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A Practical Wavelet Compression for Arbitrarily-Sized

Natural Color Images

Poonlap Lamsrichan* and Vutipong Areekul

ABSTRACT

A practical method for wavelet-based image compression was proposed, where ‘practical’ means

that this method can be performed on typical images of any size, whether grey-scaled or color images.

Its performance with simple methods used for wavelet decomposition of an arbitrarily-sized image were

compared . Color images were transformed into the appropriate domain before the wavelet decomposition

was employed in the same way as grey-scaled images. The wavelet coefficient matrices were encoded

with an existing bit-plane encoding algorithm of the authors, (non-list context adaptive wavelet difference

reduction). With its fast and memory-effective algorithm, the proposed coder performed at the same
level as the JPEG2000 standard and significantly outperformed the existing JPEG standard for all test

images which were downloaded from the Internet.

Keywords: wavelet image compression, arbitrarily-sized, wavelet difference reduction, asymmetric

wavelet decomposition, fast and memory-effective algorithm

INTRODUCTION

Many works have proposed image
compression in the literature and evaluated
the performance of their proposed algorithms
using standard test images (Shapiro, 1993; Said
and Pearlman, 1996; Taubman et al., 2002).
Test images of perfect size (divisible by 2L for
a large value of integer L) such as 512 x 512,
are considered ideal for a high level of wavelet
decomposition (DWT) and yield high rate-
distortion performance (Taubman et al., 2002).
However, in real image compression applications,
it is often not possible to choose the size of the
image. Problems may arise when an image has a
non-ideal size such as 333 x 237 pixels. Since a
conventional wavelet transform divides the image
into two equal parts, images containing an odd

number of rows or columns cannot be decomposed
simply. There are two main approaches to this
problem: 1) make the image have an appropriate
size for conventional transformation by adding
or padding some extra pixels to the images as
proposed by Jaroensawaddipong and Lamsrichan
(2013); and 2) modify the wavelet transform to be
capable of decomposing image of any sizes. Both
of these approaches are discussed in this paper with
details of their implementation and performance
analysis.

Color is another issue in real-world
image coding since color images are more widely
used nowadays and may gain more attention
from observers than grey-scaled ones. With a
suitable color transform, context adaptive wavelet
difference reduction or CAWDR (Lamsrichan
and Sanguankotchakorn, 2006) can be applied to
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a color image and its performance was discussed
in Lamsrichan and Sanguankotchakorn (2009).

Non-list CAWDR (Lamsrichan, 2011)
is an embedded wavelet image compression
that encodes the whole image without any
segmentation. This is the non-list version of
CAWDR (Lamsrichan and Sanguankotchakorn,
2006) but it uses much less memory during the
encoding process with a faster encoding time due
to the smaller number of pixels examined in each
bit-plane.

By using padding or non-padding
techniques, non-list CAWDR can encode a color
image of arbitrary size efficiently with a high
level of wavelet decomposition. The results of the
proposed coders are comparable to JPEG2000,
the details of which can be found in Taubman
and Marcellin (2002) and are much better than
the current JPEG standard (Wallace, 1992).
By changing the filter from 9-7 CDF (Cohen-
Daubechies-Feauveau wavelet) to 17-11 CDF,
the performance is slightly increased without
increasing the computational time.

MATERIALS AND METHODS

Wavelet-based bit-plane encoding for image
compression

Most of the existing standards and
state-of-the-art algorithms for wavelet image
and video coding have the main purpose of
finding and encoding the wavelet coefficient as
fast as possible. The largest non-zero bit of each
coefficient will be encoded in the significant pass
together with its sign (or polarity). The following
lower significant bits will be encoded later in the
(magnitude) refinement pass. The first ground-
breaking embedded wavelet image encoding
algorithm was the embedded zerotree wavelet or
EZW (Shapiro, 1993). In the algorithm, zerotree
is used to represent a large number of insignificant
wavelet coefficients with just a few bits. Motivated
by the EZW, set partitioning in hierarchical trees
or SPIHT (Said and Pearlman, 1996) uses three

types of lists of coefficients during encoding to
gain better peak signal-to-noise ratio (PSNR)
results with fast implementation.

Another well-known bit-plane encoding
technique is embedded block coding with optimal
truncation or EBCOT (Taubman et al., 2002)
which is utilized in the JPEG2000 standard,
the details of which can be found in Taubman
and Marcellin (2002). In block coding, wavelet
coefficients are divided into blocks of equivalent
size (except perhaps for some blocks at the border
of the image). The bit-plane encoding inside each
block generates a complete embedded bit-stream
for scalable reconstruction from the coarsest
approximation to near lossless representation.
The significant pass and magnitude refinement
pass will encode the bit output of each pixel in
the current bit-plane starting from the highest
bit-plane to the least significant bit until the last
coefficient. When a pixel is found to be significant,
its polarity will be encoded with sign coding. The
run mode in a significant pass will be performed
to encode consecutively insignificant pixels.
The block coding is quite simple and fast since
it can be implemented independently for each
block. However, for the encoded bit-stream to
be embedded, there must be another encoding
pass called post-compression rate-distortion
optimization (PCRD-opt). This post processing
adds more complexity to JPEG2000.

Another wavelet encoding approach
is wavelet difference reduction or WDR (Tian
and Wells, 1998). Without separation of the
normal mode and run mode, the WDR algorithm
generates the significant bit, sign bit and run-
length of insignificant bits in one bit-stream
of a significant pass. The output symbol from
WDR significant coding can be ‘+’ for a positive
significant coefficient, ‘-’ for a negative significant
coefficient and a combination of ‘0’ and ‘1’
which represent the distance (difference) between
adjacent significant pixels in reduced form. For
two significant pixels separated by N insignificant
pixels, the difference between them will be N + 1.
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For example, when the current bit-plane is 5, the
threshold = 32 = 25 and the encoding sequence of
pixelsis 46 18 -10 8 7 -34 12 -23 33,s0 WDR
will generate ‘+’, followed by a run-length of 5,
‘-’ run-length of 3 and then ‘“+’. The reduced form
of any run-length value is its binary representation
with the most significant bit (MSB) omitted. For
5, its binary is ‘101 with the reduced form of
‘01’ (the MSB 1’ is discarded). Therefore, the
encoded symbols for the above sequence in this
bit-plane are ‘+* ‘0” °1” *-’ “1” ‘“+* which consists
of 6 symbols (2 bits each). Without any entropy
coding, the number of bits required will be 12
bits. For the case where significant pixels are not
likely to happen, the distance between them will be
long and the reduced form of WDR will be more
effective than encoding a long sequence of ‘0’. For
example, when the difference is 18, the binary is
‘10010’ with the reduced form of ‘0010’ and just
8 bits which is considerably less than the 17 bits
of ‘0’ needed by the normal mode of EBCOT.
The WDR utilizes a raster scan for simplicity,
and arithmetic coding (Witten et al., 1987) can
be used as entropy code for the output bit-stream.
This simple algorithm yields slightly lower
compression efficiency than SPIHT and JPEG2000
without any complicated context modeling (Tian
and Wells, 1998). Some variations of WDR using
context modeling produce increased performance.
The quadtree relation is used in adaptively-scanned
WDR (Walker, 2000). The prediction of the next
significant pixels to be the neighbor pixels of the
significant pixels are considered in the context
model WDR (Yuan and Mandal, 2003).

Previous work on context adaptive WDR
or CAWDR (Lamsrichan and Sanguankotchakorn,
2006) used both the quadtree relationship and
energy compaction properties of the wavelet
transform to predict the next significant pixels.
Together with the context adaptive model for
estimation of the probability of occurrence for
symbols in the encoded stream, CAWDR produces
an improved result compared to the original
algorithm (Lamsrichan and Sanguankotchakorn,

2006, 2007). CAWDR has the same drawback of
WDR and SPIHT, which is the implementation
of lists of pixels. Whereas list implementation
enables a very fast encoding speed, it consumes a
lot of memory for the storage of indices of pixels
for the whole image. Each pixel’s address needs 8
bytes (2 + 2 for row + column numbers and 4 for
the pointer) in efficient linked-list implementation.
Therefore, the efficient algorithms of list-based
SPIHT, WDR and all of their variants, though they
operate very quickly, consume a lot of memory
during the encoding/decoding processes. It should
be noted that JPEG2000 does not use lists in its
encoding process.

To diminish the memory consumption,
packetized SPIHT (Wheeler and Pearlman, 1999)
was proposed using a reduction of the image size
in the manipulation (one small block of image
or packet) at a time. The size of the coefficients’
list was reduced; however, the complexity of
packetized SPIHT was high due to the combination
process of all packetized sub-images into the
whole original-sized image. Another approach is
the SPIHT encoder using no list as proposed in
the work of Wheeler and Pearlman (2000) with
slightly lower PSNR results. The non-list CAWDR
(Lamsrichan, 2011) uses a status matrix that keeps
the state of all coefficients instead of using a list
of indices of coefficients. The amount of memory
required for the status matrix is about one quarter
that of original image which is much less than that
of'the list-based algorithm. The non-list CAWDR is
the core encoder used in this research. For padded
images, non-list CAWDR can be applied with
no modification. For a non-padding technique,
some modification in the quadtree prediction is
necessary to keep the process running successfully
as is described in the next section.

Practical algorithms for color image encoding
of an arbitrarily sized color image transform
and coding

Since the information in each color
component in an RGB model is correlated at
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some scale, it can be thought of as redundancy
in the image. This correlation can be reduced
by transforming the images into another color
model, the YCbCr model, where Y is the intensity
and Cr and Cb represent the importance of ‘red’
and ‘blue’ color in that image, respectively. The
transformation can be obtained by using the matrix
operations in Equations 1 and 2:

For RGB to YCbCr:
[y 0.299 0.587 0.114 R
Cb|=|-0.168736 —0.331264 0.5 G| (1)
| Cr 0.5 -0.418688 —0.081312 || B

For YCbCr to RGB:
RT 1 0 1.402 Y
G|=|1 -0.344136 -0.714136 || Cb 2)
[B| [1 1772 0 Cr

These transforms guarantee a perfect
reconstruction (after some rounding).
The Y, Cb and Cr components are then

c| C
c| C
Case 1:' Y
Case 2: Cb Case 3: Cr

Figure 1
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transformed with L-level wavelet decomposition
using a 9-7 biorthogonal (CDF) filter. Although
the YCbCr color components are assumed to be
de-correlated, they are not totally independent. The
contextual information from one color component
can be used for the significance prediction in the
other two color components. The prediction for
the significant pixel is illustrated in Figure 1.

To make the encoded bit stream
embedded, color components are encoded one
after another in each bit-plane. The component Y is
encoded first, followed by Cb and Cr, respectively.
To make the bit allocation more distributed, the
encoding process in each bit-plane is started with
a significant pass of all components and then
followed by a refinement pass of all components.
The data structure of the embedded encoded image

is shown in Figure 2.

Case 1:Cb and Cr

Case 2:Y and Cr Case 3:Y and Cb

Prediction of the next significant pixels between three color components. S = Significant

pixel, N = Pixel predicted to be significant in the next bit-plane, C = Pixel predicted to be

significant in the next bit-plane (lower priority to N).

Significant pass Refinement pass Significant pass Refinement pass
bit plane n bit plane n bit plane n-1 bit plane n-1
A A N A
__________________ b e
ly |o |o ivialely |o |a jrie o |
[ O g A S N | S A —

| Encoding process >

Figure 2 Data arrangement in embedded color image encoding.
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Wavelet decomposition for image with
arbitrary size

Real-world images can be of any size,
especially partially cropped ones. When the image
size is appropriate, a large number of wavelet
decompositions can be performed and the energy
of an entire image will be clustered into a small
area of the highest level of all low-pass sub-
bands. Figure 3 shows that the higher the level of
wavelet transform that is applied, the higher the
compression performance that can be achieved
with the same compression algorithm. For images
of normal to large size, the optimal number of
levels may be in the range of 5-7 levels based on
the authors’ experience.

Since the conventional wavelet
decomposition separates the signal into two
equal-sized parts, a low frequency sub-band and
a high frequency one, for an image to be able to
be decomposed into L levels, it must have both
the row and column sizes divisible by 2L. For an
image with inappropriate size, a low value of L will
be used resulting in a lower energy compaction
rate and, consequently, lower compression
performance. To increase the value of L with the
conventional wavelet decomposition, some extra
pixels are added to the image at the boundary

45

(both row and column, if it is needed). This idea
originated in the work of Liang ef al. (2008) who
proposed many ways of adding or padding extra
pixels. It was concluded that padding with the
same pixels as the pixel at the border repetitively
yielded the best performance compared with other
techniques when SPIHT was a core encoder. In the
above paper, the method to encode an arbitrarily-
sized image without padding any extra pixels was
also proposed. However, the encoding results of
the original-sized images were somewhat lower in
PSNR than the padded ones. The authors of that
paper confirmed the perfect reconstruction of the
arbitrarily-sized wavelet transform.

For techniques involving multiples of
2L rectangular padding, the added pixels in each
dimension will be in the range [0,25~1]. When the
size of the original image is much larger than 2%,
the increased pixels are not noteworthy. There are
three main padding methods:

1. All pixels of the same value such as
zero (black pixels) or 255 (white pixels).

2. The repetition of the boundary pixel
of the original image. This method can minimize
the high frequency components in the wavelet

transform.

40

1 2 3

4 5 6 7

Number of Decomposition Levels

-4 0.125 bpp - 0.25 bpp A+ 0.5 bpp - 1.0 bpp

Figure 3 Peak signal-to-noise ratio (PSNR) results of a sample picture in Figure 4 using context adaptive

wavelet difference reduction at various levels of wavelet decomposition and bit-per-pixel

(bpp).
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3. The reflection of the border pixels
of the image. With this padding technique, the
wavelet coefficients in the padding area are also
areflection of the coefficients in the original area.
This is due to the symmetry of the wavelet filter
taps.

In summary, these padding techniques
produce a larger size of image and all of the pixels
are needed to be encoded and decoded definitely.
The padding pixels above have a different
purpose from the symmetrical extension for the
filtering process. The symmetrical extension at
the boundary of the image is to ensure perfect
reconstruction of the image to the last pixel at
the boundary while reducing the effect of Gibbs
phenomenon. The symmetrical extended pixels are
discarded after the transformation and the size of
the image is not changed by using a symmetrical
extension.

Figure 4 demonstrates the different
padded images. Figures 4a and 4b show padding

with all the pixels of the same color, being ‘black’
and ‘white’, respectively. Figure 4c shows the
image padded with a repetition of the border
pixels. Figure 4d is padded with the reflection of
the border pixels. These padded images are used
for illustrative purpose only.

The number of pixels in the padding area
can be calculated using Equation 3:

Nsize= E@w X2k 3)
where size is the number of row or column of the
original image, Nsize is the number of rows or
columns in the padded image, L is the number of
required wavelet decomposition levels and fx—| is
the lowest integer greater than or equal to x.

The number of pixels that must be added
in each dimension is in the range [0,2%—1] with an
estimated value of 211, The test images in Figure 5
have been used to demonstrate the size of the ratio

of extra pixels that need to be added, as shown in
Table 1.

Figure 5 Test images: (a) LOGO and (b) LOGO2 (Kasetsart University, 2013); (¢) CMPND2
(International Telecommunication Union, 2013); (d) FLOWER_FOVEON (Rawzor, 2013).
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Table 1 Percentage of padding pixels compared to the original images in Figure 5.
Image Original size Decomposition Padded size % of extra
(rowxcolumn) level (row*column) pixels
CMPND2 1,433,600 (1400x1024) 3 1,433,600 (1400x1024) 0.00
5 1,441,792 (1408x1024) 0.57
7 1,441,792 (1408x1024) 0.57
LOGO 116,245 (347%335) 3 118,272 (352%336) 1.74
5 123,904 (352x352) 6.59
7 147,456 (384x384) 26.85
LOGO2 360,000 (600%600) 3 360,000 (600%600) 0.00
5 369,664 (608%608) 2.68
7 409,600 (640x640) 13.78
FLOWER 3,429,216 (1512x2268) 3 3,435,264 (1512x2272) 0.18
FOVEON 5 3,489,792 (1536%2272) 1.77
7 3,538,944 (1536x2304) 3.20

From Table 1, when the original image
has a small size, a high decomposition level can
result in a high ratio of padding pixels.

Referring to the images in Figure 5,
LOGQO, at 7 levels, needs more than one quarter
extra padding pixels compared to original
image. Large images (CMPND2 and FLOWER _
FOVEON) need a relatively small number of
padding pixels even at the high decomposition
level.

A non-padding technique is a different
approach to increase the number of wavelet
transforms for an image with an inappropriate
size. Instead of changing the image size and using
a conventional wavelet transform that can handle
only an even number in each decomposition, the
image is kept unchanged and the wavelet transform
is modified to be able to decompose odd-numbered
sequences successfully. Starting with a signal of
arbitrary size, it is passed through lowpass and
highpass filters simultaneously. The output of each
filter will be subsampled (decimated) by choosing
even-indexed samples for the lowpass and odd-
indexed ones for the highpass. With this sampling

policy, the original image with its length being an
even number will have the same length for the two
sub-images. When the size of the original image
is an odd number, the low frequency sub-image
will have one more pixel than the high frequency
sub-image. If the size of original sequence is X,
the length of the lowpass sequence will simply be
Floor((X + 1)/ 2) or [(X + 1) / 2] and the length
of the highpass sequence can be calculated with
| X/2. This formula gives the correct results for
when X is odd and X is even, since X = L(X-i-l)/ZJ
+[.X/2] is always true for all positive integers X.
Figure 6 shows how to perform this asymmetric
wavelet transform of arbitrarily-size sequence.
The just-mentioned asymmetric decomposition
will be called asymmetric DWT Type I in this
paper. The downsampling policy of lowpass and
highpass can be interchanged; that is, the lowpass
sub-image can be selected from odd-indexed
samples and the highpass sub-image selected from
even-indexed samples. This latter method will be
called asymmetric DWT Type II. Although the
transformed coefficients of Type I and Type 11
are not exactly the same, both have very similar
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structures and guarantee perfect reconstruction.
Moreover, the coding performances of both Type I
and Type Il asymmetric DWT are almost the same.
Therefore, the PSNR results of the non-padding
method are selected to be from using only Type |
from now on in this paper.

The symmetrical extension used here is
simple symmetry without repetition at the boundary
pixel (see Figure 6b). The objective of this
symmetrical extension is for perfect reconstruction
in the inverse wavelet transform. Since the wavelet
filter has symmetrical coefficients, the wavelet-
transformed output sequence will be symmetrical
at the boundary in the same way as the extended

Kasetsart J. (Nat. Sci.) 47(6)

sequence in the spatial domain. The downsampling
of the sequence starts with the zeroth index and
collects every even numbered index of the lowpass
output sequence. For the highpass output, only
odd numbered samples are kept. The authors
intentionally left the extension pixels of the
decimated sequence in Figures 5e and 5f just to
illustrate how to appropriately extend the decoded
coefficients to obtain a perfect reconstruction
process in the reverse wavelet transform. Figure 5
can be used as a guideline to determine the suitable
type of symmetric extension for a sequence with
an even number.

(a) Original 7-pixel sequence

Apply symmetrical extension
l (no repeat at boundary)

(b) Sequence with extension

Symmetric extenswni 4 372 ‘ iTo i

5 ‘ AT Symmetric extension

(left side)

Lowpass filtering

(c) Lowpass filtered sequence

Lo i (right side)

Highpass filtering

(d) Highpass filtered sequence

a3 ol 2i1 ol 127374056 5141372
‘ Even index : 0dd index
; selection ; selection
R 2 2 R2 v
f4 2 0| Pl (3
(e) ] Down-sampling ® 1 Down-sampling
Symmetry ~ Symmetry Syr:,?}ftry \/ Symr'nlftry
with NO sy ey = with NO 3prfri3is|s i3 wi
41210} 214i6]|4: 2] wit REPEAT at | i : : i
repeatat | Eo | repeat at bound a REPEAT at
boundary boundary oundary boundary

|

Discarding extended part
V

072 476

(g) 4-pixel sequence
low frequency sub-band

(h) 3-pixel sequence l Discarding extended part
high frequency sub-band e

Li34is

Figure 6 Asymmetric wavelet decomposition (Type I) for sequence of arbitrary size, with (a)—(h)

showing the sequence.
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The problem of imperfection in the
quadtree relationship may arise in the non-padding
wavelet decomposition since the number of
children is not always four for each parent pixel.
The algorithm to address this problem has been
already stated in Liang ef al. (2008) and is also
applied in the current work.

After getting wavelet coefficients,
the encoding process will follow the methods
described in the non-list CAWDR (Lamsrichan,
2011). The PSNR results of the proposed coder
using all of the mentioned techniques are shown
in the next section.

RESULTS AND DISCUSSION

The test set of four color images
(Figure 5) of various sizes downloadable from
the Internet are used in this section. The first two
images, ‘LOGO’ and ‘LOGO?2’, are images of
logos of Kasetsart University, one of the leading
universities in Thailand. LOGO has 347 x 335
pixels, whereas LOGO2’s dimensions are 600 X
600. Kasetsart University has a circular-shaped
logo located in the middle of a white background.
The rapid changes of intensity between the logo
and the background results in sharp edge and high
frequency components in the wavelet domain
(see Figures 5a and 5b). According to its odd-
numbered size, LOGO cannot be decomposed

with conventional wavelet transform and LOGO2
can be transformed with three levels. The next test
image is ‘CMPND2’ (Figure 5c), from the test set
of the Telecommunication Standardization Sector
of the International Telecommunications Union.
With a size of 1400 x 1024 pixels, CMPND2
allows just three levels of wavelet transform.
This image represents the combination of natural
(a boy’s face) and computer-generated (text)
components in the same image. The last test image
is ‘FLOWER FOVEON’ with 1512 x 2268 pixels
(Figure 5d), which represents a natural scene
image with a combination of various frequencies
from the high (flower pollen) to middle (flower
petals) and then very low frequency of the blurred
background.

The average PSNR values of the
reconstructed images at various bit-per-pixel (bpp)
levels and at many decomposition levels can be
calculated from Equation (4).

255° @
(MSE[+MSE;+MSE, )/3

PSNR—IOIOg[

where MSE( is mean square error of the color
component C which can be red (R), green (G) or
blue (B).

Table 2 shows the performance of all
four padding techniques along with only one
non-padding technique (Type I). As expected, the
padding with abruptly-changed white and black

Table 2 Peak signal-to-noise ratio (dB) from encoding ‘FLOWER FOVEON’ with each padding

technique.
bpp Non- Black- White- Repetitive Symmetrical
padding padding padding padding padding
0.0625 38.45 37.99 37.95 38.47 38.45
0.125 41.28 40.96 40.94 41.28 41.26
0.25 44.08 43.84 43.84 44.06 44.05
0.5 46.62 46.59 46.58 46.63 46.63
0.75 48.48 48.41 48.39 48.47 48.46
1 49.15 49.10 49.09 49.13 49.12
2 51.09 51.09 51.09 51.09 51.09

The image FLOWER_FOVEON is presented in Figure 5d.
bpp = Bit-per-pixel.
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pixels resulted in high frequency components
and low compression performance and so they
cannot compete with the other padding techniques.
Consequently, both ‘white’ and ‘black’ pixel
padding will be omitted in the comparison
tables and graphs from now on. The results
from repetitive padding were always equal to
or slightly better than the symmetrical padding
because the repetitive pixels remain unchanged for
some duration and represent the lower frequency
components in the wavelet domain than in the
symmetrical padding ones. The full results of
all padding techniques are shown in detail in
Jaroensawaddipong and Lamsrichan (2013).

For the non-padding technique, the
number of wavelet coefficients to be encoded
is the same as that of the original image, which
is somewhat lower than the number of pixels
from any padding method. However, the results
from non-padding are almost the same as those

of repetitive padding. This may result from the
imperfection of the quadtree relationship in the
non-padding wavelet decomposition since the
number of children is not always four for each
parent pixel. Another reason is that the location
of the quadtree may not occur at exactly the
same spatial location as their parent (that is, it is
approximately the same, but not exactly).

Table 3 presents the coefficients of
wavelet filters used in this paper, being the well-
known CDF 9-7 and the longer CDF 17-11. The
17-11 filter is included in this experiment to show
that the longer length of the filter yields slightly
better performance for some images. Table 4
shows the experimental results of encoding all
test images using the proposed techniques. Only
the PSNR results from repetitive padding and non-
padding (modified wavelet decomposition) have
been chosen to be shown in the table since they are
among the best of all the padding techniques. In

Table 3 Wavelet filter coefficients used in the study.

Filter CDF 9-7 Analysis Synthesis
coefficient index Lowpass Highpass Lowpass Highpass
0 0.852698679 -0.788485616 0.788485616 -0.852698679
+1 0.377402856 0.418092273 0.418092273 0.377402856
+2 -0.110624404 0.040689418 -0.040689420 0.110624404
+3 -0.023849465 -0.064538883 -0.064538880 -0.023849465
+4 0.037828456 -0.037828456
Filter CDF 17-11 Analysis Synthesis
coefficient index Lowpass Highpass Lowpass Highpass
0 0.825922997 -0.758907729 0.758907729 -0.825923000
+1 0.420796285 0.417849109 0.417849109 0.420796285
+2 -0.094059200 0.040367979 -0.040367980 0.094059203
+3 -0.077263170 -0.078722001 -0.078722000 -0.077263170
+4 0.049732903 -0.014467505 0.014467505 -0.049732900
+5 0.011934565 0.014426283 0.014426283 0.011934565
+6 -0.016990640 0.016990640
+7 -0.001914290 -0.001914290
+8 0.001908832 -0.001908830
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the comparison tables or graphs, the results from
the existing standards JPEG (Wallace, 1992) and
JPEG2000 (the details of which can be found in
Taubman and Marcellin, 2002) are also included
as the reference bars. While the CDF 9-7 filter can
perform quite well for an image with sharp-edged
details, the encoding performance of the CDF
17-11 filter is slightly better for images of natural
scenes.

From all the coders in Table 4, the
mostly used JPEG standard always produced the
lowest PSNR values with a substantial margin of
2-15 dB. The proposed coders performed at the
same level as JPEG2000. Since JPEG2000 has a
large number of bits dedicated to header or side
information (for its scalability of block coding),
the PSNR results in low bit rates were not excellent
and these places are where the proposed coders

Table 4 Experimental results of encoding all test images using the proposed techniques.

CAWDR with CDF 9-7

CAWDR with CDF 17-11

Non- Repetitive ) Repetitive JPEG
Image bpp . ) Non-padding ) JPEG
padding padding (6 levels) padding 2000
(6 levels) (6 levels) (6 levels)

CMPND2  0.125 22.20 22.20 22.16 22.16 22.12 -
0.25 26.89 26.89 26.57 26.54 26.33 2091
0.5 32.35 32.34 31.90 31.89 3229  25.88
0.75 36.49 36.48 36.04 36.03 36.63  29.73
1 39.73 39.72 39.22 39.20 39.93  32.72
2 48.41 48.41 47.84 47.83 48.66  39.18

LOGO 0.125 19.22 19.16 19.25 19.17 18.64 -
0.25 20.73 20.71 20.91 20.86 2049  18.40
0.5 23.46 23.38 23.43 23.35 23.19  21.68
0.75 25.25 25.21 25.41 25.31 2526 2321
1 27.06 26.98 27.05 26.98 27.00 24.24
2 32.22 32.16 32.25 32.14 3232 29.04

LOGO2 0.125 23.16 23.16 23.30 23.33 22.98 -
0.25 25.68 25.67 25.73 25.74 25.68  22.29
0.5 29.27 29.25 29.32 29.32 29.3 26.27
0.75 31.76 31.75 31.82 31.81 3191  28.24
1 33.98 33.96 33.93 33.92 34.1 29.57
2 40.59 40.56 40.56 40.55 40.79  34.52
FLOWER 0.125 41.28 41.28 41.54 41.55 41.6 25.30
FOVEON  0.25 44.08 44.06 44.32 44.33 4442  38.39
0.5 46.62 46.63 46.90 46.90 46.9 41.98
0.75 48.48 48.47 48.58 48.56 48.1 43.63
1 49.15 49.13 49.27 49.25 48.52  44.18
2 51.09 51.09 51.24 51.24 48.52  46.33

The images are presented in Figure 5.

CAWDR = Context adaptive wavelet difference reduction; CDF 9-7 and CDF 17-11 = Cohen-Daubechies-Feauveau wavelet

filter types.
bpp = Bit-per-pixel.
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performed relatively better. For small-sized images
such as LOGO and LOGO?2, the advantage of the
low header coders remained until around 0.5 bpp.
For higher bpp values, the effectiveness of the
binary adaptive arithmetic encoder of JPEG2000
resulted in better efficiency and slightly better
gains in the PSNR. The deficiency of JPEG2000
in the very low bpp values was not seen in the
large-sized FLOWER FOVEON since its large
size led to many available bit budgets even in
the 0.125 bpp (larger than 50 kBytes available).
The results of the coders using CDF 9-7 and
17-11 filters were about the same. CDF 9-7 was
appropriate for an image with a scene containing
abrupt changes such as CMPND2, whereas CDF
17-11 performed better in the natural scene image
of the FLOWER FOVEON.

2|
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0.00
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0.00

0.0+ 0.5 0.0+ 1 2 bpp
—-CAWDR with CDF 9-7 8- CAWDR with CDF 17-11 --A- JPEG2000
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Graphical comparisons between the
proposed non-padding CAWDR using 9-7, 17-
11 filters and the JPEG2000 standard for all test
images are shown in Figure 8. The PSNR values
displayed are the values that relate to the JPEG
standard; the positive values in the graph indicate
how much better the PSNR values are compared
to the JPEG standard. It can be seen that all coders
are better than JPEG at all compression ratios for
all test images. There is some indication that the
results from JPEG2000 of FLOWER _FOVEON
at high bit rates are much lower than the proposed
coders due to the fact that JPEG2000 encodes
FLOWER FOVEON until the point of near-
lossless around 0.75 bpp and always stops
encoding more bits even though it is assigned to
encode the image to the higher bit rate.
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Figure 8 Comparison between the proposed coders and the JPEG2000 standard for the sample images:
(a) CMPND2 (b) LOGO (c) LOGO2 (d) FLOWER FOVEON. (The sample images are
presented in Figure 5. PSNR = Peak signal-to-noise ratio, bpp = Bit-per-pixel.)
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Subjective comparisons of the
reconstructed images from all three coders
provided in Table 3 are presented in Figure 9
(cropped CMPND2) and Figure 10 (cropped
FLOWER FOVEON). The blocking effect of the
JPEG image at this very low bit rate can be seen
without difficulty. The proposed coders (repetitive

padding with six levels of decomposition) reveal
more detail in the boy’s hair and shirt than
JPEG2000. The coding results of the proposed
coder for other standard test images, such as

Lenna, Barb, Bike, among others, can be found
in Lamsrichan (2011).

Figure 9 Subjective comparison for ‘CMPND?2’ image encoded at 96:1 ratio or 0.25 bit-per-pixel: (a)
JPEG, (b) JPEG2000, (c) CAWDR 17-11 CDF Filter, (d) Original and (¢) CAWDR 9-7 CDF

Filter.

Figure 10 Subjective comparison for ‘FLOWER FOVEON’ image encoded at 192:1 compression
ratio or 0.125 bit-per-pixel: (a) JPEG, (b) JPEG2000, (¢c) CAWDR 17-11 CDF Filter, (d)
Original and (¢) CAWDR 9-7 CDF Filter.
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CONCLUSION

A practical algorithm for the compression
of color images was proposed with the proposed
coder proving that it can compress color images
of arbitrary sizes successfully with substantially
better performance than the mainly used current
JPEG standard. After the conventional color
transform of the RGB components into a YCbCr
domain, many levels of decomposition could be
applied to the image of arbitrary size by padding
some extra pixels or modification of the wavelet
decomposition. The non-padding technique and
the repetitive padding technique gave the best
results among all the proposed techniques and
were comparable to the JPEG2000 standard for
images from the test set. For images with sharp-
edged details (LOGO and CMPND?2), encoders
with the CDF 9-7 filter provided satisfactory rate-
distortion performance, especially for low bit rates.
For natural scenery images of large size such as
FLOWER FOVEON, the proposed coders with the
CDF 17-11 filter gave slightly better performance
than the ones with the CDF 9-7 filter. With its fast
and simple algorithm together with low memory
requirement during the encoder process, the non-
list CAWDR encoder for arbitrarily-sized color
images is comparable with other state-of-the-art
image coders. The rate-distortion performance of
the proposed coder can be improved by using more
efficient context adaptive arithmetic coding for a
WDR-based or even a hybrid encoder which could
select whether to use normal bit-plane encoding or
WDR run-length encoding in the current sub-band
of the wavelet transform.
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