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Spatial Modeling for Soil Properties Prediction in Mountainous Areas  
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ABSTRACT

	 Soil properties are one of the most important categories of information for land management 
and environmental modeling. Unfortunately, soil properties in mountainous areas with slopes of more 
than 35% are rarely investigated in Thailand due to the complexity of their landscapes and the cost and 
time requirements. The main objective was to predict soil properties in mountainous areas relating to soil 
forming factors using partial least squares regression (PLSR). The combination of topographic position 
index values from two different scales and criteria sets was firstly used to classify landform for in situ soil 
survey. Then, analyzed soil properties of the topsoil and subsoil (sand, silt, clay, pH, organic matter, total 
N, available P, exchangeable K, cation exchange capacity (CEC) and base saturation) and soil forming 
factors (rainfall, normalized difference vegetation index, elevation, slope, aspect, plan curvature, profile 
curvature, curvature, topographic wetness index and Al/Si ratio) were used to construct soil-landscape 
models using PLSR. It was found that the best predictive model for topsoil prediction was sand (R2 = 
0.92) and the worst was silt (R2 = 0.52) while the best predictive model for subsoil property prediction 
was CEC (R2 = 0.85) and the worst was total N and available P (R2 = 0.59). Accuracy assessment for 
the topsoil and subsoil properties prediction models using normalized root mean square error varied 
between 0.18 to 0.25 and 0.18 to 0.36, respectively. In addition, the selected predictive soil properties 
were used for soil texture classification and soil fertility assessment. In conclusion, it is suggested that 
soil-landscape modeling using PLSR can be efficiently used as a tool for spatial soil property prediction 
in mountainous areas where soil characteristics and properties are not available.
Keywords: landform classification, soil forming factor, soil property prediction, spatial modeling

INTRODUCTION

	 Soil properties are one of the important 
information categories for land management 
and environmental modeling (Florinsky et 
al., 2002; Herbst et al., 2006; Ziadat, 2007; 
Boettinger, 2010). Unfortunately, soil properties 
in mountainous areas with slopes of more than 
35% are rarely investigated in Thailand due to the 
complexity of their landscape. These complexities 

in mapping soils and their properties mean it is 
difficult to classify and map large uniform units. 
Therefore, the soil maps in the mountainous areas 
of Thailand are mostly described as slope complex 
(SC) or Soil Unit 62 where soil characteristics and 
properties are not available (Land Development 
Department, 1992). In addition, soil properties 
extraction in these areas requires a lot of time 
and money by using conventional soil survey 
techniques. However, there is a close relationship 
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between the soil properties and soil forming factors 
in the soils in mountainous areas (Gessler et al., 
1995; Gobin et al., 2001). In these areas, the 
topography is often used in soil studies including 
the modeling and prediction of soil properties and 
it is overwhelming and influences most of the other 
soil forming factors (Jenny, 1980; Pennock et al. 
1987; Moore et al., 1993; McKenzie et al., 2000; 
Ballabio, 2009).
	 Understanding the soil distribution 
patterns in relation to landscape attributes is seen 
as a step to improve the accuracy of prediction of 
soil properties at unsampled locations. However, 
this variation is not random because the properties 
of soil vary from place to place. Natural soil bodies 
are the result of climate and living organisms 
acting on parent material, with topography or 
local relief exerting a modifying influence and 
with time required for soil-forming processes 
to act (Soil Survey Division Staff, 1993).These 
relationships are ideal for the application of 
regression techniques to predict soil properties. 
Thus, understanding the soil distribution pattern 
in relationship to the soil properties and their soil 
forming factors is very important for the prediction 
of soil properties in mountainous areas.
	 During the last decade, several studies 
have attempted to characterize and predict the 
spatial distribution of soil properties using 
more readily available soil forming factors or 
environmental variables, namely soil-landscape 
modeling (Huggett, 1975; Moore et al., 1993; 
Odeh et al., 1995; Gessler et al., 1995; Thompson 
et al., 1997; Gessler et al., 2000; Wilson and 
Gallant, 2000; Gobin et al., 2001; Grunwald, 
2006). This modeling has been developed as a 
quantitative method to predict patterns of soil 
properties from observed patterns in soil forming 
factors. The main advantage is the improvement 
in soil information and the reduced cost and time 
involved in field sampling (Thompson et al., 
2006). 

	 The objectives of the current study 
were to classify landforms and to generate soil 
forming factors using geoinformatics, to quantify 
the relationship between soil properties and 
soil forming factors using partial least squares 
regression (PLSR) and by application of the results 
to predict soil properties in a mountainous area.

STUDY AREA

	 The Mae Sa watershed was chosen as 
the study area as it represents a site of small-
scale rural development and integrated watershed 
management in a mountainous area. It covers 
138.85 km2 in Chiang Mai province, northern 
Thailand. The watershed is an upland area with 
mountainous terrain and an altitude range from 
300 to 1,600 m above mean sea level. Most soils 
in this area (about 70%) have been classified as SC 
(Land Development Department, 1992) as shown 
in Figure 1.
	 According to the geological map 
(Department of Mineral Resources, 2006), the 
petrography of the study area consists of 67.16% 
Triassic granites and 32.84% Precambrian gneiss. 
The dominant land use and land cover types are  
forest land covering an area of 73.10% including hill 
 evergreen (17.03%), mixed deciduous (39.68%), and 
dry dipterocarp forests (16.40%), and agricultural 
 land covering an area of 24.09% (Royal Forest 
Department, 2007). The mean annual rainfall  
for a 10-year period (2000–2009) was 1,267 mm 
(Thai Meteorological Department, 2010).

MATERIALS AND METHODS

	 The methodology of spatial modeling for 
soil properties prediction using PLSR consisted 
of four components: 1) landform classification,  
2) soil sampling unit identification and soil sample 
data collection and analysis, 3) soil forming 
factor generation and 4) soil-landscape model 
development and its application (Figure 2).
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Figure 1	 Distribution of slope complex in the study area, Mae Sa Watershed, Chiang Mai province.

Figure 2	 Research methodology and workflow for: 1) landform classification, 2) soil sampling unit 
identification and soil sample data collection and analysis, 3) soil forming factor generation 
and 4) soil-landscape model development and its application (DEM = Digital elevation model, 
TPI = Topographic position index, NDVI = Normalized difference vegetation index).
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Landform classification
	 The input data for landform classification 
were the slope and topographic position index 
(TPI) at two scales (small kernel of 15 × 15 
cells and large kernel of 45 × 45 cells), which 
were extracted from a digital elevation model 
(DEM) with a spatial resolution of 25 × 25 m. 
In principle, TPI compares the elevation of 
each cell in a DEM to the mean elevation of a 
specified neighborhood around that cell. Positive 
TPI values represent locations that are higher 
than the average of their surroundings (tending to 
be hilltops) while negative TPI values represent 
locations that are lower than their surroundings 
(tending to be valleys) and TPI values near 
zero are normally flat areas (Weiss, 2001). The 

combination of TPI values from different scales 
(kernel size) and criteria sets suggests various 
landform types. In practice, two data sets of TPI, 
which were extracted at two different scales, were 
reclassified using the standard deviation (SD) into 
three categories: 1) TPI with standard deviation 
value less than or equal to -1; 2) TPI with standard 
deviation value between -1 and 1; and 3) TPI with 
standard deviation value greater than or equal to 1.
	 Then, the derived TPI data were overlaid 
with slope data, which were classified into two 
classes (less than or equal to 5 degrees and greater 
than 5 degrees), for landform classification. In this 
study, the criteria sets for landform classification 
were modified from Weiss (2001) as shown in 
Table 1.

Table 1	 Landform category and criteria (modified from Weiss, 2001).

No         Landform category                        Criteria                         Description

1 Canyons, Deeply incised Small scale TPI: TPI ≤ -1 SD Areas are lowest in the landscape, having 
streams Large scale TPI: TPI ≤ -1 SD negative plan and/or profile curvature

2 Midslope drainages, Shallow Small scale TPI: TPI ≤ -1 SD Areas are low in mid slope, channel in mid slope
valleys Large scale TPI: -1 SD  < TPI < 1 SD

3 Upland drainages, Small scale TPI: TPI ≤ -1 SD Areas are low in upper slope channel in
Headwaters Large scale TPI: TPI ≥ 1 SD upper slope

4 U-shaped valleys Small scale TPI: -1 SD < TPI < 1 SD Areas in lower slope, footslope adjacent 
Large scale TPI: TPI ≤ -1 SD below an open slope and adjacent above a flat or

streams
5 Plains Small scale TPI: -1 SD < TPI < 1 SD Areas are flat having a slope ≤ 5°

Large scale TPI: -1 SD < TPI < 1 SD
Slope ≤ 5°

6 Open slopes Small scale TPI: -1 SD < TPI < 1 SD Areas are rectilinear transition in mid slope, 
Large scale TPI: -1 SD < TPI < 1 SD having a slope > 5°
Slope > 5°

7 Upper slopes, Mesas Small scale TPI: -1 SD < TPI < 1 SD Areas are having high slope, shoulder adjacent
Large scale TPI: TPI ≥ 1 SD below a top

8 Local ridges/Hills in valleys Small scale TPI: TPI ≥ 1 SD
Large scale TPI: TPI ≤ -1 SD

Areas are high in lower slope, ridge in lower 
slope

9 Midslope ridges, Small Small scale TPI: TPI ≥ 1 SD Areas are high in mid slope, ridge in mid slope
hills in plains Large scale TPI: -1 SD < TPI < 1 SD

10 Mountain tops, High ridges Small scale TPI: TPI ≥ 1 SD Areas are highest in the landscape, having 
	 Large scale TPI: TPI ≥ 1 SD	 positive plan and/or profile curvature

TPI = Topographic position index, SD = Standard deviation.
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Soil sampling unit identification and soil sample 
data collection and data analysis
	 The derived landform category was 
firstly overlaid with geological formation (Triassic 
granite and Precambrian gneiss) for soil sampling 
unit stratification. Then, the number of soil samples 
was calculated at the detailed reconnaissance 
soil survey level (1:40,000–1:100,000) with a 
soil sample intensity of one sample per 2 km2 
(Kheoruenromne, 2005). Finally, a stratified 
random sampling scheme was applied to allocate 
soil sample sites using the ERDAS Imagine 
software package Version 8.7 (Leica Geosystems, 
2004) as shown in Table 2. At each soil sampling 

site, soil samples were taken from the topsoil 
(0–25 cm) and subsoil (between 25–50 cm) with 
a soil auger. These samples were then analyzed 
for physical properties (soil texture) and chemical 
soil properties of pH, organic matter (OM), 
total nitrogen (N), available phosphorus (P), 
exchangeable potassium (K), cation exchange 
capacity (CEC) and base saturation (BS) in the soil 
laboratory. In addition, the accuracy of landform 
classification was also assessed based on ground 
stratified random points by field observation using 
overall accuracy and the Kappa hat coefficient of 
agreement.

Table 2	 Soil sampling unit stratification between geological formation and landform for sample site 
allocation and number of soil sample sites.

Geological 
formation

Landform
Area 
(km2)

Percentage
Number of 
soil sample 

sites
Gr: Granite 1 Canyons, Deeply incised streams 7.78 6.68 4
Gr: Granite 2 Midslope drainages, Shallow valleys 7.53 6.46 3
Gr: Granite 3 Upland drainages, Headwaters 0.11 0.09 1
Gr: Granite 4 U-Shaped valleys 5.65 4.85 3
Gr: Granite 5 Plains 1.18 1.01 1
Gr: Granite 6 Open slopes 32.82 28.14 9
Gr: Granite 7 Upper slopes 6.40 5.49 3
Gr: Granite 8 Local ridges, Hills in valleys 0.01 0.01 1
Gr: Granite 9 Midslope ridges, Small hills in plains 5.13 4.40 2
Gr: Granite 10 Mountain tops 11.71 10.04 5
PE: Gneiss 1 Canyons, Deeply incised streams 3.79 3.25 2
PE: Gneiss 2 Midslope drainages, Shallow valleys 3.07 2.64 2
PE: Gneiss 3 Upland drainages, Headwaters 0.02 0.01 -
PE: Gneiss 4 U-Shaped valleys 2.53 2.17 1
PE: Gneiss 5 Plains 3.47 2.98 1
PE: Gneiss 6 Open slopes 18.35 15.74 5
PE: Gneiss 7 Upper slopes 1.09 0.93 1
PE: Gneiss 8 Local ridges, Hills in valleys 0.00 0.00 -
PE: Gneiss 9 Midslope ridges, Small hills in plains 2.87 2.46 2
PE: Gneiss 10 Mountain tops 3.11 2.67 2

Total 116.61 100.00 48
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Soil forming factor generation
	 Under this component, attributes of 
soil forming factors excluding time were firstly 
reviewed from research work (Moore et al., 1993; 
Gessler et al., 1995; Ryan et al., 2000; Gobin 
et al., 2001; Hengl et al., 2002; Putthapibun, 
2002; McBratney et al., 2003; Ballabio, 2009; 
Castrignanò et al., 2011;  United States Geological 
Service, 2012) and then they were selected  
for soil forming factor generation in the study 
(Table 3). The extracted value of the soil forming 
factor attribute in the slope complex area was directly 
applied in PLSR as summarized in Table 4.
 

Soil-landscape model development and its 
application
	 PLSR was firstly used to identify the 
relationship between in situ soil properties 
(dependent variables) and soil forming factors 
(independent variables) in the form of a multiple 
linear regression equation. Basically, PLSR is a 
technique that combines features from generalizes 
principal component analysis (PCA) and multiple 
linear regressions. This prediction is achieved by 
extracting from the predictors a set of orthogonal 
factors called latent variables (from PCA) which 
have the best predictive power and it is able 

Table 3	 Attribute of soil forming factors and method for data generation.
Soil forming factor	 Description	 Attribute	 Method

Organism	 Organisms relate to the effect of vegetation 	 NDVI
	    and human activity.
Relief	 Relief affects run-off and erosion. Herein 	 Elevation (m)	 Extract from DEM with cell size 25×25m
	    primary and secondary terrain attributes 	 Slope (°)	 Extract from DEM with cell size 25×25m
	    which were extracted from DEM with cell 	 Aspect (°)	 Extract from DEM with cell size 25×25m
	    size of 25 × 25 m	 Plan curvature	 Extract from DEM with cell size 25×25m
		  Profile curvature	 Extract from DEM with cell size 25×25m
		  Curvature	 Extract from DEM with cell size 25×25m
		  TWI				  

Parent material	 Chemical composition of parent materials 	 Al/Si ratio	 Ratio between alumina (Al2O3) and silica
	    has an effect on weathering process and it 		     (SiO2) of geological formation as suggestion
	    can affect to soil properties	  	    by Putthapiban (2002) and  United States 
			      Geological Service (2012)		
Climate	 Rainfall affects both vegetative production 	 Mean annual	 Interpolate from mean annual rainfall of
	    and soil horizon development. Its interacting 	    rainfall (mm)	    from 2000 to 2009 by IDW
	    with parent material also affects to soil physical 
	    and chemical properties

NDVI = Normalized difference vegetation index, TWI = Topographic wetness index, IDW = Inversed distance weighting.
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Table 4	 Quantitative attributes of soil forming factors.
Soil forming factor Attribute Minimum value Maximum value Note

Organism NDVI -0.48 0.71 Landsat data: 17 Jan 2009

Relief Elevation (m) 339.26 1,680.51

Slope (°) 0.01 47.29      

Aspect (°) 0.0008 360.00

Plan curvature -2.10 2.58

Profile curvature -3.22 2.94

Curvature -2.88 5.18

TWI 3.18 20.37

Parent material Al/Si ratio 0.19 0.22

Climate Mean annual rainfall (mm) 1,147.63 1,530.70
NDVI = Normalized difference vegetation index, TWI = Topographic wetness index
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to avoid the multicollinearity problem among 
independent variables (Abdi, 2010). The derived 
multiple linear regression equations were then 
used to predict 10 soil properties using the Map 
Algebra module of the software package ArcGIS 
Version 9.0 (ESRI, 2004). The derived physical 
and chemical soil properties from PLSR were 
further used to compare actual soil properties 
from the dataset for accuracy assessment using the 
root mean square error (RMSE) and normalized 
root mean square error (NRMSE) as shown in 
Equations 1 and 2, respectively:

[Predicted value – Observed value]2RMSE
n i

n
=

=
∑1

1
	(1)

NRMSE RMSE
Maximum observed value Minimum observed value

=
−

	 (2)

where	 n is number of observations.
	 In addition, some derived predictive 
soil properties (soil texture classification and soil 
fertility assessment) were selected to demonstrate 

the application. The predictive values of sand, silt 
and clay of topsoil and subsoil were used for soil 
texture classification based on the criteria of the 
United States Department of Agriculture (USDA) 
soil texture class (Soil Survey Division Staff, 
1993) under the Expert System of ERDAS Imagine 
(Table 5). The selected predictive chemical soil 
properties (OM, P, K, CEC and BS) of the topsoil 
and subsoil were used to assess the soil fertility 
pattern based on the criteria of Land Development 
Department (1980) according to USDA Soil Survey 
Laboratory Method (United States Department of 
Agriculture, 2004). In practice, each chemical 
soil property was first assigned a standard score 
according to the soil fertility level: 1 for low, 2 for 
moderate and 3 for high (Table 6). Then, the total 
score from each soil property was simply added 
and the total score was reclassified into three soil 
fertility levels: low (total score: 5–7), moderate 
(total score: 8–12) and high (total score: 13–15).

Table 5	 Rules and conditions for soil texture classification under the expert system based on Soil 
Survey Division Staff (1993).

Soil texture class	 Rule and conditions
Sand	 %Sand ≥ 85 and %Silt + (1.5 x %Clay) < 15
Loamy sand	 %Sand ≥70 and %Sand < 91 and %Silt + (1.5 x %Clay) ≥ 15 and %Silt 
		  + (2 x %Clay) < 30
Sandy loam	 %Sand > 52 and %Silt + (2 x %Clay) ≥ 30 and %Clay ≥ 7 and %Clay 
		  < 20 OR %Sand > 43 and %Silt < 50 and %Silt + (2 x %Clay) > 30 and 
		  %Clay < 7
Loam	 %Sand ≤ 52 and %Silt ≥ 28 and %Silt < 50 and %Clay ≥ 7 and %Clay < 27
Silt loam	 %Silt ≥ 50 and %Clay ≥ 12 and %Clay < 27 OR %Silt ≥ 50 and %Silt < 80 
		  and %Clay < 12
Silt	 %Silt ≥ 80 and %Clay < 12
Sandy clay loam	 %Sand > 45 and %Silt < 28 and %Clay ≥ 20 and %Clay < 35
Clay loam	 %Sand > 20 and %Sand ≤ 45 and %Clay ≥ 27 and %Clay < 40
Silty clay loam	 %Sand ≤ 20 and %Clay ≥ 27 and %Clay < 40
Sandy clay	 %Sand > 45 and %Clay ≥ 35
Silty clay	 %Silt ≥40 and %Clay ≥ 40
Clay	 %Sand ≤ 45 and %Silt < 40 and %Clay ≥ 40
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RESULTS AND DISCUSSION

Landform classification
	 The most dominant landform was open 
slopes covering an area of 51.17 km2 or 43.88% of 
the trial watershed. The second dominant landform 
was mountain tops (14.82 km2 or 12.71%), while 
upland drainage or headwaters and local ridges or 
hills in valleys covered an area of less than 1%. The 
overall accuracy of landform classification and the 
Kappa hat coefficient of agreement were 92.00% 
and 0.91, respectively. According to Landis and 
Koch (1977), a Kappa hat coefficient of agreement 
value of more than 0.80 represents strong 
agreement or accuracy between the classification 
map and the ground reference information. The 
distribution of the landform classification and an 
example of the accuracy assessment using field 
observation are displayed in Figure 3.
	 The landform classification based on 
TPI values was a useful method for soil landscape 
analysis, because the criteria parameters used were 
simple and thus, this method was able to identify 
major landform elements in the mountainous 
areas such as mountain tops, open slopes, plains 
and canyons which correlated to soil erosion, the 
deposition process and soil horizon development. 
However, the accuracy of this method depends on 
the DEM resolution and an optimal kernel size 
specification.

Soil sampling unit identification and sample 
sites allocation
	 The combination of the derived landform 

categories and geological formation was used to 
stratify the soil sampling units and to allocate soil 
sample sites using a stratified random sampling 
scheme. In this study, 48 soil sample sites were 
selected and data was collected from them analysis. 
This dataset was divided into two datasets: 28 sites 
for modeling and 20 sites for assessment of the 
model accuracy in soil property prediction.

Soil sample data analysis
	 The major soil properties from the 48 
soil sample sites of topsoil and subsoil were 
qualitatively and quantitatively described based 
on soil laboratory reports.
	 Of the physical soil properties, the soil 
texture of the topsoil was dominated by sandy 
clay loam (30 samples) and the remainder was 
represented by clay loam (17 samples) and loam 
(1 sample), while the subsoil was dominated by 
clay (32 samples) with the remainder represented 
by clay loam (8 samples), sandy clay (4 samples) 
and sandy clay loam (4 samples). For the 
chemical soil properties, the pH of the topsoil 
and subsoil varied from extremely acid to neutral 
(pH 4.33–6.74), the organic matter content of 
the topsoil was moderate to high (1.79–10.05%) 
and of the subsoil was low to high (0.53–3.98%), 
while the total nitrogen of the topsoil was very 
low to moderate (0.09–0.51%) and of the subsoil 
was very low to low (0.03–0.18%). The available 
phosphorus concentration of the topsoil was low 
to moderate (0.81–11.15 mg.kg-1) while in the 
subsoil, it was low (0.41–2.57 mg.kg-1) and the 
exchangeable potassium concentration of the 

Table 6	 Chemical soil properties and standard score for soil fertility assessment based on Land 
Development Department (1980).

Fertility 	 Standard 	 OM	 P	 K	 CEC	 BS
level	 Score	 (%)	 (mg kg-1)	 (mg kg-1)	 (cmol kg-1)	 (%)
Low	 1	 < 1.5	 < 10	 < 60	 < 10	 < 35
Moderate	 2	 1.5-3.5	 10-25	 60-90	 10-20	 35-75
High	 3	 > 3.5	 > 25	 > 90	 > 20	 > 75
OM = Organic matter, P = Available P, K = Exchangeable K, CEC = Cation exchange capacity, BS = Base saturation.
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Figure 3	 Distribution of landform classification and ground visiting sites for accuracy assessment: 
(a) landform classification, (b) landform data, (c) Landsat data and (d) ground visiting sites 
(numbers indicate the landform categories visited as listed in subfigure 3d).

a

d

b

c
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topsoil was moderate to very high (81.95–262.27 
mg.kg-1) whereas in the subsoil, it was low to high 
(27.72–148.34 mg.kg-1). The cation exchange 
capacity of the topsoil and subsoil were both 
moderate to high (11.15–35.44 cmol.kg-1) and the 
base saturation of the topsoil was low to moderate 
(15.15–43.59%) while in the subsoil, it was low 
(11.56–31.27%). 
	 These results showed that most of the 
topsoil was more fertile than the subsoil, as most 
of the topsoil property values were higher than 
in subsoil except for the clay content. This latter 
result might have been due to the rather high OM 
content in the topsoil.

Soil-landscape model for soil property prediction 
using PLSR
	 The relationship between in situ soil 

properties (dependent variables) from the 28 
sample sites and soil forming factors (independent 
variables) for each soil property of the topsoil and 
subsoil were analyzed using PLSR. The intercepts 
and coefficients of the predictor variables for 
each soil property from PLSR are summarized by 
columns in Table 7. For the topsoil properties, the 
best predictive model was sand (R2 = 0.92) while 
the worst predictive model was silt (R2 = 0.52). 
The best predictive model for the subsoil properties 
was CEC (R2 = 0.85) while the worst predictive 
model was with nitrogen and phosphorus (R2 
= 0.59). From these results, the variation of the 
predictive model can be inferred for explaining 
the soil properties using soil forming factors. In 
addition, Table 8 summarizes the values of variable 
importance in the projection (VIP) in each soil 
property prediction model using PLSR. These 

Table 7	 Summary of regression coefficients for the prediction of topsoil and subsoil properties with 
R2 values.

	 Multiple linear regression of soil property prediction
Topsoil	 Sand	 Silt	 Clay	 pH	 OM	 N	 P	 K	 CEC	 BS
Intercept	 16.78	 40.86	 30.43	 6.56	 -5.13	 -0.21	 1.30	 113.92	 3.47	 61.17
Rain	 0.02	 -0.01	 -1.0x10-3	 -9.0x10-4	 7.8x10-2	 3.2x10-4	 7.5x10-5	 -0.01	 0.01	 -0.03
NDVI	 -8.57	 1.08	 -3.79	 -0.88	 6.15	 0.24	 5.94	 -46.59	 8.77	 -20.56
Elevation	 2.5x10-3	 -2.0x10-3	 8.2x10-5	 -1.6x10-4	 1.4x10-3	 5.3x10-5	 1.8x10-4	 4.8x10-3	 2.4x10-3	 -3.7x10-3

Slope	 0.46	 -0.09	 -0.12	 -0.03	 0.02	 4.67x10-4	 -3.5x10-3	 -1.73	 0.01	 -0.23
Aspect	 2.5x10-3	 8.3x10-4	 4.0x10-3	 5.1x10-4	 -8.6x10-4	 3.2x10-5	 -5.8x10-4	 0.09	 2.0x10-3	 0.01
Plan	 1.77	 -1.32	 -2.47	 -0.06	 -0.67	 -0.054	 -1.39	 -21.25	 -2.25	 -2.64
Profile	 -0.64	 1.27	 1.52	 0.10	 1.12	 0.067	 1.46	 18.71	 2.39	 1.12
Curvature	 0.73	 -0.77	 -1.19	 -0.05	 -0.53	 -0.036	 -0.85	 -11.87	 -1.37	 -1.13
TWI	 -1.43	 0.59	 0.41	 0.11	 0.14	 1.1x10-2	 0.32	 7.68	 0.32	 0.81
Al/Si ratio	 29.89	 13.72	 1.87	 1.76	 -17.09	 -0.90	 -8.39	 113.50	 -34.38	 60.27
R2	 0.92	 0.52	 0.67	 0.82	 0.68	 0.80	 0.74	 0.86	 0.77	 0.79
Subsoil	 Sand	 Silt	 Clay	 pH	 OM	 N	 P	 K	 CEC	 BS
Intercept	 30.12	 19.74	 43.99	 4.85	 -2.74	 -0.40	 0.85	 42.29	 3.50	 41.77
Rain	 0.01	 -7.8x10-4	 -3.2x10-3	 1.3x10-4	 3.1x10-3	 9.7x10-4	 3.7x10-5	 0.01	 0.01	 -0.02
NDVI	 7.76	 3.72	 -13.56	 0.26	 2.59	 0.40	 0.53	 12.20	 5.03	 -8.57
Elevation	 -8.4x10-4	 8.0x10-5	 2.2x10-3	 5.7x10-5	 5.2x10-4	 1.7x10-4	 1.4x10-5	 0.01	 2.6x10-3	 -2.5x10-3

Slope	 0.51	 -0.01	 -0.51	 -0.01	 8.8x10-3	 -1.4x10-5	 -2.0x10-3	 -0.40	 -3.5x10-3	 -0.17
Aspect	 -3.6x10-3	 1.8x10-4	 8.0x10-3	 3.3x10-4	 -1.7x10-4	 8.5x10-5	 3.1x10-4	 0.02	 3.7 x10-3	 1.8x10-3

Plan	 3.50	 -2.13	 -1.58	 -0.26	 -0.31	 -0.12	 -0.26	 -16.11	 -2.26	 -1.54
Profile	 -4.71	 2.51	 1.84	 0.28	 0.54	 0.16	 0.28	 17.52	 2.67	 1.09
Curvature	 2.42	 -1.37	 -1.01	 -0.16	 -0.25	 -0.08	 -0.16	 -9.96	 -1.46	 -0.78
TWI	 -1.59	 0.42	 1.03	 0.05	 0.07	 0.02	 0.06	 3.63	 0.32	 0.56
Al/Si ratio	 -40.36	 -10.28	 42.83	 -1.68	 -6.58	 -1.83	 -2.12	 -70.16	 -36.19	 21.89
R2	 0.82	 0.78	 0.77	 0.66	 0.66	 0.59	 0.59	 0.78	 0.85	 0.60
OM = Organic matter, P = Available P, K = Exchangeable K, CEC = Cation exchange capacity, BS = Base saturation.
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values represent the significance of the predictor 
variables for soil properties prediction. Chong and 
Jun (2005) stated that any independent variable 
with a VIP value greater than 1 was considered 
as a highly important predictor. For example, 
TWI, which had a negative relationship with the 
percentage of sand, had the highest VIP value 
(Tables 7 and 8) and it dictated the distribution of 
the low percentage of sand (Figure 4). In contrast, 
the Al/Si ratio, which had a positive relationship 
with the percentage of sand, demonstrated the 
lowest VIP value (Tables 7 and 8) and it did not 
control the distribution of the low percentage of 
sand (Figure 4).
	 As a result, the relief factors of TWI, 
curvature, plan curvature and profile curvature 
are important for soil property prediction in 
mountainous areas.

Accuracy assessment of soil property prediction 
model
	 The predictive physical and chemical soil 
properties from PLSR were used to compare the 
in situ soil properties from the 20 sites to assess 
the accuracy of the soil property prediction model 
using RMSE and NRMSE (Table 9). In principle, 
RMSE provides the absolute average error 
between an estimated value and an observed value 
with a measured unit. This value is not appropriate 
for accuracy assessment comparison when the 
measured units are different. As NRMSE is a 
normalized value of RMSE and thus, has no unit. 
This value is appropriate for accuracy assessment 
comparison. Based on NRMSE values, the best 
predictive topsoil property model was clay while 
the best predictive subsoil property model was 
potassium and CEC. The worst predictive topsoil 
and subsoil property model was phosphorus.

Table 8	 Variable importance in the projection (VIP) values of each predictor variable for soil property 
prediction.

	 Variable importance in the projection (VIP)
 Soil properties	 Rainfall	 NDVI	 Elevation	 Slope	 Aspect	 Plan	 Profile	 Curvature	 TWI	 Al/Si ratio
							       curvature	 curvature
Sand	 Topsoil	 0.66	 0.22	 0.40	 1.57	 0.52	 1.21	 0.85	 1.13	 1.77	 0.20
	 Subsoil	 0.17	 0.18	 0.14	 1.35	 0.59	 1.27	 1.23	 1.36	 1.66	 0.03
Silt	 Topsoil	 1.27	 0.15	 0.87	 1.27	 0.16	 0.78	 0.73	 0.82	 2.01	 0.36
	 Subsoil	 0.08	 0.55	 0.04	 0.17	 0.04	 1.39	 1.59	 1.62	 1.58	 0.29
Clay	 Topsoil	 0.09	 0.50	 0.04	 1.67	 0.76	 1.45	 0.87	 1.27	 1.39	 0.05
	 Subsoil	 0.20	 0.55	 0.18	 1.84	 0.82	 1.08	 0.91	 1.09	 1.54	 0.20
pH	 Topsoil	 0.75	 0.78	 0.55	 1.54	 0.81	 1.06	 0.69	 0.96	 1.64	 0.54
	 Subsoil	 0.10	 0.30	 0.22	 0.64	 0.57	 1.39	 1.44	 1.54	 1.61	 0.39
OM	 Topsoil	 1.27	 1.52	 1.10	 0.55	 0.30	 0.74	 1.19	 1.04	 0.86	 0.82
	 Subsoil	 1.15	 1.49	 0.96	 0.52	 0.14	 0.80	 1.33	 1.16	 0.98	 0.74
N	 Topsoil	 0.97	 1.12	 0.80	 0.22	 0.22	 1.12	 1.35	 1.34	 1.25	 0.81
	 Subsoil	 1.25	 0.78	 1.10	 0.00	 0.24	 1.02	 1.38	 1.30	 1.20	 0.70
P	 Topsoil	 0.01	 1.24	 0.12	 0.08	 0.17	 1.28	 1.31	 1.41	 1.72	 0.34
	 Subsoil	 0.03	 0.61	 0.05	 0.23	 0.51	 1.30	 1.38	 1.46	 1.83	 0.47
K	 Topsoil	 0.05	 0.21	 0.20	 1.09	 0.98	 1.34	 1.17	 1.37	 1.65	 0.06
	 Subsoil	 0.12	 0.23	 0.40	 0.77	 0.57	 1.32	 1.39	 1.47	 1.72	 0.25
CEC	 Topsoil	 1.10	 1.08	 0.95	 0.18	 0.36	 1.22	 1.26	 1.35	 1.02	 0.82
	 Subsoil	 0.87	 0.62	 1.03	 0.04	 0.66	 1.23	 1.41	 1.44	 1.01	 0.87
BS	 Topsoil	 1.13	 1.32	 0.76	 1.52	 0.87	 0.75	 0.31	 0.58	 1.33	 0.75
	 Subsoil	 1.15	 0.91	 0.86	 1.81	 0.27	 0.73	 0.50	 0.67	 1.53	 0.45
NDVI = Normalized difference vegetation index, OM = Organic matter, P = Available P, K = Exchangeable K, CEC = Cation 
exchange capacity, BS = Base saturation, TWI = Topographic wetness index.
The three best significant factors for each soil property prediction are shown as bold numbers.
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Table 9	 Summary of root mean square error (RMSE) and normalized root mean square error (NRMSE) 
values for topsoil and subsoil properties prediction.

Topsoil	 Sand	 Silt	 Clay	 pH	 OM	 N	 P	 K	 CEC	 BS
RMSE	 3.53	 1.79	 1.95	 0.26	 1.80	 0.08	 2.01	 19.58	 3.13	 4.82
NRMSE	 0.22	 0.23	 0.18	 0.20	 0.24	 0.23	 0.25	 0.19	 0.22	 0.21
Subsoil	 Sand	 Silt	 Clay	 pH	 OM	 N	 P	 K	 CEC	 BS
RMSE	 5.43	 2.61	 5.08	 0.37	 0.84	 0.04	 0.60	 22.27	 2.57	 2.78
NRMSE	 0.22	 0.23	 0.25	 0.26	 0.27	 0.24	 0.36	 0.18	 0.18	 0.20
OM = Organic matter, P = Available P, K = Exchangeable K, CEC = Cation exchange Capacity, BS = Base saturation.

Classification of soil texture using the expert 
system
	 There were four soil texture classes of 
topsoil: sandy clay loam (58.30%), clay loam 
(41.65%), clay (0.04%), and silty clay (0.02%), 
while there were four soil texture classes of 
subsoil: clay (66.31%), clay loam (22.21%), 
sandy clay loam (7.72%) and sandy clay (3.76%) 
as shown in Figure 5. In addition, the accuracy 
for topsoil and subsoil texture classification was 

assessed based on the 48 in situ soil samples. It 
was found that the overall accuracy and Kappa 
hat coefficient values for the topsoil and subsoil 
texture classification were 81.25% and 0.61 and 
73.92% and 0.47, respectively. As a result, the 
dominant soil texture of the topsoil was sandy 
clay loam and it was mostly distributed in the 
mountainous area, while the clay material was 
mostly deposited in the subsoil as a significant 
soil texture.

Figure 4 	 Distribution in study area of: (a) topographic wetness index, (b) Al/Si ratio, (c) predictive 
sand of topsoil, and (d) predictive sand of subsoil.

a

d

b

c
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Soil fertility assessment
	 The pattern of soil fertility distribution is 
presented in Figure 6. The fertility of the topsoil 
was mostly moderate (99.89%) because the base 
saturation and available phosphorus of the topsoil 
varied from low to moderate. At the same time, 
fertility of subsoil was low and moderate because 
the base saturation of the subsoil varied from 
low to moderate and available phosphorus was 
low covering an area of 41.73 (low) and 74.88 
km2 (moderate) or about 35.78 and 64.22%, 
respectively. Based on these findings, the topsoil 
and subsoil fertility can be improved by adding P 
fertilizers.

CONCLUSION

	 Under spatial modeling, PLSR was used 
to quantify the relationship between bio-physical 
soil-forming factors consisting of: rainfall, NDVI, 
elevation, slope, aspect, plan curvature, profile 
curvature, curvature, TWI and the Al/Si ratio 
as predictor variables and the soil properties of 
sand, silt, clay, pH, OM, N, P, K, CEC, and BS 
of the topsoil and subsoil as dependent variables. 
The results showed that PLSR can be used to 
predict the physical and chemical soil properties 
in mountainous areas. In fact, the R2 of the 
predictive soil property model for topsoil and 

Figure 5	 Distribution of United States Department of Agriculture soil texture classes in the study area: 
(a) topsoil and (b) subsoil.

a b

Figure 6	 Distribution of soil fertility pattern in the study area: (a) topsoil and (b) subsoil.

a b
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subsoil varied between 52 to 92% and 59 to 85%, 
respectively, whilst the accuracy assessment for 
the topsoil and subsoil property prediction models 
by NRMSE varied between 0.18 and 0.25 and 0.18 
and 0.36, respectively. In addition, the selected 
predictive soil properties were used for soil texture 
classification and soil fertility assessment.
	 In conclusion, it is suggested that spatial 
modeling using PLSR can be efficiently used as 
a tool for soil property prediction in mountainous 
areas where soil characteristics and properties are 
not available.
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