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Spatial Modeling for Soil Properties Prediction in Mountainous Areas
Using Partial Least Squares Regression

Suwit Ongsomwang®” and Rawee Rattanakom

ABSTRACT

Soil properties are one of the most important categories of information for land management
and environmental modeling. Unfortunately, soil properties in mountainous areas with slopes of more
than 35% are rarely investigated in Thailand due to the complexity of their landscapes and the cost and
time requirements. The main objective was to predict soil properties in mountainous areas relating to soil
forming factors using partial least squares regression (PLSR). The combination of topographic position
index values from two different scales and criteria sets was firstly used to classify landform for in situ soil
survey. Then, analyzed soil properties of the topsoil and subsoil (sand, silt, clay, pH, organic matter, total
N, available P, exchangeable K, cation exchange capacity (CEC) and base saturation) and soil forming
factors (rainfall, normalized difference vegetation index, elevation, slope, aspect, plan curvature, profile
curvature, curvature, topographic wetness index and Al/Si ratio) were used to construct soil-landscape
models using PLSR. It was found that the best predictive model for topsoil prediction was sand (R2 =
0.92) and the worst was silt (R = 0.52) while the best predictive model for subsoil property prediction
was CEC (R2 = 0.85) and the worst was total N and available P (R? = 0.59). Accuracy assessment for
the topsoil and subsoil properties prediction models using normalized root mean square error varied
between 0.18 to 0.25 and 0.18 to 0.36, respectively. In addition, the selected predictive soil properties
were used for soil texture classification and soil fertility assessment. In conclusion, it is suggested that
soil-landscape modeling using PLSR can be efficiently used as a tool for spatial soil property prediction
in mountainous areas where soil characteristics and properties are not available.
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INTRODUCTION

Soil properties are one of the important
information categories for land management
and environmental modeling (Florinsky et
al., 2002; Herbst et al., 2006; Ziadat, 2007;
Boettinger, 2010). Unfortunately, soil properties
in mountainous areas with slopes of more than
35% are rarely investigated in Thailand due to the
complexity of their landscape. These complexities

in mapping soils and their properties mean it is
difficult to classify and map large uniform units.
Therefore, the soil maps in the mountainous areas
of Thailand are mostly described as slope complex
(SC) or Soil Unit 62 where soil characteristics and
properties are not available (Land Development
Department, 1992). In addition, soil properties
extraction in these areas requires a lot of time
and money by using conventional soil survey
techniques. However, there is a close relationship
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between the soil properties and soil forming factors
in the soils in mountainous areas (Gessler et al.,
1995; Gobin et al., 2001). In these areas, the
topography is often used in soil studies including
the modeling and prediction of soil properties and
itis overwhelming and influences most of the other
soil forming factors (Jenny, 1980; Pennock et al.
1987; Moore et al., 1993; McKenzie et al., 2000;
Ballabio, 2009).

Understanding the soil distribution
patterns in relation to landscape attributes is seen
as a step to improve the accuracy of prediction of
soil properties at unsampled locations. However,
this variation is not random because the properties
of soil vary from place to place. Natural soil bodies
are the result of climate and living organisms
acting on parent material, with topography or
local relief exerting a modifying influence and
with time required for soil-forming processes
to act (Soil Survey Division Staff, 1993).These
relationships are ideal for the application of
regression techniques to predict soil properties.
Thus, understanding the soil distribution pattern
in relationship to the soil properties and their soil
forming factors is very important for the prediction
of soil properties in mountainous areas.

During the last decade, several studies
have attempted to characterize and predict the
spatial distribution of soil properties using
more readily available soil forming factors or
environmental variables, namely soil-landscape
modeling (Huggett, 1975; Moore et al., 1993;
Odehetal., 1995; Gessler et al., 1995; Thompson
et al., 1997; Gessler et al., 2000; Wilson and
Gallant, 2000; Gobin et al., 2001; Grunwald,
2006). This modeling has been developed as a
quantitative method to predict patterns of soil
properties from observed patterns in soil forming
factors. The main advantage is the improvement
in soil information and the reduced cost and time
involved in field sampling (Thompson et al.,
2006).

The objectives of the current study
were to classify landforms and to generate soil
forming factors using geoinformatics, to quantify
the relationship between soil properties and
soil forming factors using partial least squares
regression (PLSR) and by application of the results
to predict soil properties in a mountainous area.

STUDY AREA

The Mae Sa watershed was chosen as
the study area as it represents a site of small-
scale rural development and integrated watershed
management in a mountainous area. It covers
138.85 km? in Chiang Mai province, northern
Thailand. The watershed is an upland area with
mountainous terrain and an altitude range from
300 to 1,600 m above mean sea level. Most soils
in this area (about 70%) have been classified as SC
(Land Development Department, 1992) as shown
in Figure 1.

According to the geological map
(Department of Mineral Resources, 2006), the
petrography of the study area consists of 67.16%
Triassic granites and 32.84% Precambrian gneiss.
The dominant land use and land cover types are
forest land covering an area of 73.10% including hill
evergreen (17.03%), mixed deciduous (39.68%),and
dry dipterocarp forests (16.40%), and agricultural

land covering an area of 24.09% (Royal Forest

Department, 2007). The mean annual rainfall
for a 10-year period (2000-2009) was 1,267 mm
(Thai Meteorological Department, 2010).

MATERIALS AND METHODS

The methodology of spatial modeling for
soil properties prediction using PLSR consisted
of four components: 1) landform classification,
2) soil sampling unit identification and soil sample
data collection and analysis, 3) soil forming
factor generation and 4) soil-landscape model
development and its application (Figure 2).
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Figure 1 Distribution of slope complex in the study area, Mae Sa Watershed, Chiang Mai province.
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Landform classification

The input data for landform classification
were the slope and topographic position index
(TPI) at two scales (small kernel of 15 x 15
cells and large kernel of 45 x 45 cells), which
were extracted from a digital elevation model
(DEM) with a spatial resolution of 25 x 25 m.
In principle, TPl compares the elevation of
each cell in a DEM to the mean elevation of a
specified neighborhood around that cell. Positive
TPI values represent locations that are higher
than the average of their surroundings (tending to
be hilltops) while negative TPI values represent
locations that are lower than their surroundings
(tending to be valleys) and TPI values near
zero are normally flat areas (Weiss, 2001). The
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combination of TPI values from different scales
(kernel size) and criteria sets suggests various
landform types. In practice, two data sets of TPI,
which were extracted at two different scales, were
reclassified using the standard deviation (SD) into
three categories: 1) TPl with standard deviation
value less than or equal to -1; 2) TPI with standard
deviation value between -1 and 1; and 3) TPI with
standard deviation value greater than or equal to 1.

Then, the derived TPI data were overlaid
with slope data, which were classified into two
classes (less than or equal to 5 degrees and greater
than 5 degrees), for landform classification. In this
study, the criteria sets for landform classification
were modified from Weiss (2001) as shown in
Table 1.

Table 1 Landform category and criteria (modified from Weiss, 2001).

No Landform category Criteria Description
1 Canyons, Deeply incised Small scale TPI: TPI <-1 SD Avreas are lowest in the landscape, having
streams Large scale TPI: TP1 <-1 SD negative plan and/or profile curvature
2 Midslope drainages, Shallow Small scale TPI: TP1 <-1 SD Avreas are low in mid slope, channel in mid slope
valleys Large scale TPI: -1SD <TPI<1SD
3 Upland drainages, Small scale TPI: TPI <-1 SD Avreas are low in upper slope channel in
Headwaters Large scale TPI: TP1 > 1 SD upper slope
4 U-shaped valleys Small scale TPI: -1 SD < TPI<1SD  Areas in lower slope, footslope adjacent
Large scale TPI: TPI1 <-1SD below an open slope and adjacent above a flat or
streams
5 Plains Small scale TPI: -1 SD < TPI<1SD  Areas are flat having a slope < 5°
Large scale TPI: -1 SD < TPI <1 SD
Slope < 5°
6  Open slopes Small scale TPI: -1 SD < TPI<1SD  Areas are rectilinear transition in mid slope,
Large scale TPI: -1SD < TPI<1SD having a slope > 5°
Slope > 5°
7 Upper slopes, Mesas Small scale TPI: -1 SD < TPI<1SD  Areas are having high slope, shoulder adjacent
Large scale TPI: TP1 > 1 SD below a top
8  Local ridges/Hills in valleys ~ Small scale TPI: TP1 > 1 SD Avreas are high in lower slope, ridge in lower
Large scale TPI: TPI <-1SD slope
9  Midslope ridges, Small Small scale TPI: TPI > 1 SD Avreas are high in mid slope, ridge in mid slope
hills in plains Large scale TPI: -1 SD < TPl <1 SD
10  Mountain tops, High ridges Small scale TPI: TPI > 1 SD Areas are highest in the landscape, having

Large scale TPI: TP1 > 1 SD positive plan and/or profile curvature

TPI = Topographic position index, SD = Standard deviation.
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Soil sampling unit identification and soil sample
data collection and data analysis

The derived landform category was
firstly overlaid with geological formation (Triassic
granite and Precambrian gneiss) for soil sampling
unit stratification. Then, the number of soil samples
was calculated at the detailed reconnaissance
soil survey level (1:40,000-1:100,000) with a
soil sample intensity of one sample per 2 km?
(Kheoruenromne, 2005). Finally, a stratified
random sampling scheme was applied to allocate
soil sample sites using the ERDAS Imagine
software package Version 8.7 (Leica Geosystems,
2004) as shown in Table 2. At each soil sampling

site, soil samples were taken from the topsoil
(0-25 cm) and subsoil (between 25-50 cm) with
a soil auger. These samples were then analyzed
for physical properties (soil texture) and chemical
soil properties of pH, organic matter (OM),
total nitrogen (N), available phosphorus (P),
exchangeable potassium (K), cation exchange
capacity (CEC) and base saturation (BS) in the soil
laboratory. In addition, the accuracy of landform
classification was also assessed based on ground
stratified random points by field observation using
overall accuracy and the Kappa hat coefficient of
agreement.

Table 2 Soil sampling unit stratification between geological formation and landform for sample site

allocation and number of soil sample sites.

. Number of
Geological Area .
formation Landform (km?) Percentage soil éample

sites

Gr: Granite 1 Canyons, Deeply incised streams 7.78 6.68 4
Gr: Granite 2 Midslope drainages, Shallow valleys 7.53 6.46 3
Gr: Granite 3 Upland drainages, Headwaters 0.11 0.09 1
Gr: Granite 4 U-Shaped valleys 5.65 4.85 3
Gr: Granite 5 Plains 1.18 1.01 1
Gr: Granite 6 Open slopes 32.82 28.14 9
Gr: Granite 7 Upper slopes 6.40 5.49 3
Gr: Granite 8 Local ridges, Hills in valleys 0.01 0.01 1
Gr: Granite 9 Midslope ridges, Small hills in plains 5.13 4.40 2
Gr: Granite 10 Mountain tops 11.71 10.04 5
PE: Gneiss 1 Canyons, Deeply incised streams 3.79 3.25 2
PE: Gneiss 2 Midslope drainages, Shallow valleys 3.07 2.64 2
PE: Gneiss 3 Upland drainages, Headwaters 0.02 0.01 -
PE: Gneiss 4 U-Shaped valleys 2.53 2.17 1
PE: Gneiss 5 Plains 3.47 2.98 1
PE: Gneiss 6 Open slopes 18.35 15.74 5
PE: Gneiss 7 Upper slopes 1.09 0.93 1
PE: Gneiss 8 Local ridges, Hills in valleys 0.00 0.00 -
PE: Gneiss 9 Midslope ridges, Small hills in plains 2.87 2.46 2
PE: Gneiss 10 Mountain tops 31 2.67 2

Total 116.61 100.00 48
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Soil forming factor generation

Under this component, attributes of
soil forming factors excluding time were firstly
reviewed from research work (Moore et al., 1993;
Gessler et al., 1995; Ryan et al., 2000; Gobin
et al., 2001; Hengl et al., 2002; Putthapibun,
2002; McBratney et al., 2003; Ballabio, 2009;
Castrignano et al., 2011; United States Geological
Service, 2012) and then they were selected
for soil forming factor generation in the study
(Table 3). The extracted value of the soil forming
factor attribute in the slope complex area was directly
applied in PLSR as summarized in Table 4.

Soil-landscape model development and its
application

PLSR was firstly used to identify the
relationship between in situ soil properties
(dependent variables) and soil forming factors
(independent variables) in the form of a multiple
linear regression equation. Basically, PLSR is a
technique that combines features from generalizes
principal component analysis (PCA) and multiple
linear regressions. This prediction is achieved by
extracting from the predictors a set of orthogonal
factors called latent variables (from PCA) which
have the best predictive power and it is able

Table 3 Attribute of soil forming factors and method for data generation.

Soil forming factor Description Attribute Method
Organism Organisms relate to the effect of vegetation NDVI NDVI = TM Band4 - TM Band3

and human activity. TM Band4 + TM Band3
Relief Relief affects run-off and erosion. Herein Elevation (m) Extract from DEM with cell size 25x25m

primary and secondary terrain attributes
which were extracted from DEM with cell
sizeof 25 x 25 m

Parent material Chemical composition of parent materials
has an effect on weathering process and it
can affect to soil properties

Climate Rainfall affects both vegetative production

and soil horizon development. Its interacting

with parent material also affects to soil physical

and chemical properties

Extract from DEM with cell size 25x25m
Extract from DEM with cell size 25x25m
Extract from DEM with cell size 25x25m
Extract from DEM with cell size 25%25m

Slope (°)
Aspect (°)

Plan curvature
Profile curvature

Curvature Extract from DEM with cell size 25x25m
TWI TWI=In [ Upslope contribute areas)
tanslope

Al/Si ratio Ratio between alumina (Al,O3) and silica
(SiO,) of geological formation as suggestion
by Putthapiban (2002) and United States
Geological Service (2012)

Mean annual Interpolate from mean annual rainfall of

rainfall (mm) from 2000 to 2009 by IDW

NDVI = Normalized difference vegetation index, TWI = Topographic wetness index, IDW = Inversed distance weighting.

Table 4 Quantitative attributes of soil forming factors.

Soil forming factor Attribute Minimum value Maximum value Note
Organism NDVI -0.48 0.71 Landsat data: 17 Jan 2009
Relief Elevation (m) 339.26 1,680.51

Slope (°) 0.01 47.29

Aspect (°) 0.0008 360.00

Plan curvature -2.10 2.58

Profile curvature -3.22 294

Curvature -2.88 5.18

TWI 3.18 20.37
Parent material Al/Si ratio 0.19 0.22
Climate Mean annual rainfall (mm) 1,147.63 1,530.70

NDVI = Normalized difference vegetation index, TWI = Topographic wetness index



364 Kasetsart J. (Nat. Sci.) 47(3)

to avoid the multicollinearity problem among
independent variables (Abdi, 2010). The derived
multiple linear regression equations were then
used to predict 10 soil properties using the Map
Algebra module of the software package ArcGIS
Version 9.0 (ESRI, 2004). The derived physical
and chemical soil properties from PLSR were
further used to compare actual soil properties
from the dataset for accuracy assessment using the
root mean square error (RMSE) and normalized
root mean square error (NRMSE) as shown in
Equations 1 and 2, respectively:

1 n
RMSE = \/HZ[Predicted value - Observed value]’ (1)
=

NRMSE = —— RMSE _ 2
Maximum observed value — Minimum observed value

n is number of observations.

In addition, some derived predictive
soil properties (soil texture classification and soil
fertility assessment) were selected to demonstrate

where

the application. The predictive values of sand, silt
and clay of topsoil and subsoil were used for soil
texture classification based on the criteria of the
United States Department of Agriculture (USDA)
soil texture class (Soil Survey Division Staff,
1993) under the Expert System of ERDAS Imagine
(Table 5). The selected predictive chemical soil
properties (OM, P, K, CEC and BS) of the topsoil
and subsoil were used to assess the soil fertility
pattern based on the criteria of Land Development
Department (1980) according to USDA Soil Survey
Laboratory Method (United States Department of
Agriculture, 2004). In practice, each chemical
soil property was first assigned a standard score
according to the soil fertility level: 1 for low, 2 for
moderate and 3 for high (Table 6). Then, the total
score from each soil property was simply added
and the total score was reclassified into three soil
fertility levels: low (total score: 5-7), moderate
(total score: 8-12) and high (total score: 13-15).

Table 5 Rules and conditions for soil texture classification under the expert system based on Soil

Survey Division Staff (1993).

Soil texture class Rule and conditions

Sand
Loamy sand

%Sand > 85 and %Silt + (1.5 x %Clay) < 15
%Sand >70 and %Sand < 91 and %Silt + (1.5 x %Clay) > 15 and %Silt

+ (2 x %Clay) <30

Sandy loam %Sand > 52 and %Silt + (2 x %Clay) > 30 and %Clay > 7 and %Clay
<20 OR %Sand > 43 and %Silt < 50 and %Silt + (2 x %Clay) > 30 and
%Clay <7

Loam %Sand < 52 and %Silt > 28 and %Silt < 50 and %Clay > 7 and %Clay <27

Silt loam %Silt > 50 and %Clay > 12 and %Clay <27 OR %Silt > 50 and %Silt < 80
and %Clay < 12

Silt %Silt > 80 and %Clay < 12

Sandy clay loam %Sand > 45 and %Silt < 28 and %Clay > 20 and %Clay < 35

Clay loam %Sand > 20 and %Sand < 45 and %Clay > 27 and %Clay < 40

Silty clay loam %Sand < 20 and %Clay > 27 and %Clay < 40

Sandy clay %Sand > 45 and %Clay > 35

Silty clay %Silt >40 and %Clay > 40

Clay

%Sand < 45 and %Silt <40 and %Clay > 40
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Table 6 Chemical soil properties and standard score for soil fertility assessment based on Land

Development Department (1980).

Fertility Standard OM K CEC BS
level Score (%) (mg kg1 (mg kg1) (cmol kg™ (%)
Low 1 <15 <10 <60 <10 <35
Moderate 2 1.5-35 10-25 60-90 10-20 35-75
High 3 >35 > 25 >90 >20 >75

OM = Organic matter, P = Available P, K = Exchangeable K, CEC = Cation exchange capacity, BS = Base saturation.

RESULTS AND DISCUSSION

Landform classification

The most dominant landform was open
slopes covering an area of 51.17 km?2 or 43.88% of
the trial watershed. The second dominant landform
was mountain tops (14.82 km? or 12.71%), while
upland drainage or headwaters and local ridges or
hills in valleys covered an area of less than 1%. The
overall accuracy of landform classification and the
Kappa hat coefficient of agreement were 92.00%
and 0.91, respectively. According to Landis and
Koch (1977), a Kappa hat coefficient of agreement
value of more than 0.80 represents strong
agreement or accuracy between the classification
map and the ground reference information. The
distribution of the landform classification and an
example of the accuracy assessment using field
observation are displayed in Figure 3.

The landform classification based on
TPI values was a useful method for soil landscape
analysis, because the criteria parameters used were
simple and thus, this method was able to identify
major landform elements in the mountainous
areas such as mountain tops, open slopes, plains
and canyons which correlated to soil erosion, the
deposition process and soil horizon development.
However, the accuracy of this method depends on
the DEM resolution and an optimal kernel size
specification.

Soil sampling unit identification and sample
sites allocation
The combination of the derived landform

categories and geological formation was used to
stratify the soil sampling units and to allocate soil
sample sites using a stratified random sampling
scheme. In this study, 48 soil sample sites were
selected and data was collected from them analysis.
This dataset was divided into two datasets: 28 sites
for modeling and 20 sites for assessment of the
model accuracy in soil property prediction.

Soil sample data analysis

The major soil properties from the 48
soil sample sites of topsoil and subsoil were
qualitatively and quantitatively described based
on soil laboratory reports.

Of the physical soil properties, the soil
texture of the topsoil was dominated by sandy
clay loam (30 samples) and the remainder was
represented by clay loam (17 samples) and loam
(1 sample), while the subsoil was dominated by
clay (32 samples) with the remainder represented
by clay loam (8 samples), sandy clay (4 samples)
and sandy clay loam (4 samples). For the
chemical soil properties, the pH of the topsoil
and subsoil varied from extremely acid to neutral
(pH 4.33-6.74), the organic matter content of
the topsoil was moderate to high (1.79-10.05%)
and of the subsoil was low to high (0.53-3.98%),
while the total nitrogen of the topsoil was very
low to moderate (0.09-0.51%) and of the subsoil
was very low to low (0.03-0.18%). The available
phosphorus concentration of the topsoil was low
to moderate (0.81-11.15 mg.kg) while in the
subsoil, it was low (0.41-2.57 mg.kg1) and the
exchangeable potassium concentration of the
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topsoil was moderate to very high (81.95-262.27
mg.kg1) whereas in the subsoil, it was low to high
(27.72-148.34 mg.kg1). The cation exchange
capacity of the topsoil and subsoil were both
moderate to high (11.15-35.44 cmol.kg1) and the
base saturation of the topsoil was low to moderate
(15.15-43.59%) while in the subsoil, it was low
(11.56-31.27%).

These results showed that most of the
topsoil was more fertile than the subsoil, as most
of the topsoil property values were higher than
in subsoil except for the clay content. This latter
result might have been due to the rather high OM
content in the topsoil.

Soil-landscape model for soil property prediction
using PLSR
The relationship between in situ soil
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properties (dependent variables) from the 28
sample sites and soil forming factors (independent
variables) for each soil property of the topsoil and
subsoil were analyzed using PLSR. The intercepts
and coefficients of the predictor variables for
each soil property from PLSR are summarized by
columns in Table 7. For the topsoil properties, the
best predictive model was sand (R? = 0.92) while
the worst predictive model was silt (R2 = 0.52).
The best predictive model for the subsoil properties
was CEC (R2 = 0.85) while the worst predictive
model was with nitrogen and phosphorus (R2
= 0.59). From these results, the variation of the
predictive model can be inferred for explaining
the soil properties using soil forming factors. In
addition, Table 8 summarizes the values of variable
importance in the projection (VIP) in each soil
property prediction model using PLSR. These

Table 7 Summary of regression coefficients for the prediction of topsoil and subsoil properties with
R2 values.
Multiple linear regression of soil property prediction

Topsoil Sand Silt Clay pH oM N P K CEC BS
Intercept 16.78 40.86 30.43 6.56 -5.13 -0.21 1.30 113.92 3.47 61.17
Rain 0.02 -0.01 -1.0x10® -9.0x10% 7.8x102 3.2x10% 7.5x10° -0.01 0.01 -0.03
NDVI -8.57 1.08 -3.79 -0.88 6.15 0.24 5.94 -46.59 8.77 -20.56
Elevation 2.5x10% -2.0x103 8.2x10°5 -1.6x104 1.4x103 5.3x10° 1.8x10%* 4.8x10° 2.4x103 -3.7x103
Slope 0.46 -0.09 -0.12 -0.03 0.02 4.67x10* -3.5x103 -1.73 0.01 -0.23
Aspect 2.5x10° 8.3x10% 4.0x10° 5.1x10% -8.6x10% 3.2x10°5 -5.8x10% 0.09 2.0x103 0.01
Plan 1.77 -1.32 -2.47 -0.06 -0.67 -0.054 -1.39 -21.25 -2.25 -2.64
Profile -0.64 1.27 1.52 0.10 1.12 0.067 1.46 18.71 2.39 1.12
Curvature 0.73 -0.77 -1.19 -0.05 -0.53 -0.036 -0.85 -11.87 -1.37 -1.13
TWI -1.43 0.59 0.41 0.11 0.14 1.1x102 0.32 7.68 0.32 0.81
Al/Si ratio 29.89 13.72 1.87 1.76 -17.09 -0.90 -8.39 113.50 -34.38 60.27
R? 0.92 0.52 0.67 0.82 0.68 0.80 0.74 0.86 0.77 0.79
Subsoil Sand Silt Clay pH oM N P K CEC BS
Intercept 30.12 19.74 43.99 4.85 -2.74 -0.40 0.85 42.29 3.50 41.77
Rain 0.01 -7.8x10% -3.2x103 1.3x10% 3.1x103 9.7x10* 3.7x10° 0.01 0.01 -0.02
NDVI 7.76 3.72 -13.56 0.26 2.59 0.40 0.53 12.20 5.03 -8.57
Elevation -8.4x10% 8.0x10° 2.2x10% 5.7x10° 5.2x10% 1.7x10* 1.4x10° 0.01 2.6x10% -2.5x10°3
Slope 0.51 -0.01 -0.51 -0.01 8.8x10° -1.4x10°5 -2.0x103 -0.40 -3.5x103 -0.17
Aspect -3.6x10°3  1.8x104 8.0x10° 3.3x10% -1.7x10% 8.5x10° 3.1x104 0.02 3.7x103 1.8x103
Plan 3.50 -2.13 -1.58 -0.26 -0.31 -0.12 -0.26 -16.11 -2.26 -1.54
Profile -4.71 2.51 1.84 0.28 0.54 0.16 0.28 17.52 2.67 1.09
Curvature 2.42 -1.37 -1.01 -0.16 -0.25 -0.08 -0.16 -9.96 -1.46 -0.78
TWI -1.59 0.42 1.03 0.05 0.07 0.02 0.06 3.63 0.32 0.56
Al/Si ratio -40.36 -10.28 42.83 -1.68 -6.58 -1.83 -2.12 -70.16 -36.19 21.89
R2 0.82 0.78 0.77 0.66 0.66 0.59 0.59 0.78 0.85 0.60

OM = Organic matter, P = Available P, K = Exchangeable K, CEC = Cation exchange capacity, BS = Base saturation.
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values represent the significance of the predictor
variables for soil properties prediction. Chong and
Jun (2005) stated that any independent variable
with a VIP value greater than 1 was considered
as a highly important predictor. For example,
TWI, which had a negative relationship with the
percentage of sand, had the highest VIP value
(Tables 7 and 8) and it dictated the distribution of
the low percentage of sand (Figure 4). In contrast,
the Al/Si ratio, which had a positive relationship
with the percentage of sand, demonstrated the
lowest VIP value (Tables 7 and 8) and it did not
control the distribution of the low percentage of
sand (Figure 4).

As a result, the relief factors of TWI,
curvature, plan curvature and profile curvature
are important for soil property prediction in
mountainous areas.

Kasetsart J. (Nat. Sci.) 47(3)

Accuracy assessment of soil property prediction
model

The predictive physical and chemical soil
properties from PLSR were used to compare the
in situ soil properties from the 20 sites to assess
the accuracy of the soil property prediction model
using RMSE and NRMSE (Table 9). In principle,
RMSE provides the absolute average error
between an estimated value and an observed value
with a measured unit. This value is not appropriate
for accuracy assessment comparison when the
measured units are different. As NRMSE is a
normalized value of RMSE and thus, has no unit.
This value is appropriate for accuracy assessment
comparison. Based on NRMSE values, the best
predictive topsoil property model was clay while
the best predictive subsoil property model was
potassium and CEC. The worst predictive topsoil
and subsoil property model was phosphorus.

Table 8 Variable importance in the projection (VIP) values of each predictor variable for soil property

prediction.
Variable importance in the projection (VIP)
Soil properties ~ Rainfall NDVI Elevation Slope Aspect Plan Profile Curvature TWI  Al/Siratio
curvature curvature
Sand  Topsoil 0.66 0.22 0.40 1.57 0.52 1.21 0.85 1.13 1.77 0.20
Subsoil 0.17 0.18 0.14 1.35 0.59 1.27 1.23 1.36 1.66 0.03
Silt  Topsoil 1.27 0.15 0.87 1.27 0.16 0.78 0.73 0.82 2.01 0.36
Subsoil 0.08 0.55 0.04 0.17 0.04 1.39 1.59 1.62 1.58 0.29
Clay Topsoil 0.09 0.50 0.04 1.67 0.76 1.45 0.87 1.27 1.39 0.05
Subsoil 0.20 0.55 0.18 1.84 0.82 1.08 0.91 1.09 1.54 0.20
pH  Topsoil 0.75 0.78 0.55 1.54 0.81 1.06 0.69 0.96 1.64 0.54
Subsoil 0.10 0.30 0.22 0.64 0.57 1.39 1.44 1.54 1.61 0.39
OM  Topsoil 1.27 1.52 1.10 0.55 0.30 0.74 1.19 1.04 0.86 0.82
Subsoil 1.15 1.49 0.96 0.52 0.14 0.80 1.33 1.16 0.98 0.74
N Topsoil 0.97 1.12 0.80 0.22 0.22 1.12 1.35 1.34 1.25 0.81
Subsoil 1.25 0.78 1.10 0.00 0.24 1.02 1.38 1.30 1.20 0.70
P Topsoil 0.01 1.24 0.12 0.08 0.17 1.28 131 1.41 1.72 0.34
Subsoil 0.03 0.61 0.05 0.23 0.51 1.30 1.38 1.46 1.83 0.47
K Topsoil 0.05 0.21 0.20 1.09 0.98 1.34 117 1.37 1.65 0.06
Subsoil 0.12 0.23 0.40 0.77 0.57 1.32 1.39 1.47 1.72 0.25
CEC Topsoil 1.10 1.08 0.95 0.18 0.36 1.22 1.26 1.35 1.02 0.82
Subsoil 0.87 0.62 1.03 0.04 0.66 1.23 141 1.44 1.01 0.87
BS  Topsoil 1.13 1.32 0.76 1.52 0.87 0.75 0.31 0.58 1.33 0.75
Subsoil 1.15 0.91 0.86 1.81 0.27 0.73 0.50 0.67 1.53 0.45

NDVI = Normalized difference vegetation index, OM = Organic matter, P = Available P, K = Exchangeable K, CEC = Cation
exchange capacity, BS = Base saturation, TWI = Topographic wetness index.
The three best significant factors for each soil property prediction are shown as bold numbers.



Kasetsart J. (Nat. Sci.) 47(3) 369

E 480000 485000 490000 495000
1 1 1 1

[ Non slope complex area

2090000
T
2090000

High : 20,37

2085000
2085000

Low :3.18

T T T T
AB0000 485000 490000 495000

c
480000 485000 490000 495000
L 1
v

[ Non slope complex area

T
2090000

Topsoil sand (%)
High: 72.45

2085000

Low : 16.27

T T T T
480000 485000 490000 495000

E 480000 485000 420000 435000
L L L L

] Non slope complex area

2090000
L
T
2090000

2085000
1
2085000

T T
480000 485000 490000 495000

@ 480000 485000 490000 495000
1 1 1 L

] Non slope complex area

T
2090000

Subsoil sand (%)
High : 64.06 -

2085000
2085000

Low : -4.38

T T T T
480000 485000 490000 495000

Figure 4 Distribution in study area of: (a) topographic wetness index, (b) Al/Si ratio, (c) predictive
sand of topsoil, and (d) predictive sand of subsoil.

Table 9 Summary of root mean square error (RMSE) and normalized root mean square error (NRMSE)
values for topsoil and subsoil properties prediction.

Topsoil Sand Silt Clay pH oM N P K CEC BS
RMSE 353 179 1.95 0.26 1.80 0.08 2.01 1958 313 482
NRMSE 022 023 0.18 0.20 0.24 0.23 0.25 0.19 022 021
Subsoil Sand  Silt Clay pH oM N P K CEC BS

RMSE 543 261 5.08 0.37 0.84 0.04 0.60 2227 257 278
NRMSE 022 023 0.25 0.26 0.27 0.24 0.36 0.18 0.18 0.20

OM = Organic matter, P = Available P, K = Exchangeable K, CEC = Cation exchange Capacity, BS = Base saturation.

Classification of soil texture using the expert
system

There were four soil texture classes of
topsoil: sandy clay loam (58.30%), clay loam
(41.65%), clay (0.04%), and silty clay (0.02%),
while there were four soil texture classes of
subsoil: clay (66.31%), clay loam (22.21%),
sandy clay loam (7.72%) and sandy clay (3.76%)
as shown in Figure 5. In addition, the accuracy
for topsoil and subsoil texture classification was

assessed based on the 48 in situ soil samples. It
was found that the overall accuracy and Kappa
hat coefficient values for the topsoil and subsoil
texture classification were 81.25% and 0.61 and
73.92% and 0.47, respectively. As a result, the
dominant soil texture of the topsoil was sandy
clay loam and it was mostly distributed in the
mountainous area, while the clay material was
mostly deposited in the subsoil as a significant
soil texture.
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Figure 6 Distribution of soil fertility pattern in the study area: (a) topsoil and (b) subsoil.

Soil fertility assessment

The pattern of soil fertility distribution is
presented in Figure 6. The fertility of the topsoil
was mostly moderate (99.89%) because the base
saturation and available phosphorus of the topsoil
varied from low to moderate. At the same time,
fertility of subsoil was low and moderate because
the base saturation of the subsoil varied from
low to moderate and available phosphorus was
low covering an area of 41.73 (low) and 74.88
km2 (moderate) or about 35.78 and 64.22%,
respectively. Based on these findings, the topsoil
and subsoil fertility can be improved by adding P
fertilizers.

CONCLUSION

Under spatial modeling, PLSR was used
to quantify the relationship between bio-physical
soil-forming factors consisting of: rainfall, NDVI,
elevation, slope, aspect, plan curvature, profile
curvature, curvature, TWI and the Al/Si ratio
as predictor variables and the soil properties of
sand, silt, clay, pH, OM, N, P, K, CEC, and BS
of the topsoil and subsoil as dependent variables.
The results showed that PLSR can be used to
predict the physical and chemical soil properties
in mountainous areas. In fact, the R2 of the
predictive soil property model for topsoil and
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subsoil varied between 52 to 92% and 59 to 85%,
respectively, whilst the accuracy assessment for
the topsoil and subsoil property prediction models
by NRMSE varied between 0.18 and 0.25 and 0.18
and 0.36, respectively. In addition, the selected
predictive soil properties were used for soil texture
classification and soil fertility assessment.

In conclusion, it is suggested that spatial
modeling using PLSR can be efficiently used as
a tool for soil property prediction in mountainous
areas where soil characteristics and properties are
not available.
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