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A Wireless Smart Shoe for Gait Analysis
Using Heuristic Algorithms with Automated Thresholding

Nantawat Pinkam* and Itthisek Nilkhamhang

ABSTRACT

This paper proposes a novel decision system for segregation of five normal gait phases (stance,
heel-off, swing 1, swing 2 and heel-strike) by using a real-time wireless smart shoe. The classification
method employed four force sensitive resistors to measure the force underneath a foot, together with
an inertial measurement unit that is attached at the back of the shoe to determine the magnitude of
acceleration and the inclination angle of the foot with respect to the ground. Data acquisition was through
the XBee wireless network protocol to allow serial processing by a computer. The state transition theorem
and threshold-based classification were used to distinguish the gait phases according to received data,
where the thresholds were optimized by heuristic algorithms, such as the genetic algorithm and particle
swarm optimization. Ground truthing was determined by marker-tracking using image processing. Video
recording with real-time data and embedded interfacing was used to verify the output of the proposed
state transition algorithm under indoor testing on a stationary treadmill. Experimentation and verification
were conducted on a subject with a normal gait cycle. The smart shoe was able to ascertain the gait
phase with 96.07% accuracy after optimized threshold values had been determined.

Keywords: gait analysis, image processing, state transition theory, genetic algorithm, particle swarm
optimization

INTRODUCTION

Ambulation is a fundamental component
of human locomotion that enables a productive
life. It is the recurring sequence of limb motion
that concurrently moves the body forward and
preserves the stability of the movement. In general
human locomotion, one limb provides support
while another limb moves to the next support
site. The role of support is sequentially switched
between the two limbs. When the limb is in the
support phase, the foot is in contact with the
ground to receive the body weight (Perry, 1992).

The gait cycle of a normal person is efficient
in terms of power consumption and movement
speed, allowing the subject to walk with ease for
an extended amount of time (Kong and Tomizuka,
2008).

Gait rehabilitation therapy is therefore
essential for those people who have an abnormal
gait. For example, Parkinson’s disease causes the
degradation of body movement and other motor
abilities (Manap et al., 2011). Elderly people suffer
from abnormal gaits as a result of aging, leading
to reduced mobility that can markedly impair their
quality of life and increase the chance of serious
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injuries or, in some extreme cases, mortality
caused by falling (Jahn et al., 2010). Transfemoral
amputees also have trouble achieving a normal gait
and although smart prosthetic devices have been
developed to help achieve a natural walking cycle,
the cost is prohibitively high (Torki ef al., 2008).
Currently, gait analysis utilizes various methods
to assist people who have problems walking and
attaining a normal gait (Marzani et al., 1997; Junho
et al.,2008). In addition, the analysis can be used
in sports to track the movement of athletes and
increase their performance. Most importantly, gait
analyzers can be used for the early detection of
abnormalities in gait patterns, which could then be
corrected by consulting with a physical therapist.
Motion capture technology such as VICON (Vicon
Inc., 2012) is an example of a gait rehabilitation
device. It uses an infrared video camera with
tracking markers to capture and reconstruct three
dimensional body movements. Gait information
can also be acquired through biomedical sensor
technology, such as electromyography (EMG).
EMG detects the electrical signals generated by
skeleton muscle activity, in this case in the lower
limbs, to verify the abnormality of the gait (Nissan
et al., 2009). An example of an EMG-based gait
rehabilitation device is the Locomat, which is
used in locomotion therapy and was developed
by Hocoma (Hocoma Inc., 2012).

This paper proposes a gait classification
system using a wireless smart shoe, based on the
force pattern underneath the foot measured by
four force sensitive resistors (FSRs), and data
from an inertial measurement unit (IMU). The
IMU provides the magnitude of acceleration and
the inclination angle of the foot. Gait phases are
classified by a threshold-based state transition
algorithm that is optimized using heuristic
algorithms for increased accuracy, where ground
truthing is determined by marker-tracking using
image processing from recorded video. The data
acquisition process is done wirelessly using a radio
frequency module to allow for free movement
while reducing the chances of wire entanglement

or disconnection. The advantage of the proposed
concept over the image processing approach is
that there is no need for an additional machine
to operate, there is increased mobility due to the
small size of the device and the cost is cheaper
when compared with a motion tracking system
such as Vicon (Vicon Inc., 2013). In addition, the
increased level of mobility allows the smart shoe
to be used in other pieces of equipment, such as a
prosthetic knee.

MATERIALS AND MEDTHODS

Definition of gait cycle

A normal gait is defined as the human
walking pattern which results in minimum energy
consumption and smooth motion (Kotaro and
Richard, 2006). Gait cycle refers to a sequence
of motion that repeats the same gait phases;
for example, from the stance phase to the next
stance phase of the same foot. It has been broadly
divided into two phases; stance phase and swing
phase (DeLisa, 1998). These phases can be
further subdivided for more detailed gait analysis.
Perry (1992) suggested that the gait cycle can be
subdivided into the eight phases of initial contact,
loading response, mid stance, terminal stance,
pre swing, initial swing, mid swing and terminal
swing. However, some consecutive phases are
very similar. Therefore, this paper used a gait
cycle consisting of five phases. A normal cycle
starts from the stance phase, which is followed by
heel-off, swing 1, swing 2 and heel-strike. After
heel-strike, the cycle returns to the stance phase
and begins again, as shown in Figure 1.

The following definitions of each gait
phase are provided with reference to the shaded
leg in Figure 1.

Stance phase

The foot sole of the shaded leg is mostly
in contact with the ground and receives the body
weight. This phase occurs after the heel strikes the
ground or at the beginning of the gait cycle.
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Figure 1 Normal gait cycle.

Heel-off phase

After the stance phase, the body begins to
move forward. The heel of the shaded leg prepares
to take off while the non-shaded leg starts touching
the ground with its heel. The weight of the body
is evenly distributed between the two legs.

Swing 1 phase

The full body weight passes to the non-
shaded leg, whilst the shaded leg swings freely
forward along the sagittal plane. The shaded leg
is not in contact with the ground in this phase and
the ankle remains behind the coronal plane. The
sagittal and coronal planes are shown in Figure 2.

Swing 2 phase

The ankle of the shaded leg passes the
coronal plane and continues to swing forward,
causing the leg to become fully extended and ready
for heel-strike.

Heel-strike phase

The end of the swing 2 phase results in
the heel of the shaded leg touching the ground
while the non-shaded leg prepares to move off the
ground. This returns the body position to the stance
phase and is the end of a normal gait cycle.

Construction of wireless smart shoe
While walking, force is exerted on the
part of the foot that touches the ground. The

smart shoe is constructed to measure this force
underneath the foot by using force sensitive
resistors (FSRs). The force is distributed across
the entire sole of the foot, but there are certain
locations where maximum force is applied to the
bone structure. This corresponds to the location
of FSR placement. However, during the swing
phase, the force exerted on the foot sole provides
unreliable data because the foot is not in contact
with the ground but some forces remain as a

Sagittal plane

. Coronal plane

Transverse plane

e

< T >

Figure 2 Illustration of body planes.
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result of tension between the foot and the shoe.
An inertial measurement unit (IMU), which is
composed of a gyroscope, an accelerometer and a
magnetometer, is therefore installed at the back of
the shoe in a manner that minimizes disturbance
while walking. The accelerometer provides the
acceleration of the foot, and the foot inclination
angles can also be calculated from IMU data.
As the foot swings along the sagittal plane, only
one particular angle is important. The IMU is
positioned inside the box such that the roll angle
corresponds to the sagittal plane.

An Arduino microcontroller (Arduino
Uno R3; SmartProjects; Strambino, Italy) was
used to acquire the raw data from the FSRs and
IMU, which consisted of forces, the magnitude

Table 1 List of components.

of acceleration and the foot inclination angle.
The data were sent out through an XBee wireless
communication module (XBee Pro Series 2; Digi
International; Minnetonka, MN, USA) directly
to a computer. Table 1 shows the complete list
of components in a smart shoe. Figure 3 shows a
schematic of the finalized sensor placements with
an XBee radio frequency module installed. The
prototype wireless smart shoe is shown in Figure
4. The normalized data measured by sensors during
one gait cycle is represented by the graph in Figure
5. The foot inclination angle (Foot Ang) is set to
be negative if the slope of the foot is negative and
it is positive when the slope is positive with respect
to the ground.

Module

Component

Microcontroller
Force sensor

Inertial measurement unit
Communication

Arduino Uno R3

Force sensitive resistor—square
Force sensitive resistor—0.5"
Pololu MinIMU-9 v2

XBee Pro Series 2

Circular
FSRs

P g——)
F3.
F4 —>,/\!)

Figure 3 Sensor placement and XBee wireless
module installation. (FSR = Force
sensitive resistor; IMU = Inertial
measurement unit; F1-F4 = Locations
of FSRs.)

Figure 4 Prototype wireless smart shoe unit

showing the inertial measurement unit
strapped to the back of the shoe, with
the XBee wireless communication
module and Arduino contained in the
lighter colored box.
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Figure 5 Normalized data of one gait cycle obtained wirelessly via the XBee wireless communication
module. (FSR = Force sensitive resistor; Foot Ang = Foot inclination angle; Accel =

Acceleration.)

Gait information using marker-tracking

Before the wireless smart shoe can be
used to classify gait phases, ground truthing must
be determined from experimental data to verify
the accuracy of the sensor outputs. The traditional
method to determine gait phases is by manual
observation and classification, which can lead to
human error, while a more accurate alternative
is the use of optical motion capture technology
(OMC) for gait analysis (Guerra-filho, 2005).
This is accomplished by requiring the test subject
to wear a black body suit with markers placed on
the body joints, as shown in Figure 6. The test
subject is instructed to walk on a treadmill and
is recorded by a high-frame rate camera. Sensor
data is simultaneously collected via a wireless
data acquisition system. This is followed by video
processing which converts each frame of the video
from an RGB channel to an HSI color model
in order to distinguish the markers from other
components. Then, the algorithm will determine
the gait phase information by tracking the markers,
as shown in Figure 6.

Gait phase classification using state transition
theory

The extraction of gait phases for one
ambulation cycle was completed by classification
using the FSR, magnitude of acceleration and
foot inclination angle data. A decision system
was developed to classify the gait phases using
state transition theory, based on the conditions of
transition that were subdivided into sub-events
and transition events. Thresholding was used to
evaluate both sub-events and transition events.

The state transition algorithm was
constructed by assigning each gait phase to a
distinct state. Transition events were determined
by signals received from the XBee radio frequency
module, which included FSR, acceleration, and
foot inclination angle data. FSRs provide the
forces F1, F2, F3, and F4. The magnitude of
acceleration was obtained from an accelerometer.
The foot inclination angle was obtained from the
IMU.

Tables 2 and 3 show sub-event conditions
and transition events. They were constructed based
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on an observation of the changes in sensor data
where ay,; and ay,, are the threshold values for
the magnitude of acceleration. 0y,; and 0, are
the threshold values for foot inclination angle.
Sub-event conditions were derived by looking at
the changes in the foot angle and acceleration data
in each gait phase. G1 is the event when the foot

R "
Knee angle:  165.334°

i Foot angle:  -33.630"

| Heel distance: 32.914 pixel
Toe distance: -2.081 pixel

is lying flat on the ground, such that its angle is
within 0y,;. G2 is the event when the acceleration
value is within the range of ay,; and ag,. G3 is the
event when the foot leaves the ground after the heel
off phase, so its angle is lower than a;,,. G4 is the
event after the swing 1 phase as the foot enters the
swing 2 phase, so the angle is higher than a,,.

Figure 6 Gait phase information from marker-tracking.

Table 2 Sub-event conditions.

Sub-Event Conditions
G1 l0f< Oin1
G2 a>ag; AND a<ay,
G3 0 < 042
G4 6> 0o

ag, and ag, are the threshold values for the magnitude of acceleration; 8, and 0y, are the threshold values for foot inclination

angle.

Table 3 Transition events.

Transition Event

Conditions

El FI=1ANDGI=1ANDG2=1

E2 (F1=0AND (F2=1OR F3=1)AND G1 = 1) OR
((F4=1ORF2=10R F3=1)AND GI = 0)

E3 F3=0ANDF4=0AND G3 = 1

E4 FI=0ANDF3=0AND G4 = |

E5 FI=1ANDG4=1

F values indicate individual force sensitive resistors; G values represent events.
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Transition event conditions were obtained
by looking at the changes in FSR measurements
and sub-event conditions together. Each FSR has
its own threshold value to determine whether it is
pressed (F = 1) or not pressed (F = 0). The threshold
values of FSRs were applied separately for each
sensor because the force exerted on the FSRs is not
evenly distributed. E1 is a transitional condition
to the stance phase. Force must be applied at F1
and the foot is flat on the ground with sub-event
G1 and G2. E2 is a transitional condition to the
heel off phase. The heel of the foot comes off the
ground, so F1 =0 and F2 or F3 = 1 but the foot’s
angle may not exceed G1. Another case is when
F2 or F3 or F4 =1 and the angle exceeds G1. E3 is
the transitional condition to the swing 1 phase. F3
and F4 should not be pressed while the foot’s angle
undergoes sub-event G3. E4 is the transitional
condition to the swing 2 phase. F1 and F3 should
not be pressed while the foot’s angle undergoes
sub-event G4. ES is the transitional condition to
the heel strike phase. The foot strikes the ground
heavily on the heel, such that F1 =1 and its angle
remains in sub-event G4. Figure 7 illustrates state
transition according to the gait cycle and transition
events.

Figure 7 State transition diagram.

Heuristic optimization algorithms

The traditional method to determine
appropriate threshold values is to observe the
change in sensor data from a large sample of
experiments until acceptable results are found
(Srivises et al., 2012b). The accuracy of this
method is questionable and it is difficult to prove
that the thresholds are suitable for all test subjects.
The current study introduced and compared
two heuristic optimization methods: the genetic
algorithm and particle swarm optimization.

Threshold set

The threshold set is defined as the
threshold values that are input into both heuristic
algorithms; in the genetic algorithm, it is called a
chromosome, while in particle swarm optimization,
it is called a particle. The threshold set consists
of four FSR thresholds, two magnitude of
acceleration thresholds (ay,j,ag,) and two foot
inclination thresholds (0,;,0,,;). These thresholds
are used by the fitness function along with the
dataset and known output phase to determine the
score.

Fitness function

The fitness function is used to evaluate
how close the threshold set is to the optimum
point. It is defined as the mean square error of

«ssesp = Normal gait phase transitions
| =% = Abnormal gait phase transitions

E = Event considered to change the state

LT
-
L
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-
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the misclassification distance between the visual
classification output from a video sequence and the
state transition output when the threshold values
are applied to the dataset (Equation 1):

Score = E(Normalized distance(k,c)?) (1)
where k is a vector of the known output from the
video sequence and c is a vector of the threshold
set’s output. The distance between the known
output from the video and the threshold set’s output
is calculated based on the gait cycle in Figure 1.
The distance function is defined as the number of
steps required to transition from one gait phase
to another. For example, if the actual state is
stance but the threshold set’s output is swing 1,
the distance would be 2 because stance must pass
through 2 states to reach swing 1. Moreover, the
distance score is normalized by the number of
sample points per state because each gait phase
requires a different time duration. The notation E
shows the mean of all squared distances. In this
work, the same fitness function was utilized for
both the genetic algorithm and particle swarm
optimization.

Genetic algorithm

The genetic algorithm (GA) is a
population-based model that uses selection and
recombination to generate new sample points in
a search space (Darrell, 1994). It is well known
as a function optimizer tool (Patalia and Kulkarni,
2010). The GA mimics the natural selection
scheme in which the fittest population survives to
the next generation by producing offspring and
undergoing mutation (Mathew, 2006).

Kasetsart J. (Nat. Sci.) 47(6)

The GA begins with a population with
randomized chromosome assignments. The
fitness function is applied to each chromosome
to determine its score. A selected number of
chromosomes with the highest fitness score will
survive to the next generation. All chromosomes,
including those that have survived, will mate
with each other and produce offspring through
the crossover operation. A small number of the
population will experience mutation by randomly
changing certain parts of their chromosomes, thus
ensuring diversity. The steps repeat continuously
until the stopping criteria are reached. Finally,
the GA returns the chromosome that has the
best fitness score through all the generations.
Figure 8 shows the general flow chart of genetic
algorithms.

Population size: The number of
chromosomes effects both the computation time
and population diversity. This research determined
a suitable population size to be 200, according
to Figure 9 where the average computation time
and average best fitness score are plotted as the
population size was experimentally varied from 10
to 1,000. Population sizes of 50 to 1,000 exhibited
no substantial difference in their average best
fitness scores. However, the standard deviation
indicates that there is noticeable variation in
achieved scores for population sizes between 50
and 100. Therefore, a population size of 200 was
chosen as the optimal number because it offered
a low computation time and consistently yielded
the best fitness score.

NO
Start Imtla,.l Fltngss - Selection P Crossover B Mutation
population| | function
Sto GA output Stopping
p tp YES criteria?

Figure 8 Genetic algorithm flow chart.
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Selection: Each chromosome was
evaluated by the fitness function, where lower
scores signified less error and were considered to
have a high fitness level. In contrast, higher scores
indicated higher error and a lower fitness level. The
scores were sorted into ascending order and fitness
scaling was applied to convert the raw scores to
a range of values that was suitable for selection.
This research employed the rank scaling method
as shown in Equation 2 (Mathwork Inc., 2012):

Scale Value = =S

n 2
where n is the rank of the sorted score. The scale
value was used as a probability weight in the
selection process to create a mating table between
two chromosomes. Stochastic universal sampling
(SUS) according to Xu (1999) was employed as
the selection operator. This method sampled the
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whole population with equally spaced pointers.
Figure 10 shows how SUS operates. The outputs
of SUS are chromosomes that have been chosen
by the pointers.

Only 10% of'the best fitness chromosomes
were automatically passed to the next generation
as elite members. The selected chromosomes from
SUS will become the parents that are chosen to
mate with each other at random.

Crossover: After selecting the mating
pair, each parent must exchange some parts of their
chromosomes in a process called crossover. This
research employed a uniform crossover operation,
where half of each parent’s chromosome were
randomly selected and swapped to create a next
generation of chromosomes. At this point, the
number of children was equal to the population
size minus the elite members.

1500 T T T T T . . 0.05
: : : — — Computation time
—— Average minimum score
—0.045
/’— —¢
) i o
1000 A ;004
/;\ v
~ £
E 0.035 E
= I~
L =
1 o
g g
g 500 0.03 5
3 . 2
: —0.025
; —
S e R

1 I 1 1 i i | I i i I
80 90 100 200 300 400 500 600 700 800 900 1080

02

Population size

Figure 9 Average computation time and average minimum fitness score of the genetic algorithm.

(Vertical bars indicate + SD.)

Pointerl Pointer2 Pointer3 Pointer4 Pointer5
__I_ 1/N
| v | | | | | | LU
[ Scalevaluet | 2| 3 | 4 | s [ 6 71 Tl

Figure 10 Stochastic universal sampling. (r is a random number, N is the population size and the step

size of SUS is —.)
N
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Mutation: 30% of the crossover children
were randomly selected to experience mutation of
their chromosomes. The function of mutation is
similar to crossover, except that it will randomly
change half of the chromosomes. The rate of
change is inversely proportional to the generation
number, thus ensuring that mutation will decrease
as time passes and allow the population to
converge on the most promising region.

Stopping criteria: The resulting behavior
of'the GA is that chromosomes with higher fitness
scores are more likely to exchange information
with each other to create new chromosomes that
will have better fitness values than their ancestors.
The process of the GA will stop when the stopping
criteria are reached and the chromosome with the
best fitness value is determined. The current study
set the generation stall limit to 10, meaning that the
GA will stop if no improvement in the best fitness
score is achieved for 10 generations. Likewise, the
process will stop once it reaches the maximum
generation number of 100. These values were
obtained through observation of the GA behavior
when applied to experimental data.

Particle swarm optimization

Particle swarm optimization (PSO) is
another tool to find the optimum threshold values
for classifying the gait phases. It is a stochastic
population-based global optimization algorithm
inspired by the social behavior of fish schooling or
bird flocking and was first introduced by Kennedy
and Eberhart (Yang et al., 2007). Each member
of the swarm is called a particle and flies in the

search space with a certain velocity. The velocity
is updated by the influence of the particle's own
experience and that of the entire swarm.

PSO begins with a number of particles
randomly distributed in the search space. A fitness
function is used to determine each particle's fitness
score. Consequently, each particle will reassess its
own best position and the best position located by
the entire swarm. The velocity update rule was
applied by using the previous velocity along with
information of the particle's own best position and
the global best position. The next position of the
particle was calculated based on this new velocity.
The algorithm then looped back to determine
a fitness score until the stopping criteria were
reached. Finally, PSO returned the position of
the particle in the swarm that had the best overall
fitness score. Figure 11 shows the flow chart of
PSO.

Size of the swarm: The number of
particles in the swarm must be chosen as a trade-
off between the computation time and population
diversity. This research determined a suitable
swarm size according to Figure 12, which shows
the average computation time and best fitness
scores obtained by varying the population size
from 10 to 1,000 and conducting five experiments.
Population sizes 50 to 1,000 exhibited no
substantial differences in the fitness score with
acceptable standard deviation. Therefore, the
optimum swarm size was chosen as 50 because it
had a low computation time.

NO
Start Generate random N Fitness Update N Update Update Update current
particles function ‘pbest”’ ‘gbest’ velocity position

Stopping
criteria?

PSO output
( Stop ) ‘gbest’

Figure 11 Particle swarm flow chart where pbest is the previous known best position of each particle

and gbest represents the best known position in the swarm.
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Figure 12 Average computation time and average minimum fitness score of particle swarm optimization.

(Vertical bars indicate = SD.)

Velocity update rule: After all the
particles had been evaluated by the fitness function
(where a low score signified less error and a high
fitness, and a higher score indicated more error
with low fitness), each particle’s own best position
and the global best position were updated, and each
particle's velocity was calculated using Equation
3:

Vitgl =w-Viy +c, -rand(-)(pbest,; —X}3)+c, -

rand(-)(gbesty — xj4) 3)
where x is the position of the particle with
corresponding velocity v, Xitcl signifies the ith
particle in dimension d at iteration ¢ and the
same notation applies to the velocity, pbest is the
previous known best position of each particle,
gbest represents the best known position in the
swarm, w is the inertia weight factor applied to the
velocity Vitd, ¢, and ¢, are acceleration constants
and rand(+) is a uniform random number in the
range [0,1].

After the updated velocity was determined,
it was added to the current position x‘to obtain
the next position x! *! according to Equation 4:

Xig' =Xig +Vig' )
In this process, c¢; and c, acted as acceleration
factors that pulled the particle toward the gbest and

pbest positions, and were set from observation to 1
and 1.5, respectively. The inertia weight factor (w)
was initially set as 0.9 and was gradually decreased
to 0.4 by the final iteration (Eberheart and Shi,
2000), according to Equation 5 (Payakkawan et
al., 2009):

W=w,, ——ma min (%)

where w,,, = 0.9 is the maximum inertia weight
and W, = 0.4 is the minimum inertia weight, t
denotes the current number of iterations and t,,,
is the maximum number of iterations.

Stopping criteria: The algorithm
concluded when a certain stopping criterion was
reached and it then output the best position of the
swarm. PSO stops when there is no improvement
in the gbest score for 10 iterations. In addition, if
all particles converge to the gbest position with
10% difference in score value, the algorithm is
stopped to save computation time. Otherwise,
PSO stops upon reaching the specified maximum
number of iterations.

RESULTS AND DISCUSSION

The sensor dataset was obtained from
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a normal person walking on a treadmill with a
smooth, even surface at a constant speed of 1
km.hr'!. An Arduino Uno unit was employed
to measure sensor signals, which were sent to
a computer wirelessly via the XBee unit at a
sampling rate of 50 Hz. A video camera with a
frame rate of 60 frames per second was used to
record the walk and provided ground truthing by
allowing for visual classification of the gait phases
based on image processing as discussed earlier.
Several executions of the GA and PSO were
performed to ensure the accuracy of the threshold
values. Figures 13 and 14 show the average score

Average normalized score
0331648

Score

oLl

A N IR TR RN B
5 10 15 20 25 30 35 40 45
Generation

and minimum score after the sensor dataset was
inputted into the GA and PSO, respectively.

For a dataset with 4,792 sample points
from 21 walking steps, the computation time was
approximately 160 s for the GA and 51 s for PSO.
Five-fold cross validation was used to determine
the accuracy of the system. This method divided
the dataset into five equivalent groups then
performed the training and validation process five
times, where the i™" group was considered as the
validation set in the ih round, while the rest of the
data were used for training. The validation process
indicated an accuracy of 95.93% for the GA and

Minimum normalized score
0.0612209

0161

0.14} -

0 | I I i i | i 1
5 10 15 20 25 30 35 40 45
Generation

Figure 13 (a) Average fitness scores and (b) Best fitness scores for the genetic algorithm execution.
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96.07% for PSO (Table 5). These threshold values
obtained from both methods could then be used
for real-time gait analysis with the wireless smart
shoe.

The wireless smart shoe setup with
automated thresholding using both methods was
also compared with other systems based on state
transition theory (Srivises et al., 2012b) and fuzzy
logic (Srivises, 2012a). The percentage accuracy
was computed using Equation 6:

Accuracy = (Total data points — Miscalculated data

points) / Total data points x 100% (6)
Average normalized score
0.0693026
R = e SR EEEE IEEEEEEEEEEE Fr T
a
+

+
1 T T T LT LT T T e —
L+
S
+
+
: : Ly :
05k TR g T e .
: R
+
+ ot
4+ + o+
+ +_H—+
+ =h
0 I J i i
10 20 30 40
Iteration

From Table 4, the proposed algorithm
demonstrates substantial improvements in
accuracy for all gait phases because in part, the
optimized threshold values for transition events
have been trained and validated using optimization
tools for improved accuracy.

Table 5 shows a comparison between
optimizing the threshold using the GA and PSO.
The experimental results indicated that the GA
required a larger population size to achieve the
same accuracy level as PSO as well as being
a more complicated algorithm with many

Minimum normalized score
0.0649596
035 ! ! T

b

03k D ............ .......... S _

Score

0_15_ ......................................................... —
0.1 _**** ............ ............ .........
005k T s (RN :
0 i i I I
10 20 30 40

Iteration

Figure 14 (a) Average fitness scores and (b) Best fitness scores for particle swarm optimization

execution.
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parameters to adjust, such as scaling, selection
functions, crossovers and mutation rates. PSO
was considerably easier to implement and required
fewer design parameters, such as inertia weight
and acceleration factors. It is well established
that PSO is computationally faster than the GA,
but it may become trapped by local optima (W.
A. Lutfi et al.,2013). To prevent this, PSO should
be executed several times to ensure the proper
outcome. However, the achieved accuracy level
of both the GA and PSO were similar.

CONCLUSION

A gait analyzer was presented that could
distinguish between the different gait phases of
stance, heel-off, swing 1, swing 2 and heel-strike.
Force sensitive resistors were placed underneath
the foot at strategic locations to measure contact
with the ground. An inertial measurement unit was
also installed at the back of the shoe to evaluate
the foot inclination angle and the magnitude of

Table 4 Accuracy comparison.

Kasetsart J. (Nat. Sci.) 47(6)

acceleration. These data were transmitted to a
computer via a wireless connection using an
XBee radio frequency module. State transition
theory was employed as the decision system for
the gait phase classification, with threshold values
determined by the genetic algorithm and particle
swarm optimization. The genetic algorithm was
preferable due to the fact that particle swarm
optimization may be trapped by local optima.
Ground truthing of the system was obtained
by marker-tracking using image processing.
The result was experimentally compared with
conventional methods and showed a substantial
improvement in accuracy.
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Accuracy of state
transition approach

Accuracy of fuzzy
logic approach

Accuracy of
Img-GA Opt. state

Accuracy of
Img-PSO Opt. state

Gait phase . . . . . .
with gyroscope with gyroscope transition with IMU transition with IMU
(%) (%) (%) (%)

Stance 86.17 91.94 95.47 95.51
Heel-off 81.12 79.52 96.84 97.07
Swing 1 85.92 79.38 95.53 94.75
Swing 2 90.25 80.69 95.24 95.00
Heel-strike 68.42 93.33 95.15 95.89
Overall accuracy 82.10 85.10 95.93 96.07

Img-GA Opt. = Image processing and GA optimization; Img-PSO Opt. = Image processing and PSO optimization.

Table 5 Optimization algorithm comparison.

Criterion

Genetic algorithm

Particle swarm optimization

Population size 200 50

Implementation Complicated with Simple with few parameters
many parameters

Computation time 160 s 51s

Stopping iteration 38 43

Accuracy 95.93% 96.07%
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Thailand Office of Higher Education Commission,
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