of breeds

to achieve the best possible genetic merit of economically important traits (Sopannarath *et al.*, 2005). The crossbred cattle from among those breeds is a type of beef breed that possess some unique characters such as adaptation to a hot climate and a great potential to produce high quality meat (Nilchuen *et al.*, 2012). More often, the herds are kept under a semi-intensive grazing system, whereas the breeding bulls are managed under a regular confinement.

¹ Yabello Pastoral and Dry Land Agriculture Research Center (YPDARC), P.O. Box 85, Yabello, Ethiopia.

² Department of Animal Science, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand.

³ Buffalo and Beef Production Research and Development Center, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand.

* Corresponding author, e-mail: agrpds@ku.ac.th

The performances of pre-weaning traits are determined by both parents' additive genetic merit plus other components (Meyer, 1992; Robinson, 1996). As a result, having their parametric information will be crucial for any attempt to improve the performance of beef cattle. Abundant useful information is available in relation to pre-weaning and some weaning body measurement traits in beef cattle breeds (Meyer, 1993). However, few studies have been made to point out the genetic effects of some tropical beef breeds in Thailand especially for weaning traits (Sopannarath *et al.*, 2005). In addition, genetic parameters are unique to a particular population and may change over time in response to several factors. Moreover, knowing the genetic association between weaning weight and weaning body measurement traits will provide an alternative trait for small-scale farmers to make the right breeding decision since weight performance is not available due to the lack of weighing machines. As a result, the objective of this study was to estimate the genetic parameters in crossbred cattle among the Thai Native, Brahman and Charolais breeds for weaning weight and weaning body measurement traits.

MATERIALS AND METHODS

Data structure

Data from crossbred cattle among the Thai Native, Brahman and Charolais breeds were

obtained from the Buffalo and Beef Production Research and Development Center, Thailand and 14 large- and small-scale commercial farms around the central and central fringes of Thailand. The weaning weight (WWT), weaning hip height (WHH) and weaning body length (WBL) of animals born during 2003 to 2012 with 1,178 pedigree records were collected (Table 1). The weaning age ranges for all traits varied from 203 to 266 d. Descriptive statistics for continuous variables are shown in Table 2. The calving season was classified into three seasons—cold (Nov–Feb), hot (March–Jun) and rainy (Jul–Oct). Contemporary groups (CG) were formed by grouping two or more animals born in the same herd, year and season. Only CG with at least two sires and herds with at least two records were used in the analyses.

Statistical analysis and models for estimation of genetic parameters

Preliminary analysis was performed using PROC GLM under the SAS procedure to estimate fixed effects (SAS, 2003). The fixed effects considered in this analysis included CG and sex (male and female). Moreover, the weaning age of animals and breed fractions of Brahman and Charolais were fitted in the model as covariates. (Co)variance components were estimated using the multiple trait, derivative-free, restricted maximum likelihood (MTDFREML) algorithm developed by Boldman *et al.* (1993). Suitability

Table 1 Structure of the data set from crossbred cattle among Thai Native, Brahman and Charolais breeds in the population.

Item	WWT	WHH	WBL
Number of animals in pedigree	1,915	1,915	1,915
Number of animals with records	587	222	222
Number of sires	120	66	66
Number of dams	405	190	190
Number of dams with own and progeny records	12	0	0
No. of CG	35	12	12

WWT = Weaning weight, WHH = Weaning hip height, WBL = Weaning body length, CG = contemporary group.

of the model was considered when a significant ($P < 0.05$) increase in log likelihood occurred while adding additional random effects in the model. Four different models (simple direct genetic effect, direct and maternal genetic effects, direct genetic and maternal permanent environmental effects, and direct, maternal genetic and maternal permanent environmental effects) were used for WWT. However, only a simple direct genetic effect model was used to analyze the data set of WHH and WBL. Because of the structure of the data set, maternal and maternal permanent environmental effects were not considered. These traits were collected from individuals that had their own performance records only. The most complex multivariate animal model in this study can be represented as follows:

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} X_1 & 0 & 0 \\ 0 & X_2 & 0 \\ 0 & 0 & X_3 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} + \begin{bmatrix} Z_1 & 0 & 0 \\ 0 & Z_2 & 0 \\ 0 & 0 & Z_3 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} + \begin{bmatrix} M_1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} m_1 \\ m_2 \\ m_3 \end{bmatrix} + \begin{bmatrix} W_1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} + \begin{bmatrix} e_1 \\ e_2 \\ e_3 \end{bmatrix}$$

Where y is the $N \times 1$ vector of records, the subscripts 1, 2, and 3 represent WWT, WHH and WBL, respectively, b is the vector of fixed effects, a is the vector of random direct genetic effects, m is the vector of random maternal genetic effects, c is the vector of random maternal permanent environmental effects and e is the vector of random residual effects. X , Z , M and W are incidence matrices relating records to fixed, direct genetic, maternal genetic and maternal permanent environmental effects, respectively.

The assumption of the first moment is:

$$E \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} X_1 & 0 & 0 \\ 0 & X_2 & 0 \\ 0 & 0 & X_3 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

and the (co)variance matrix for genetic effects is as follows

$$G = G_0 \otimes A$$

Table 2 Descriptive statistics for weaning weight (WWT), weaning hip height (WHH) and weaning body length (WBL) traits of crossbred beef cattle.

Trait	Covariate factor	Number	Mean	SD	Minimum	Maximum
WWT (kg)		587	159.09	37.08	95.00	257.00
	WAGE (days)		218.97	28.17	141.00	265.00
	N		0.28	0.09	0.09	0.75
	B		0.27	0.09	0.00	0.75
	C		0.46	0.14	0.00	0.75
WHH (cm)		222	101.48	7.75	79.00	120.00
	WAGE (days)		210.40	25.75	147.00	264.00
	N		0.26	0.07	0.13	0.63
	B		0.25	0.05	0.13	0.50
	C		0.50	0.09	0.00	0.75
WBL (cm)		222	94.71	9.87	70.00	150.00
	WAGE (days)		210.43	25.80	147.00	264.00
	N		0.26	0.07	0.13	0.63
	B		0.25	0.05	0.13	0.50
	C		0.50	0.09	0.00	0.75

WAGE = Weaning age, N = breed fraction of Thai Native, B = breed fraction of Brahman and C = breed fraction of Charolais

$$\text{where } G_0 = \begin{bmatrix} \sigma_{a_1}^2 & \sigma_{a_{12}} & \sigma_{a_{13}} & \sigma_{a_1 m_1} \\ \sigma_{a_{12}} & \sigma_{a_2}^2 & \sigma_{a_{23}} & \sigma_{a_2 m_1} \\ \sigma_{a_{13}} & \sigma_{a_{23}} & \sigma_{a_3}^2 & \sigma_{a_3 m_1} \\ \sigma_{a_1 m_1} & \sigma_{a_2 m_1} & \sigma_{a_3 m_1} & \sigma_{m_1}^2 \end{bmatrix}$$

The (co)variance matrix for permanent environmental effects is as follows:

$$C = C_0 \otimes I_c$$

$$\text{where } C_0 = \begin{bmatrix} \sigma_{c_1}^2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

The (co)variance matrix for residual random error is as follows:

$$R = R_0 \otimes I$$

$$\text{where } G_0 = \begin{bmatrix} \sigma_{e_1}^2 & \sigma_{e_{12}} & \sigma_{e_{13}} \\ \sigma_{e_{12}} & \sigma_{e_2}^2 & \sigma_{e_{23}} \\ \sigma_{e_{13}} & \sigma_{e_{23}} & \sigma_{e_3}^2 \end{bmatrix}$$

and σ_a^2 is the direct genetic variance, σ_m^2 is the maternal genetic variance, σ_{am} is the direct and maternal genetic covariance, σ_c^2 is the maternal permanent environmental variance, σ_e^2 is the residual variance, A is the numerator relationship matrix and I is the identity matrix.

A mixed model equation was used to obtain the best linear unbiased estimator of fixed effects and best linear unbiased predictor of random effects. The program was restarted until the $-2\log L$ values did not change at level of 1×10^{-9} (global minimum of $-2\log L$). At the beginning, single trait analysis was undertaken and then multiple trait analysis was accomplished using the results from the single trait analysis as starting values. Finally, the results of variance components were used to estimate genetic parameters.

Moreover, models were compared using the log likelihood ratio test method. The model having a higher value of the log likelihood, indicated a better fit model should be chosen.

If there is not a significant difference between models, the model with the fewest number of parameters is the better model (Sopannarath *et al.*, 2003).

RESULTS AND DISCUSSION

Analysis of variance specified that the WWT, WHH and WBL traits were influenced ($P < 0.01$) by CG, the age at weaning and the breed fraction of Charolais. Male calves were heavier than female calves at weaning ($P < 0.01$) but male WHH and WBL values did not differ from female values. Increasing the Brahman breed fraction significantly improved WWT and increasing the Charolais breed fraction yielded higher WWT, WHH and WBL compared with Thai Native breed ($P < 0.01$). The highly significant ($P < 0.01$) effect of CG found in this study coincided with several literature results; Afolayan *et al.* (2002) reported that the calves born in two distinct years that were a subgroup of CG did not show similar trait performance. Accordingly, the calves that were born in previous years possessed larger weight, height, length and girth than ones that were born three years later. Similarly, sex significantly ($P < 0.05$) affected WWT but did not affect WHH and WBL. In contrast, Riley *et al.* (2007) found that males had greater weaning hip height than females. Female calves were always lighter and smaller than their male counterparts with the certainty that the gap would increase as calves grew older (Gilbert *et al.*, 1993).

In the current studied population, the breed fraction effects of Brahman and Charolais statistically influenced only WWT ($P < 0.01$). However, weaning body measurement traits (for example, heart girth and body length) were found to be influenced by breed types, and Hereford calves were recognized to have shorter body length and smaller heart girth than calves from the Angus beef breed (Gilbert *et al.*, 1993).

The variance components and genetic parameters are presented in Table 3. Heritability

(h^2) estimates were high for all considered traits and ranged from 0.52 to 0.68, 0.68 to 93 and 0.33 to 0.48 for WWT, WHH and WBL, respectively. On the other hand, estimates of maternal genetic effect (m^2) were in the range 0.20–0.23 for WWT in the studied population. Nevertheless, the fractions of the variance due to maternal permanent environmental effect (c^2) were close to zero (0.00–0.08).

Estimates of h^2 for WWT identified in this study were found to be in the same range reported by many authors. Meyer (1993) studied beef cattle in Australia and reported an estimate of h^2 (0.45) from a direct-maternal model ($r_{am} \neq 0$). Dodenhoff *et al.* (1998) also reported the same estimate (0.45 ± 0.07) for the estimate of WWT. On the other hand, the h^2 estimate for crossbreeds in Thailand was reported to be 0.23 ± 0.07 (Jeanmas *et al.*, 2008) which is smaller by almost half than that of the present study. However, the estimate of h^2 (0.37) revealed by Supakorn *et al.* (2005) was relatively close to the crossbreed value. The variation of estimates from applying several models has been reported frequently in the past. Sopannarath *et al.* (2003) reported that h^2 estimates of WWT vary from 0.17 ± 0.02 to 0.47 ± 0.02 by using different models.

Estimates of m^2 , r_{am} and c^2 for WWT from multivariate analysis are also presented in Table 3. The identified m^2 (0.20–0.23) in the current study was found to be in agreement with several findings in the literature. The results revealed by Bertrand and Benyshek (1987) and by Dodenhoff *et al.* (1999) for Brangus and Limousin cattle (0.20 and 0.22) were in agreement with the current study. Moreover, the estimate of m^2 (0.08) reported by Jeanmas *et al.* (2008) was within the lower part of the range. An antagonistic association between the direct and maternal genetic effects of WWT was identified in the current study. The estimate of r_{am} found in the current study coincided with several studies for different beef breeds. Estimates of r_{am} can vary from highly negative to significantly positive values. Accordingly, Mattos *et al.* (2000)

found negative values that ranged from -0.66 to -0.22, from -0.54 to -0.20 and from -0.57 to -0.41 from their study using samples from the USA, Canada and Uruguay, respectively. In contrast, Meyer (1992) reported positive estimates of r_{am} of 0.19 and 0.22 for Angus beef cattle in Australia. It has been mentioned by numerous studies that the permanent environmental variance due to the dam as a proportion of phenotypic variance (c^2) has a big impact on the economically important traits of beef cattle, particularly WWT (Meyer, 1992; Robinson, 1996; Sopannarath *et al.*, 2003).

Even though the magnitudes of m^2 , r_{am} and c^2 for WWT identified in the current study seemed to influence the WWT of the population investigated, the log likelihood ratio tests showed that it was not significantly important in the current population. Sopannarath *et al.* (2003) revealed estimates of c^2 that ranged from 0.11 ± 0.01 to 0.17 ± 0.01 using several models. Similarly, the estimate of c^2 in crossbred beef cattle in Thailand was 0.10 ± 0.07 (Jeanmas *et al.*, 2008).

The variance component and heritability estimates from multivariate analysis for WHH and WBL traits are presented in Table 3. Numerous studies in the literature revealed that most of the weaning body measurement traits have moderate to high h^2 estimates (Gilbert *et al.*, 1993). Furthermore, Afolayan *et al.* (2007) reported relatively similar range estimates of h^2 (0.42 ± 0.10) for body height and moderate h^2 (0.25 ± 0.08) for body length. The estimates of h^2 found in the current study for WHH and WBL were inconsistent with previous research outcomes such as Vargas *et al.* (2000) who reported on h^2 for WHH (0.73) and hip height at 18 months of age (0.87) and Nephawee *et al.* (2004) who reported on h^2 (0.71 ± 0.05) for mature height. Moreover, the estimate of h^2 changes within the same population over time. Accordingly, the h^2 estimates for hip height and body length were 0.43 ± 0.13 and 0.25 ± 0.10 at weaning and 168 d later were 0.57 ± 0.16 and 0.38 ± 0.12 at the post weaning gain test date (Gilbert *et al.*, 1993).

Table 3 Estimates of variance components of the models studied for weaning weight, weaning hip height and body length traits and genetic parameters from multivariate analysis.

Item	Traits		
	Weaning weight (kg)	Weaning hip height (cm)	Weaning body length (cm)
Model 1 (simple additive animal model)			
σ_a^2	690.99	32.80	29.43
σ_p^2	1,023.09	35.31	60.87
h^2	0.68	0.93	0.48
e^2	0.32	0.07	0.52
-2logL	6,309.24	6,309.24	6,309.24
Model 2 (direct additive and maternal model)			
σ_a^2	550.81	22.75	20.17
σ_m^2	200.90	-	-
$\sigma_{a m_{WWT}}^2$	-125.84	28.96	0.00
σ_p^2	994.83	33.23	59.01
h^2	0.55	0.68	0.34
m^2	0.20	-	-
r_{am}	-0.38	0.43	0.00
e^2	0.37	0.32	0.66
-2logL	6,305.41	6,305.41	6,305.41
Model 3 (direct additive and maternal permanent environmental model)			
σ_a^2	591.95	32.74	29.23
σ_c^2	80.34	-	-
σ_p^2	1,010.45	35.32	60.38
h^2	0.59	0.93	0.48
c^2	0.08	-	-
e^2	0.33	0.07	0.52
-2logL	6,308.63	6,308.63	6,308.63
Model 4 (direct additive, maternal and maternal permanent environmental models)			
σ_a^2	531.09	24.36	19.78
σ_m^2	230.84	-	-
$\sigma_{a m_{WWT}}^2$	-125.89	55.62	37.53
σ_c^2	0.00	-	-
σ_p^2	990.76	33.50	59.09
h^2	0.54	0.73	0.33
m^2	0.23	-	-
$r_{a m_{WWT}}$	-0.36	0.74	0.56
c^2	0.00	-	-
e^2	0.36	0.27	0.67
-2logL	6,302.48	6,302.48	6,302.48

¹ σ_a^2 = direct additive genetic variance, σ_m^2 = maternal additive genetic variance, $\sigma_{a|m_{WWT}}$ = covariance between direct additive variance of trait i (weaning weight = WWT, weaning hip height = WHH and weaning body length = WBL) and maternal genetic variance of WWT, σ_c^2 = maternal permanent environmental variance, σ_p^2 = phenotypic variance. h^2 = direct heritability, m^2 = maternal heritability, $r_{a|m_{WWT}}$ = genetic correlation between direct additive effect of trait i (WWT, WHH and WBL) and maternal genetic effects of WWT, c^2 = fraction of variance due to permanent environmental effects, e^2 = residual effect.

Table 4 Direct genetic (above the diagonal) and phenotypic correlations (below the diagonal) between weaning weight (WWT), weaning hip height (WHH) and weaning body length (WBL) from simple direct genetic effect model.

Item	Weaning weight	Weaning hip height	Weaning body length
WWT	-	0.59	0.65
WHH	0.39	-	0.98
WBL	0.46	0.61	-

Estimates of direct genetic and phenotypic correlation between WWT, WHH and WBL for the simple direct genetic effect model are shown in Table 4. The outputs of the current study indicated that all traits are positively genetically correlated with each other. Moreover, the direct genetic correlations between WWT, WHH and WBL were higher than the corresponding phenotypic correlations. The results found in this study coincided with results revealed by several studies; Vargas *et al.* (2000) reported relatively higher phenotypic correlation (0.54) between WHH and WWT, while Gilbert *et al.* (1993) reported lower (0.37) and higher (0.75) values for the direct genetic and phenotypic correlation between WHH and WBL, respectively.

The -2logL results for the four different models used are presented in Table 3. Based on the log likelihood ratio tests, there were no statistically significant differences between the models considered. However, a relatively smaller variance was obtained from Model 4 that involved maternal and maternal permanent environmental effects for WWT. Moreover, Nuez-Dominguez *et al.* (1993) suggested that traits such as the birth weight, WWT and yearling weight of the calf are known to be influenced by the maternal permanent environment, which is due in part to the genetic makeup of the cow.

CONCLUSION AND RECOMMENDATIONS

The high h^2 estimates of the direct genetic effects for all the considered traits suggest that selection for these traits will provide an effective

genetic progress in the population. This study showed that the model with only direct effects was the most appropriate. Even though the maternal genetic effect and direct-maternal correlation (m^2 and r_{am} , respectively) did not significantly influence the studied traits, the results obtained from the model with those effects seemed to be more reasonable. In addition, the high genetic correlations between traits indicated the possibility of performing selection for WWT based on the information from WHH and WBL.

ACKNOWLEDGEMENTS

The authors would like to express sincere thanks to the 14 beef cattle farms for providing data. This project was supported by the Kasetsart University Research and Development Institute (KURDI) and the Integrative Research Center for Animal Science, Aquaculture and Animal Health of Kasetsart University under the National Research University Project of Thailand.

LITERATURE CITED

Afolayan, R.A., W.S. Pitchford, A.W. Weatherly and C.D.K. Bottema. 2002. Genetic variation in growth and body dimensions of Jersey and Limousin cross cattle: 2. Post weaning dry and wet season performance. **Asian-Aust. J. Anim. Sci.** 15 (10):1378–1385.

Afolayan, R.A., W.S. Pitchford, M.P.B. Deland and W.A. McKiernan. 2007. Breed variation and genetic parameters for growth and body development in diverse beef cattle genotypes. **Anim.** 1: 13–20.

Bertrand, J.K. and L.L. Benyshek. 1987. Variance and covariance estimates for maternally influenced beef growth traits. *J. Anim. Sci.* 64: 728–734.

Boldman, K.G., L.A. Kriese, L.D. Van Vleck and S. D. Kachman. 1993. **A Manual for Use of MTDFREML. A Set of Programs to Obtain Estimates of Variances and Covariances.** ARS-USDA. Clay Center. NE, USA. 114 pp.

Boligon, A.A., F. Baldi and L.G. de Albuquerque. 2011. Genetic parameters and relationships between growth traits and scrotal circumference measured at different ages in Nellore cattle. *Genet. Mol. Biol.* 34(2): 225–230.

De Mattos, D., I. Misztal and J.K. Bertrand. 2000. Variance and covariance components for weaning weight for Herefords in three countries. *J. Anim. Sci.* 78: 33–37.

Dodenhoff, J., L.D. Van Vleck, S.D. Kachman and R.M. Koch. 1998. Parameter estimates for direct, maternal, and grand maternal genetic effects for birth weight and weaning weight in Hereford cattle. *J. Anim. Sci.* 76: 2521–2527.

Dodenhoff, J., L.D. Van Vleck and K.E. Gregory. 1999. Estimation of direct, maternal, and grand maternal genetic effects for weaning weight in several breeds of beef cattle. *J. Anim. Sci.* 77: 840–845.

Gilbert, R.P., D.R. Bailey and N.H. Shannon. 1993. Body dimensions and carcass measurements of cattle selected for post weaning gain fed two different diets. *J. Anim. Sci.* 71: 1688–1698.

Gutierrez, J.P., J. Canon and F. Goyache. 1997. Estimation of direct and maternal genetic parameters for pre-weaning traits in the Asturiana de los Valles beef cattle breed through animal and sire models. *J. Anim. Breed. Genet.* 114: 261–266.

Jeanmas, A. 2008. **Comparison of Models for Estimating Genetic Effects for Birth and Weaning Weights in Crossbred**

Cattle Among Thai Native, Brahman and Charolais. M.Sc. thesis, Kasetsart University, Bangkok, Thailand.

Meyer, K. 1992. Variance components due to direct and maternal effects for growth traits of Australian beef cattle. *Livest. Prod. Sci.* 31: 179–204.

Meyer, K. 1993. Estimates of covariance components for growth traits of Australian Charolais cattle. *Aust. J. Agric. Res.* 44: 1501–1508.

Nephawee, K.A., L.V. Cundiff, M.E. Dikeman, J. D. Crouse and L. Dale Van Vleck. 2004. Genetic relationships between sex specific traits in beef cattle: Mature weight, weight adjusted for body condition score, height and body condition score of cows, and carcass traits of their steer relatives. *J. Anim. Sci.* 82: 647–653.

Nilchuen, P., S. Rattanatabtimtong and S. Chomchai. 2012. Superovulation with different doses of follicle stimulating hormone in Kamphaeng Saen beef cattle. *J. Anim. Vet. Advances.* 11: (5) 676–680.

Nunez-Dominguez, R., L.D. Van Vleck, K.G. Boldman and L.V. Cundiff. 1993. Correlations for genetic expression for growth of calves of Hereford and Angus dams using a multivariate animal model. *J. Anim. Sci.* 71: 2330–2340.

Riley, D.G., S.W. Coleman, C.C. Chase, Jr., T. A. Olson and A.C. Hammond. 2007. Genetic parameters for body weight, hip height and the ratio of weight to height at hip from random regression analyses of Brahman feedlot cattle. *J. Anim. Sci.* 85: 42–52.

Robinson, D.L. 1996. Estimation and interpretation of direct and maternal genetic parameters for weights of Australian Angus cattle. *Livest. Prod. Sci.* 45: 1–11.

SAS. 2003. **SAS OnlineDoc 9.1.3.** SAS Institute Inc. Cary, NC, USA.

Sopannarath, P., L.D. Van Vleck and S. Tumwasorn. 2003. Variance component due to direct and maternal effects for weaning weight in

Hereford cattle. **Thai. J. Agri. Sci.** 36(4): 355–364.

Sopannarath, P., C. Supakorn, S. Tumwasorn, S. Koonawootrittriron and P. Innuraksa. 2005. Heterosis and breed effects of crosses among Thai Native and American Brahman for preweaning growth traits in a beef cattle population. pp. 79–80. *In AHAT BSAS International Conference*. November 14–18, 2005, Khonkhen, Thailand.

Supakorn, C., P. Sopannarath, S. Tumwasorn, S. Koonawootrittriron and P. Innuraksa. 2005. Estimates of direct and maternal genetic effects on preweaning growth traits in a multibreed beef population in Thailand. pp. 85–86. *In AHAT BSAS International Conference*. November 14–18, 2005, Khonkhen, Thailand.

Tumwasorn, S., K. Markvichitr, P. Innuraksa, P. Prucsasri, Ch. Chantalakhana, S. Yimmongkol and P. Chitprasan. 1993. Predicted growth performance from crossing among Thai local Native, American Brahman, and Charolais under Thai conditions. **Thai J. Agri. Sci.** 26(2): 157–169.

Vargas, C.A., M.A. Elzo, C.C. Chase, Jr. and T.A. Olson. 2000. Genetic parameters and relationships between hip height and weight in Brahman. **J. Anim. Sci.** 78: 3045–3052.