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ABSTRACT

	 This paper proposes a novel decision system for segregation of five normal gait phases (stance, 
heel-off, swing 1, swing 2 and heel-strike) by using a real-time wireless smart shoe. The classification 
method employed four force sensitive resistors to measure the force underneath a foot, together with 
an inertial measurement unit that is attached at the back of the shoe to determine the magnitude of 
acceleration and the inclination angle of the foot with respect to the ground. Data acquisition was through 
the XBee wireless network protocol to allow serial processing by a computer. The state transition theorem 
and threshold-based classification were used to distinguish the gait phases according to received data, 
where the thresholds were optimized by heuristic algorithms, such as the genetic algorithm and particle 
swarm optimization. Ground truthing was determined by marker-tracking using image processing. Video 
recording with real-time data and embedded interfacing was used to verify the output of the proposed 
state transition algorithm under indoor testing on a stationary treadmill. Experimentation and verification 
were conducted on a subject with a normal gait cycle. The smart shoe was able to ascertain the gait 
phase with 96.07% accuracy after optimized threshold values had been determined.
Keywords:	 gait analysis, image processing, state transition theory, genetic algorithm, particle swarm 

optimization

INTRODUCTION

	 Ambulation is a fundamental component 
of human locomotion that enables a productive 
life. It is the recurring sequence of limb motion 
that concurrently moves the body forward and 
preserves the stability of the movement. In general 
human locomotion, one limb provides support 
while another limb moves to the next support 
site. The role of support is sequentially switched 
between the two limbs. When the limb is in the 
support phase, the foot is in contact with the 
ground to receive the body weight (Perry, 1992). 

The gait cycle of a normal person is efficient 
in terms of power consumption and movement 
speed, allowing the subject to walk with ease for 
an extended amount of time (Kong and Tomizuka, 
2008).
	 Gait rehabilitation therapy is therefore 
essential for those people who have an abnormal 
gait. For example, Parkinson’s disease causes the 
degradation of body movement and other motor 
abilities (Manap et al., 2011). Elderly people suffer 
from abnormal gaits as a result of aging, leading 
to reduced mobility that can markedly impair their 
quality of life and increase the chance of serious 
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injuries or, in some extreme cases, mortality 
caused by falling (Jahn et al., 2010). Transfemoral 
amputees also have trouble achieving a normal gait 
and although smart prosthetic devices have been 
developed to help achieve a natural walking cycle, 
the cost is prohibitively high (Torki et al., 2008).
Currently, gait analysis utilizes various methods 
to assist people who have problems walking and 
attaining a normal gait (Marzani et al., 1997; Junho 
et al., 2008). In addition, the analysis can be used 
in sports to track the movement of athletes and 
increase their performance. Most importantly, gait 
analyzers can be used for the early detection of 
abnormalities in gait patterns, which could then be 
corrected by consulting with a physical therapist. 
Motion capture technology such as VICON (Vicon 
Inc., 2012) is an example of a gait rehabilitation 
device. It uses an infrared video camera with 
tracking markers to capture and reconstruct three 
dimensional body movements. Gait information 
can also be acquired through biomedical sensor 
technology, such as electromyography (EMG). 
EMG detects the electrical signals generated by 
skeleton muscle activity, in this case in the lower 
limbs, to verify the abnormality of the gait (Nissan 
et al., 2009). An example of an EMG-based gait 
rehabilitation device is the Locomat, which is 
used in locomotion therapy and was developed 
by Hocoma (Hocoma Inc., 2012).
	 This paper proposes a gait classification 
system using a wireless smart shoe, based on the 
force pattern underneath the foot measured by 
four force sensitive resistors (FSRs), and data 
from an inertial measurement unit (IMU). The 
IMU provides the magnitude of acceleration and 
the inclination angle of the foot. Gait phases are 
classified by a threshold-based state transition 
algorithm that is optimized using heuristic 
algorithms for increased accuracy, where ground 
truthing is determined by marker-tracking using 
image processing from recorded video. The data 
acquisition process is done wirelessly using a radio 
frequency module to allow for free movement 
while reducing the chances of wire entanglement 

or disconnection. The advantage of the proposed 
concept over the image processing approach is 
that there is no need for an additional machine 
to operate, there is increased mobility due to the 
small size of the device and the cost is cheaper 
when compared with a motion tracking system 
such as Vicon (Vicon Inc., 2013). In addition, the 
increased level of mobility allows the smart shoe 
to be used in other pieces of equipment, such as a 
prosthetic knee.

MATERIALS AND MEDTHODS

Definition of gait cycle
	 A normal gait is defined as the human 
walking pattern which results in minimum energy 
consumption and smooth motion (Kotaro and 
Richard, 2006). Gait cycle refers to a sequence 
of motion that repeats the same gait phases; 
for example, from the stance phase to the next 
stance phase of the same foot. It has been broadly 
divided into two phases; stance phase and swing 
phase (DeLisa, 1998). These phases can be 
further subdivided for more detailed gait analysis. 
Perry (1992) suggested that the gait cycle can be 
subdivided into the eight phases of initial contact, 
loading response, mid stance, terminal stance, 
pre swing, initial swing, mid swing and terminal 
swing. However, some consecutive phases are 
very similar. Therefore, this paper used a gait 
cycle consisting of five phases. A normal cycle 
starts from the stance phase, which is followed by 
heel-off, swing 1, swing 2 and heel-strike. After 
heel-strike, the cycle returns to the stance phase 
and begins again, as shown in Figure 1. 
	 The following definitions of each gait 
phase are provided with reference to the shaded 
leg in Figure 1.
	 Stance phase
	 The foot sole of the shaded leg is mostly 
in contact with the ground and receives the body 
weight. This phase occurs after the heel strikes the 
ground or at the beginning of the gait cycle.
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	 Heel-off phase
	 After the stance phase, the body begins to 
move forward. The heel of the shaded leg prepares 
to take off while the non-shaded leg starts touching 
the ground with its heel. The weight of the body 
is evenly distributed between the two legs. 
	 Swing 1 phase
	 The full body weight passes to the non-
shaded leg, whilst the shaded leg swings freely 
forward along the sagittal plane. The shaded leg 
is not in contact with the ground in this phase and 
the ankle remains behind the coronal plane. The 
sagittal and coronal planes are shown in Figure 2.
	 Swing 2 phase
	 The ankle of the shaded leg passes the 
coronal plane and continues to swing forward, 
causing the leg to become fully extended and ready 
for heel-strike.
	 Heel-strike phase
	 The end of the swing 2 phase results in 
the heel of the shaded leg touching the ground 
while the non-shaded leg prepares to move off the 
ground. This returns the body position to the stance 
phase and is the end of a normal gait cycle.

Construction of wireless smart shoe
	 While walking, force is exerted on the 
part of the foot that touches the ground. The 

smart shoe is constructed to measure this force 
underneath the foot by using force sensitive 
resistors (FSRs). The force is distributed across 
the entire sole of the foot, but there are certain 
locations where maximum force is applied to the 
bone structure. This corresponds to the location 
of FSR placement. However, during the swing 
phase, the force exerted on the foot sole provides 
unreliable data because the foot is not in contact 
with the ground but some forces remain as a 

Figure 1	 Normal gait cycle.

Figure 2	 Illustration of body planes.
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result of tension between the foot and the shoe. 
An inertial measurement unit (IMU), which is 
composed of a gyroscope, an accelerometer and a 
magnetometer, is therefore installed at the back of 
the shoe in a manner that minimizes disturbance 
while walking. The accelerometer provides the 
acceleration of the foot, and the foot inclination 
angles can also be calculated from IMU data. 
As the foot swings along the sagittal plane, only 
one particular angle is important. The IMU is 
positioned inside the box such that the roll angle 
corresponds to the sagittal plane. 
	 An Arduino microcontroller (Arduino 
Uno R3; SmartProjects; Strambino, Italy) was 
used to acquire the raw data from the FSRs and 
IMU, which consisted of forces, the magnitude 

of acceleration and the foot inclination angle. 
The data were sent out through an XBee wireless 
communication module (XBee Pro Series 2; Digi 
International; Minnetonka, MN, USA) directly 
to a computer. Table 1 shows the complete list 
of components in a smart shoe. Figure 3 shows a 
schematic of the finalized sensor placements with 
an XBee radio frequency module installed. The 
prototype wireless smart shoe is shown in Figure 
4. The normalized data measured by sensors during 
one gait cycle is represented by the graph in Figure 
5. The foot inclination angle (Foot_Ang) is set to 
be negative if the slope of the foot is negative and 
it is positive when the slope is positive with respect 
to the ground.

Table 1	 List of components.

              Module                 Component
Microcontroller Arduino Uno R3
Force sensor Force sensitive resistor–square

Force sensitive resistor–0.5"
Inertial measurement unit Pololu MinIMU-9 v2
Communication XBee Pro Series 2

Figure 3	 Sensor placement and XBee wireless 
module installation. (FSR = Force 
sensitive resistor; IMU = Inertial 
measurement unit; F1–F4 = Locations 
of FSRs.)

Figure 4	 Prototype wireless smart shoe unit 
showing the inertial measurement unit 
strapped to the back of the shoe, with 
the XBee wireless communication 
module and Arduino contained in the 
lighter colored box.
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Gait information using marker-tracking
	 Before the wireless smart shoe can be 
used to classify gait phases, ground truthing must 
be determined from experimental data to verify 
the accuracy of the sensor outputs. The traditional 
method to determine gait phases is by manual 
observation and classification, which can lead to 
human error, while a more accurate alternative 
is the use of optical motion capture technology 
(OMC) for gait analysis (Guerra-filho, 2005). 
This is accomplished by requiring the test subject 
to wear a black body suit with markers placed on 
the body joints, as shown in Figure 6. The test 
subject is instructed to walk on a treadmill and 
is recorded by a high-frame rate camera. Sensor 
data is simultaneously collected via a wireless 
data acquisition system. This is followed by video 
processing which converts each frame of the video 
from an RGB channel to an HSI color model 
in order to distinguish the markers from other 
components. Then, the algorithm will determine 
the gait phase information by tracking the markers, 
as shown in Figure 6.

Gait phase classification using state transition 
theory
	 The extraction of gait phases for one 
ambulation cycle was completed by classification 
using the FSR, magnitude of acceleration and 
foot inclination angle data. A decision system 
was developed to classify the gait phases using 
state transition theory, based on the conditions of 
transition that were subdivided into sub-events 
and transition events. Thresholding was used to 
evaluate both sub-events and transition events.
	 The state transition algorithm was 
constructed by assigning each gait phase to a 
distinct state. Transition events were determined 
by signals received from the XBee radio frequency 
module, which included FSR, acceleration, and 
foot inclination angle data. FSRs provide the 
forces F1, F2, F3, and F4. The magnitude of 
acceleration was obtained from an accelerometer. 
The foot inclination angle was obtained from the 
IMU. 
	 Tables 2 and 3 show sub-event conditions 
and transition events. They were constructed based 

Figure 5	 Normalized data of one gait cycle obtained wirelessly via the XBee wireless communication 
module. (FSR = Force sensitive resistor; Foot_Ang = Foot inclination angle; Accel = 
Acceleration.)
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Figure 6	 Gait phase information from marker-tracking.

Table 2	 Sub-event conditions.

Sub-Event Conditions

G1 θ< θth1

G2 a > ath1 AND a < ath2

G3 θ < θth2

G4 θ ≥ θth2
ath1 and ath2 are the threshold values for the magnitude of acceleration; θth1 and θth2 are the threshold values for foot inclination 
angle.

Table 3	 Transition events.

Transition Event Conditions

E1 F1 = 1 AND G1 = 1 AND G2 = 1
E2 (F1 = 0 AND (F2 = 1 OR F3 = 1) AND G1 = 1) OR 

((F4 = 1 OR F2 = 1 OR F3= 1) AND G1 = 0)
E3 F3 = 0 AND F4 = 0 AND G3 = 1
E4 F1 = 0 AND F3 = 0 AND G4 = 1
E5 F1 = 1 AND G4 = 1

F values indicate individual force sensitive resistors; G values represent events.

on an observation of the changes in sensor data 
where ath1 and ath2 are the threshold values for 
the magnitude of acceleration. θth1 and θth2 are 
the threshold values for foot inclination angle. 
Sub-event conditions were derived by looking at 
the changes in the foot angle and acceleration data 
in each gait phase. G1 is the event when the foot 

is lying flat on the ground, such that its angle is 
within θth1. G2 is the event when the acceleration 
value is within the range of ath1 and ath2. G3 is the 
event when the foot leaves the ground after the heel 
off phase, so its angle is lower than ath2. G4 is the 
event after the swing 1 phase as the foot enters the 
swing 2 phase, so the angle is higher than ath2.
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	 Transition event conditions were obtained 
by looking at the changes in FSR measurements 
and sub-event conditions together. Each FSR has 
its own threshold value to determine whether it is 
pressed (F = 1) or not pressed (F = 0). The threshold 
values of FSRs were applied separately for each 
sensor because the force exerted on the FSRs is not 
evenly distributed. E1 is a transitional condition 
to the stance phase. Force must be applied at F1 
and the foot is flat on the ground with sub-event 
G1 and G2. E2 is a transitional condition to the 
heel off phase. The heel of the foot comes off the 
ground, so F1 = 0 and F2 or F3 = 1 but the foot’s 
angle may not exceed G1. Another case is when 
F2 or F3 or F4 = 1 and the angle exceeds G1. E3 is 
the transitional condition to the swing 1 phase. F3 
and F4 should not be pressed while the foot’s angle 
undergoes sub-event G3. E4 is the transitional 
condition to the swing 2 phase. F1 and F3 should 
not be pressed while the foot’s angle undergoes 
sub-event G4. E5 is the transitional condition to 
the heel strike phase. The foot strikes the ground 
heavily on the heel, such that F1 = 1 and its angle 
remains in sub-event G4. Figure 7 illustrates state 
transition according to the gait cycle and transition 
events. 

Heuristic optimization algorithms
	 The traditional method to determine 
appropriate threshold values is to observe the 
change in sensor data from a large sample of 
experiments until acceptable results are found 
(Srivises et al., 2012b). The accuracy of this 
method is questionable and it is difficult to prove 
that the thresholds are suitable for all test subjects. 
The current study introduced and compared 
two heuristic optimization methods: the genetic 
algorithm and particle swarm optimization.
	 Threshold set
	 The threshold set is defined as the 
threshold values that are input into both heuristic 
algorithms; in the genetic algorithm, it is called a 
chromosome, while in particle swarm optimization, 
it is called a particle. The threshold set consists 
of four FSR thresholds, two magnitude of 
acceleration thresholds (ath1,ath2) and two foot 
inclination thresholds (θth1,θth1). These thresholds 
are used by the fitness function along with the 
dataset and known output phase to determine the 
score.
	 Fitness function
	 The fitness function is used to evaluate 
how close the threshold set is to the optimum 
point. It is defined as the mean square error of 

Figure 7	 State transition diagram.
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the misclassification distance between the visual 
classification output from a video sequence and the 
state transition output when the threshold values 
are applied to the dataset (Equation 1):
        Score = E(Normalized distance(k,c)2)	 (1)
where k is a vector of the known output from the 
video sequence and c is a vector of the threshold 
set’s output. The distance between the known 
output from the video and the threshold set’s output 
is calculated based on the gait cycle in Figure 1. 
The distance function is defined as the number of 
steps required to transition from one gait phase 
to another. For example, if the actual state is 
stance but the threshold set’s output is swing 1, 
the distance would be 2 because stance must pass 
through 2 states to reach swing 1. Moreover, the 
distance score is normalized by the number of 
sample points per state because each gait phase 
requires a different time duration. The notation E 
shows the mean of all squared distances. In this 
work, the same fitness function was utilized for 
both the genetic algorithm and particle swarm 
optimization.
	 Genetic algorithm
	 The genetic algorithm (GA) is a 
population-based model that uses selection and 
recombination to generate new sample points in 
a search space (Darrell, 1994). It is well known 
as a function optimizer tool (Patalia and Kulkarni, 
2010). The GA mimics the natural selection 
scheme in which the fittest population survives to 
the next generation by producing offspring and 
undergoing mutation (Mathew, 2006).

	 The GA begins with a population with 
randomized chromosome assignments. The 
fitness function is applied to each chromosome 
to determine its score. A selected number of 
chromosomes with the highest fitness score will 
survive to the next generation. All chromosomes, 
including those that have survived, will mate 
with each other and produce offspring through 
the crossover operation. A small number of the 
population will experience mutation by randomly 
changing certain parts of their chromosomes, thus 
ensuring diversity. The steps repeat continuously 
until the stopping criteria are reached. Finally, 
the GA returns the chromosome that has the 
best fitness score through all the generations. 
Figure 8 shows the general flow chart of genetic 
algorithms.
	 Population size:  The number of 
chromosomes effects both the computation time 
and population diversity. This research determined 
a suitable population size to be 200, according 
to Figure 9 where the average computation time 
and average best fitness score are plotted as the 
population size was experimentally varied from 10 
to 1,000. Population sizes of 50 to 1,000 exhibited 
no substantial difference in their average best 
fitness scores. However, the standard deviation 
indicates that there is noticeable variation in 
achieved scores for population sizes between 50 
and 100. Therefore, a population size of 200 was 
chosen as the optimal number because it offered 
a low computation time and consistently yielded 
the best fitness score.

Figure 8	 Genetic algorithm flow chart.
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Figure 10	 Stochastic universal sampling. (r is a random number, N is the population size and the step 
size of SUS is 1

N
.)

	 Selection: Each chromosome was 
evaluated by the fitness function, where lower 
scores signified less error and were considered to 
have a high fitness level. In contrast, higher scores 
indicated higher error and a lower fitness level. The 
scores were sorted into ascending order and fitness 
scaling was applied to convert the raw scores to 
a range of values that was suitable for selection. 
This research employed the rank scaling method 
as shown in Equation 2 (Mathwork Inc., 2012):

	 Scale Value
n

=
1 	 (2)

where n is the rank of the sorted score. The scale 
value was used as a probability weight in the 
selection process to create a mating table between 
two chromosomes. Stochastic universal sampling 
(SUS) according to Xu (1999) was employed as 
the selection operator. This method sampled the 

whole population with equally spaced pointers. 
Figure 10 shows how SUS operates. The outputs 
of SUS are chromosomes that have been chosen 
by the pointers.
	 Only 10% of the best fitness chromosomes 
were automatically passed to the next generation 
as elite members. The selected chromosomes from 
SUS will become the parents that are chosen to 
mate with each other at random.
	 Crossover: After selecting the mating 
pair, each parent must exchange some parts of their 
chromosomes in a process called crossover. This 
research employed a uniform crossover operation, 
where half of each parent’s chromosome were 
randomly selected and swapped to create a next 
generation of chromosomes. At this point, the 
number of children was equal to the population 
size minus the elite members.

Figure 9	 Average computation time and average minimum fitness score of the genetic algorithm. 
(Vertical bars indicate ± SD.)
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	 Mutation: 30% of the crossover children 
were randomly selected to experience mutation of 
their chromosomes. The function of mutation is 
similar to crossover, except that it will randomly 
change half of the chromosomes. The rate of 
change is inversely proportional to the generation 
number, thus ensuring that mutation will decrease 
as time passes and allow the population to 
converge on the most promising region.
	 Stopping criteria: The resulting behavior 
of the GA is that chromosomes with higher fitness 
scores are more likely to exchange information 
with each other to create new chromosomes that 
will have better fitness values than their ancestors. 
The process of the GA will stop when the stopping 
criteria are reached and the chromosome with the 
best fitness value is determined. The current study 
set the generation stall limit to 10, meaning that the 
GA will stop if no improvement in the best fitness 
score is achieved for 10 generations. Likewise, the 
process will stop once it reaches the maximum 
generation number of 100. These values were 
obtained through observation of the GA behavior 
when applied to experimental data.
	 Particle swarm optimization
	 Particle swarm optimization (PSO) is 
another tool to find the optimum threshold values 
for classifying the gait phases. It is a stochastic 
population-based global optimization algorithm 
inspired by the social behavior of fish schooling or 
bird flocking and was first introduced by Kennedy 
and Eberhart (Yang et al., 2007). Each member 
of the swarm is called a particle and flies in the 

search space with a certain velocity. The velocity 
is updated by the influence of the particle's own 
experience and that of the entire swarm.
	 PSO begins with a number of particles 
randomly distributed in the search space. A fitness 
function is used to determine each particle's fitness 
score. Consequently, each particle will reassess its 
own best position and the best position located by 
the entire swarm. The velocity update rule was 
applied by using the previous velocity along with 
information of the particle's own best position and 
the global best position. The next position of the 
particle was calculated based on this new velocity. 
The algorithm then looped back to determine 
a fitness score until the stopping criteria were 
reached. Finally, PSO returned the position of 
the particle in the swarm that had the best overall 
fitness score. Figure 11 shows the flow chart of 
PSO.
	 Size of the swarm: The number of 
particles in the swarm must be chosen as a trade-
off between the computation time and population 
diversity. This research determined a suitable 
swarm size according to Figure 12, which shows 
the average computation time and best fitness 
scores obtained by varying the population size 
from 10 to 1,000 and conducting five experiments. 
Population sizes 50 to 1,000 exhibited no 
substantial differences in the fitness score with 
acceptable standard deviation. Therefore, the 
optimum swarm size was chosen as 50 because it 
had a low computation time.

Figure 11	 Particle swarm flow chart where pbest is the previous known best position of each particle 
and gbest represents the best known position in the swarm.
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	 Velocity update rule: After all the 
particles had been evaluated by the fitness function 
(where a low score signified less error and a high 
fitness, and a higher score indicated more error 
with low fitness), each particle’s own best position 
and the global best position were updated, and each 
particle's velocity was calculated using Equation 
3:

v w v c rand pbest x c rand gbest xid
t

id
t

id id
t

d
+ = ⋅ + ⋅ ⋅ − + ⋅ ⋅ −1

1 2( )( ) ( )( iid
t )	

v w v c rand pbest x c rand gbest xid
t

id
t

id id
t

d
+ = ⋅ + ⋅ ⋅ − + ⋅ ⋅ −1

1 2( )( ) ( )( iid
t ) 	 (3)

where x is the position of the particle with 
corresponding velocity v, xid

t  signifies the ith 
particle in dimension d at iteration t and the 
same notation applies to the velocity, pbest is the 
previous known best position of each particle, 
gbest represents the best known position in the 
swarm, w is the inertia weight factor applied to the 
velocity vid

t , c1 and c2 are acceleration constants 
and rand(·) is a uniform random number in the 
range [0,1].
	 After the updated velocity was determined, 
it was added to the current position  xt to obtain 
the next position xt +1 according to Equation 4:

	 x x vid
t

id
t

id
t+ += +1 1 	 (4)

In this process, c1 and c2 acted as acceleration 
factors that pulled the particle toward the gbest and 

pbest positions, and were set from observation to 1 
and 1.5, respectively. The inertia weight factor (w) 
was initially set as 0.9 and was gradually decreased 
to 0.4 by the final iteration (Eberheart and Shi, 
2000), according to Equation 5 (Payakkawan et 
al., 2009):

	 w w
w w

t
t= −

−
×max

max min

max
	 (5)

where wmax = 0.9 is the maximum inertia weight 
and wmax = 0.4 is the minimum inertia weight, t 
denotes the current number of iterations and tmax 
is the maximum number of iterations.
	 Stopping criteria: The algorithm 
concluded when a certain stopping criterion was 
reached and it then output the best position of the 
swarm. PSO stops when there is no improvement 
in the gbest score for 10 iterations. In addition, if 
all particles converge to the gbest position with 
10% difference in score value, the algorithm is 
stopped to save computation time. Otherwise, 
PSO stops upon reaching the specified maximum 
number of iterations.

RESULTS AND DISCUSSION

	 The sensor dataset was obtained from 

Figure 12	 Average computation time and average minimum fitness score of particle swarm optimization. 
(Vertical bars indicate ± SD.)
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a normal person walking on a treadmill with a 
smooth, even surface at a constant speed of 1 
km.hr-1. An Arduino Uno unit was employed 
to measure sensor signals, which were sent to 
a computer wirelessly via the XBee unit at a 
sampling rate of 50 Hz. A video camera with a 
frame rate of 60 frames per second was used to 
record the walk and provided ground truthing by 
allowing for visual classification of the gait phases 
based on image processing as discussed earlier. 
Several executions of the GA and PSO were 
performed to ensure the accuracy of the threshold 
values. Figures 13 and 14 show the average score 

and minimum score after the sensor dataset was 
inputted into the GA and PSO, respectively.
	 For a dataset with 4,792 sample points 
from 21 walking steps, the computation time was 
approximately 160 s for the GA and 51 s for PSO. 
Five-fold cross validation was used to determine 
the accuracy of the system. This method divided 
the dataset into five equivalent groups then 
performed the training and validation process five 
times, where the ith group was considered as the 
validation set in the ith round, while the rest of the 
data were used for training. The validation process 
indicated an accuracy of 95.93% for the GA and 

Figure 13	 (a) Average fitness scores and (b) Best fitness scores for the genetic algorithm execution.
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Figure 14	 (a) Average fitness scores and (b) Best fi tness scores for particle swarm optimization 
execution.

96.07% for PSO (Table 5). These threshold values 
obtained from both methods could then be used 
for real-time gait analysis with the wireless smart 
shoe.
	 The wireless smart shoe setup with 
automated thresholding using both methods was 
also compared with other systems based on state 
transition theory (Srivises et al., 2012b) and fuzzy 
logic (Srivises, 2012a). The percentage accuracy 
was computed using Equation 6:
Accuracy = (Total data points – Miscalculated data 
points) / Total data points × 100% 	 (6)

	 From Table 4, the proposed algorithm 
demonstrates substantial improvements in 
accuracy for all gait phases because in part, the 
optimized threshold values for transition events 
have been trained and validated using optimization 
tools for improved accuracy.
	 Table 5 shows a comparison between 
optimizing the threshold using the GA and PSO. 
The experimental results indicated that the GA 
required a larger population size to achieve the 
same accuracy level as PSO as well as being 
a more complicated algorithm with many 
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parameters to adjust, such as scaling, selection 
functions, crossovers and mutation rates. PSO 
was considerably easier to implement and required 
fewer design parameters, such as inertia weight 
and acceleration factors. It is well established 
that PSO is computationally faster than the GA, 
but it may become trapped by local optima (W. 
A. Lutfi et al., 2013). To prevent this, PSO should 
be executed several times to ensure the proper 
outcome. However, the achieved accuracy level 
of both the GA and PSO were similar.

CONCLUSION

	 A gait analyzer was presented that could 
distinguish between the different gait phases of 
stance, heel-off, swing 1, swing 2 and heel-strike. 
Force sensitive resistors were placed underneath 
the foot at strategic locations to measure contact 
with the ground. An inertial measurement unit was 
also installed at the back of the shoe to evaluate 
the foot inclination angle and the magnitude of 

acceleration. These data were transmitted to a 
computer via a wireless connection using an 
XBee radio frequency module. State transition 
theory was employed as the decision system for 
the gait phase classification, with threshold values 
determined by the genetic algorithm and particle 
swarm optimization. The genetic algorithm was 
preferable due to the fact that particle swarm 
optimization may be trapped by local optima. 
Ground truthing of the system was obtained 
by marker-tracking using image processing. 
The result was experimentally compared with 
conventional methods and showed a substantial 
improvement in accuracy. 
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Table 4	 Accuracy comparison.


          Gait phase

Accuracy of state 
transition approach 

with gyroscope
(%)

Accuracy of fuzzy 
logic approach 
with gyroscope

(%)

Accuracy of
 Img-GA Opt. state 
transition with IMU

(%)

Accuracy of 
Img-PSO Opt. state 
transition with IMU

(%)
Stance 86.17 91.94 95.47 95.51
Heel-off 81.12 79.52 96.84 97.07
Swing 1 85.92 79.38 95.53 94.75
Swing 2 90.25 80.69 95.24 95.00
Heel-strike 68.42 93.33 95.15 95.89

Overall accuracy 82.10 85.10 95.93 96.07
Img-GA Opt. = Image processing and GA optimization; Img-PSO Opt. = Image processing and PSO optimization.

Table 5	 Optimization algorithm comparison.

Criterion Genetic algorithm Particle swarm optimization
Population size 	 200 50
Implementation 	Complicated with

	many parameters
Simple with few parameters

Computation time 	 160 s 51 s
Stopping iteration 	 38 43
Accuracy 	 95.93% 96.07%
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Thailand Office of Higher Education Commission, 
and the Center of Excellence in Biomedical 
Engineering of Thammasat University.
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