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A Land Cover Mapping Algorithm Based on a Level Set Method
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ABSTRACT

A novel supervised classification algorithm is presented for remotely sensed images using

the level set method under a statistical framework. The level set method was employed to capture the

connectivity properties of land cover classes. This work demonstrated that land cover mapping under

the maximum a posteriori criteria can be converted into an energy minimization problem of level set

functions. Since the level set functions are real-valued, the optimum solution can be easily obtained

from a gradient search technique. The experimental results showed significant improvements in term of

the classification performance of the approach on both synthetic and satellite images when compared to

the maximum likelihood classifier.

Keywords: image classification, land cover mapping, image segmentation, level set method

INTRODUCTION

Remote sensing images are widely used
in a wide range of fields such as natural resource
monitoring, urban planning, hazard assessment and
especially land cover mapping. Image classification
or land cover mapping is one of the most important
applications of remote sensed images. The task
of image classification is to categorize a pixel or
group of pixels in a remote sensing image into
one of several homogeneous land cover classes.
Although this task is usually simple for trained
personnel, it is difficult to program and hence,
there is always a need for more sophisticated image
classification algorithms. Gao and Mas (2008)
considered two different kinds of classification
methods—namely pixel-based and region-based
classifications. In pixel-based methods (Wang et
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al., 2006), a feature vector corresponding to the
detailed spectrum of reflected light is assigned
to each pixel in an image. Then, by using these
feature vectors, each pixel can be labeled into one
of'the designated land cover classes by comparison
with all signature vectors of the classes of interest.
Basically, a pixel will be labeled as Class 4 if its
feature vector is closest to the signature vector of
Class A. In region-based methods (Tarabalka et
al. 2009), firstly, the image is divided into many
regions using an image segmentation algorithm.
Then, each region is classified into a land cover
class based on its averaged feature vector in the
region. The region-based approach is suitable for
land cover mapping on remote sensing images
since the land cover classes are likely to appear
in connected regions rather than as isolated
pixels. However, since region-based approaches
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assign an entire region to one land cover class,
the performance of this approach can be severely
degraded in a scenario where the signal to noise
ratio is low (Tarabalka et al., 2009). The approach
that incorporates the spatial dependency of the
land cover class among neighboring pixels into
the pixel-based image classification should be
more robust when dealing with severe noise than
the region-based approaches since the effect of
noise can be minimized when information from the
neighboring pixels is incorporated (Kasetkasem
and Varshney, 2003).

Consequently, the objective of this paper
was to combine the pixel-based and region-based
algorithms for land cover mapping of remotely
sensed images. Instead of assigning a pixel to
one of the listed land cover classes, the approach
used determined the edge of each land cover
class such that the entire region inside the edge
belongs to only one land cover class. To find the
edge between land cover classes, the land cover
mapping problem was modified into an image
segmentation problem where active contour
models can be applied. The active contour model
was first introduced by Kass et. al. (1987) as an
image segmentation algorithm to segment objects
in an image using dynamic curves. The current
approach aimed to model the dynamic curves as
a snake that attempts to rest on the edges among
homogenous regions. The resultant position of the
snake corresponds to the minimization of an energy
function. In fact, energy minimization approaches
have been applied successfully in various image
processing problems such as Kasetkasem and
Varshney (2002, 2003), Kasetkasem et al. (2005),
Kasetkasem and Varshney (2011) and Hachama
et al. (2012). In recent years, the active contour
model has been popularly implemented using the
level set method (Osher and Sethian, 1988) and
is called the geometric active contour model. In
this model, contours are represented as the zero
level set of a higher dimensional function that may
break or merge naturally during the evolution, and
the topological changes are thus automatically

handled. Therefore, the geometric model is
suitable for the proposed approach algorithm.

MATERIAL AND METHODS

Problem statement

Let X(S) denote the land cover map
(LCM) where S is a set of pixels. We assume
that there are L land cover classes in the area of
interest and we let A € {0, 1,..., L — 1} be the
class labels. Therefore, we can express the LCM
as X(S) € AS. The label of LCM at pixel s = (u,
v) is denoted by x, which can also be called the
configuration of X(S) at the site s. The goal of the
LCM is to label each pixel in the image into one
of the known land cover classes. Figure 1 shows
an example of the labeling of a two-class LCM.
Here, the pixels outside and inside the rectangular
box are labeled as one and two to indicate that
they belong to Classes 1 and 2, respectively. As
an alternative to labeling each pixel, one can also
consider the land cover mapping process as a
border extraction problem; that is, we want to find
the borders between classes. For instance, if we
extract the border (Figure 2) between Class 1 and
Class 2 in Figure 1, we can identify that all pixels
outside and inside the border belong to Classes 1

Figure 1 Example of a two-class land cover
map.
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and 2, respectively. There are many approaches to
represent borders. For instance, a border may be
modeled as piece-wise continuous lines (Kass et
al., 1987) or graphs of vertices and borders (Osher
and Sethian, 1988). A more interesting idea is to
represent contours as the zero level set of a higher
dimensional function (such as two dimensional
to three dimensional) called the signed distance
function.

The signed distance function determines
the distance of a given point s from the boundary
Q in a space. Here, the sign is used to indicate
whether s is inside or outside Q. In this paper,
we denote ¢;(Sg) for 1 € A as a signed distance
function for Class 1 defined in a domain S = R?2
where R denotes the set of real numbers. The
domain Sy, is called the extended pixel domain, and
can be viewed as an extension of S that includes
non-integer coordinates.Since ¢(SR) is the signed
distance function, the value of ¢;(s) represents how
far a pixel s is from the edge, as given by Equation
1:

d(s, Q)if x(s) =1

b1(9)= {—d(s, Q)ifx(s) #1
where Q, is the border of the land cover class
1 and d(s, ©Q,) is the shortest distance from s to
the border Q;. For example, there are two signed

(M

distance functions, ¢;(s) and ¢,(s), indicating
whether a pixel s is inside the border of Classes 1
or 2, respectively. Figures 3a and 3b display the
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signed distance functions with respect to Class 1
and Class 2, respectively, of the LCM given in
Figure 1. We observe that, for pixels inside the
border given in Figure 2, ¢(s) is negative whereas
d,(s) is positive. The signs of ¢;(s) and ¢,(s) are
reversed when a pixel is outside the border given
in Figure 2. In fact, we have ¢;(s) = —d,(s). Note
here that both signed distance functions are zero
at the border pixels in Figure 2.

From the definition of the signed distance function,

we can represent the LCM as Equation 2:

X(8)= Ing(q)1 (9))

2

Figure 2 Border of the land cover map given in
Figure 1.
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Figure 3 Signed distance functions of (a) Class 1 and (b) Class 2 for the land cover map in Figure 1.
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where H(z) is the Heaviside function defined as
shown in Equation 3:
0, x<0
)= 150 8
Since the LCM is a function of the level
set function, the probability density function of
the LCM is the function of all signed distance
functions (Equation 4):
Pr(X) = Pr(do. ... » br_1) @)
Here and throughout the rest of the paper,
we omit (S) for the sake of abbreviation. Hence,
the marginal probability density function of the
LCM can be written as Equation 5:
exp [—E < (¢)]
4
., 01} 1s the collection of all

Pr(X)=Pr(¢)=

where ¢ = {¢y, ..
signed distance functions, Z is the normalizing

)

constant and E,(¢) is the LCM energy function
depending on the value of ¢, ..., ¢; ;. This energy
function should be defined such that land cover
classes are more likely to appear as a connected
region rather than as isolated pixels and all pixels
in the LCM must belong to one and only one land
cover class. Here, we apply the idea of the level
set method proposed in Chan and Vese (2001) to
model E,(¢), and we have Equation 6:

E\(®) = Ey(®) + E(@) + E@).  (6)
The first energy term, E,,, ensures that ¢, is a valid
signed distance function and we define the energy
term as Equation 7:

LI

()= T (Va0 )

where V is the gradient operation and a is a non-

negative constant. This term imposes the condition
that all signed distance functions in the Euclidean
space must have the magnitude of the gradient
equal to one, that is, [Vdy(s)| = 1 (Li et al., 2005).

The second and third energy terms, E,
and E, , represent the length (Li et al., 2005) and
the area (Li et al., 2005) of the zero level curve
®y(s), and are defined by Equation 8:

B (6)=23 Ye(6,&)V0 ). ®

1=0seS

and Equation 9:

E, ()= 3V, SH(b(5)) ©)

1=0 seS

respectively. Here, c(.) is one if ¢;(s) changes sign
within a pixel s, A is a non-negative constant and
v; can be positive or negative. We observe that the
terms c(¢(s))|V,(s)| in Equation 8, and H(¢;(s))
in Equation 9 have non-zero values only on and
inside the border of Class I, respectively. As a
result, a land cover class associated with a large
value of vy is penalized more, and is less likely to
occur in the LCM.

Next, we denote Y(S) as the observed
multispectral image whose observation at a pixel
s can be represented in the vector form as y, € RB
where B is the number of spectral bands. Here,
we assume further that observed data at different
pixels are statistically independent for a given
LCM, as shown by Equation 10:

Pr(Y[X)=]]Pr(ysk,). (10)
seS

By using the representation given in
Equation 2, the conditional probability can be

codp g as

L-1
Pr(Y|X)=Pr(Y|$)=]]> Pr(ylx, =1)H(¢,)
eS1=0
S )
In this paper, the observed vector for a given land

written as a function of ¢, ..

cover class is assumed to be multivariate Gaussian
distributed (Equation 12):

eXP[—;(ys ny ) = (v, )}

B 1
(2n)2 [z, |2

Pr(y,lx,) =

(12)
where p, and E,_ are the mean vector and
covariance matrix of the land cover class x,. By
substituting Equation 12 into Equation 11, the
conditional probability becomes Equation 13:
exo~E (V)]

Zy
where Equation 14 defines the relevant term:

E(YI6)=2 3 H (6 (5))[ (v )" 57 (v, )

2 1=0seS

Pr(Y|p)= (13)
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1t (14)

and Zy is a normalizing constant. Note again
that the term H(¢;(s)) is one if ¢;(s) > 0 and zero
otherwise.

By using the chain rule, the a posteriori
probability of the LCM given the observed
multispectral images can be written as Equation
15:

Pr(Y|¢)Pr(¢)
Pr(Y)
Since Pr(Y) is independent of the choice

Pr(XY)="Pr(§Y)= . (15)

of ¢, it can be treated as a constant. Hence, we have
Equation 16:

Pr(¢]Y)=CJ [Pr(YIo)Pr(¢).

seS

(16)

By substituting Equation 13 into Equation 16, we
obtain Equation 17:

Pr(9lY)= —exp[ (oY) ], (17)

where Z’ is a normalizing constant and independent
of the choice of X, and Equation 18:
E(§]Y) = Ex (0)+E(YIp). (18)
By substituting Equation 6 — Equation
9 and Equation 14 into Equation 18, we obtain
Equation 19:

E(¢lY)= Z

> SH(6)| (v, —m)'
= (vo-m)+infz]| (19

Next, we approximate the summation over all
pixels in S by the integration over Sy and the above
equation can be written as Equation 20:

L-1

B@Y)~ £ {2081-1) 2006 v0+vH(h)

1=0

S [-w) 5 ) el s (20)

Note here that we replace the function c(.) by the
impulse function 3(.) since [_s 8(¢;)dsis the
length of the border of Class 1. We also omit the
term (s) for the sake of abbreviation.

Optimum land cover mapping problem

The classifier based on the maximum a
posteriori (MAP) criterion selects the most likely
LCM among all possible LCMs given the observed
image. The resulting probability of error is the
minimum among all other classifiers. The MAP
criterion is expressed as Equation 21 (Van Trees,
1968 and Varshney 1997):

X = arg max [Pr(X]Y)] 1)

In general, Pr(X|Y) is a non-convex
function and, therefore, a conventional optimization
algorithm may not be applicable to solve Equation
21. Furthermore, the number of possible LCMs
is extremely large. For instance, there are more
than 1.267 x 103% possible LCM images assuming
that an LCM is a binary image (having only two
classes) of size 10 x 10 pixels. For multiclass
problems such as land cover classification, this
number increases greatly. As a result, in this paper,
we propose to find the optimum solution with
respect to ¢ instead. By using Equations 15 and
17, the optimization problem becomes Equation
22:

¢ =arg ragl[E(MY)] (22)
Optimization algorithm

Here, we assume that an analyst selects
a sufficient number of training pixels from the
observed image. These training pixels are used to
estimate the unknown parameters (for example,
mean vectors and covariance matrices) used in the
characterization of each land cover classes. From
our image model, and since ¢y, ... , ¢;_; are real-
value functions, the optimum solution of Equation
22 can be obtained by letting the derivative of
E(¢]Y) with respect to ¢; for be equal to zero
(Equation 23):

0

—E(9Y)=0;

1=0,1,...,.L—1.
of,

(23)
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By the calculus of variations (Li et al.,
2005), the first variation of the above energy
function can be written as Equation 24:
OE (9014 Y)
oy

~ {‘" d”(fiilﬂ (o o] Gt [ rvate)

#2300 (v -m) 5 () izl | 24)

where A is the Laplacian operator (Evans, 1998)

and div is the Divergence operator (Evans, 1998).
Therefore, the function ¢ that minimizes this

function satisfies the Euler Lagrange equations
OE(9gs--,0p1[Y)

- = 0. The steepest descent process for
o

minimization of the function E(¢,,...,¢; _;|Y ) can
be employed and we have Equation 25:
E(¢5,....0F Y
kel _ gk g (0 L ) (25)

0y

where the superscript k = 0,1,2, ... denotes the
iteration number, T > 0 is the step size and (I)? is
the initial signed distance function of Class 1. In
this work, the initial signed distance functions are
derived from the initial LCM denoted by X,;.
Here, the signed distance function at a pixel s of
Class 1 is set to a positive value p if a pixel s in the
initial LCM belongs to Class 1, and is set to — p,
otherwise (Equation 26):

P Xinit (S):l
¢1 ( ) { —Ps Xinit (S)?&l

where X;,;(s) is the label of a pixel s in the initial

(26)

LCM. Note here that, in this paper, p is equal to 2.

Since the derivative given in Equation
24 involves the impulse function, the derivative
cannot be computed numerically. As a result,
we follow the work of Samson et al. (2000)
by approximating the Heaviside and impulse
functions as Equation 27:

1[1+¢+lsm( D |¢|<e
2 € T 27)

1, o>e€
0, O <—e€,

H, (¢i):

and Equation 28:

5, (4)=—=" = 214»(”""5[ D =¢ (25

doy 0, 0] > €.
respectively. Here € is a small positive value and,
in this paper, we use the value of € equal to 1.0.
By applying the approximation given in
Equation 28 into Equation 24, the first variation
can be approximated as Equation 29:

OE (-, 0 1Y)
Oy
where (Equation 30):

__ URIE Ve
AE, otl:(l)l dlv(lvq)llﬂ h8€(¢l)dlv(|v¢llj

8, (00) 8 ()] (v =) =7 (3, —w) +nf3
(30)
Hence, from Equation 30, a new set of signed

~ AE, (29)

distance functions can be obtained from Equation
31:
—tAD*

o*! = ok (31)

where ®F =[¢15 ¢1E,1]T is a vector of
the signed distance functions at a pixel and
AD* =[AE,
for the k™ iteration. Here, (.)T denotes the matrix

AE| ]T is the updating vector

transpose operation.

For a given pixel, the new set of signed
distance functions given in Equation 31 can lead
to three scenarios: 1) only one signed distance
function is greater than zero; 2) two or more signed
distance functions are greater than zero; and 3)
no signed distance function is greater than zero.
In the first scenario, one and only one land cover
class will be presented on a given pixel whereas
the second and third scenarios correspond to
cases where more than one land cover class are
present and all land cover classes are absent on a
pixel, respectively. Clearly, the second and third
scenarios produce an invalid LCM. As a result, we
propose to limit the update direction of Equation
31 to be in the region such that ¥ 7 H(¢; ) =1to
ensure that one and only one land cover class is
present on a given pixel. To do that, the update
direction must be perpendicular to the gradient of



Kasetsart J. (Nat. Sci.) 47(6) 959

Y120 H, (¢,) = 1. Hence, the valid update direction
is given by Equation 32:

AD™ = ADOF —(AD® n)n (32)
where (. , . ) is the inner product operation, and
from Equation 33:

LB 0) 8 (0un)]
[5:(00) = 8.(41)]

is the normalized gradient vectorof Y=g H, (¢;) =1.
Again, we replace H(¢;) with H(¢;) due to the
same implementation reason given early in this

(33)

section. Figure 4 summarizes the proposed
algorithm given in this section.

RESULTS AND DISCUSSION

The performance of the proposed
algorithm was examined with simulated and actual
satellite data sets. These experiments compared the
performance of the algorithm with the maximum
likelihood classifier (MLC) since the MLC is well-

I Satellite image I

¥

known and widely used in remote sensing image
classification (Richards and Xiuping, 1999).

Simulated dataset

The simulated experiment used the 256
x 256 pixel gray scale image with two classes
with mean values of 0 and 100 for Classes 0 and
1, respectively. Figure 5 displays the ground truth
image used in this example. Note here that Class 1
appears as aring in Figure 5. Next, the independent
additive Gaussian noises with zero mean and
standard deviation of o were added to all pixels
in the noiseless image to produce the observed
noisy image. The values of ¢ were varied from 10
to 1,000 to simulate different level of randomness.
For 6 = 10, the signal to noise ratio (SNR) of the
observed noisy image was equal to 20 dB while,
for 6 = 1,000, the SNR was equal to dB. Figures
6a—~6¢ show the noisy images for the SNRs equal
to 20, -2.22, -20dB, respectively.

<——— Input data

Mean and covariance matrix calculation

<———— Training process

) 2

Maximum likelihood classifier

< Initializing process

A4

Energy calculation

A 4

Updating surface

<«————  Evolution process

\ 4

Land cover mapping image

Figure 4 Flow chart for proposed algorithm.

< Output data
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Next, the noisy images were initially
classified using the maximum likelihood classifier
(Wang et al., 2006) based on the given mean values
and noise standard deviation. The initial classified
images are given in Figures 7a—7c for various noise

Figure 5 Synthetic image with two classes.

Figure 6 Noisy images with signal to noise ratio of: (a) 20dB, (b) -2.22dB and (c) -20dB.

levels. As the noise standard deviation increased,
the number of isolated pixels increased. In
particular, for the noise standard deviation equal to
1,000, the initial LCM became very noisy and the
structure of the ring disappeared. The percentages
of correctly classified pixels of the initial LCMs for
o equal to 10, 129.15 and 1,000 were 100, 65.12
and 52.32%, respectively.

These initial LCMs were submitted to
the proposed algorithm and the resulting LCMs
obtained from the algorithms after 1,000 iterations
for the parameter setup of a = 0.05, A = 30.0, v,
=v; =-15.0, and t = 0.003 are shown in Figures
8a—8c, which show that the algorithm can
successfully extract the ring structure back for ¢
= 10 and 129.15. However, the algorithm could
only partially extract the ring structure back from

Figure 7 Classified images using the maximum likelihood functions with signal to noise ratio of: (a)

20dB, (b) -2.22dB and (c) -20dB.
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the noisy observed image for the case where ¢
= 1,000. The percentages of correctly classified
pixels obtained from the proposed algorithm for
o equal to 10, 129.15 and 1,000 were 100, 86.96
and 65.49%, respectively.

Next, the above experiment was repeated
50 times and the averaged percentages of correctly
classified pixels obtained from the proposed
algorithm and the maximum likelihood classified
are summarized in Table 1. From the f-statistics
and the critical value for 5% type I error given
in Table 1, the resulting LCMs obtained from
the proposed algorithm were significantly better

than those obtained from the MLC for ¢ = 16.68
—215.44. In fact, only at very high SNR (¢ = 10)
did both the proposed algorithm and the MLC
perform similarly because both algorithms made
very few classification errors.

Satellite data set

A multispectral image of a part of the
Kasetsart University campus, Bangkok, Thailand
from the QuickBird satellite (Figure 9) and
ground data obtained by visual reference (Figure
10) were used for this experiment. Eight land
cover classes were identified—grass, water, road,

Figure 8 Classified images using the proposed method with signal to noise ratio of: (a) 20dB, (b)

-2.22dB, (c) -20dB.

Table 1 Percentages of correctly classified pixels for various noise levels.

Noise MLC Proposed Algorithm Critical Value
standard ~ SNR Mean SD Mean SD t-statistic ~ for 5% Type |
deviation Error

10 20.0 100.0 0.0002  100.0 0.0 0.0 2.010
16.68  15.56 99.86 0.017 100.0 0.0026 7.91" 2.010
27.83  11.11 96.39 0.0644 99.92 0.0128 380.12" 2.010
46.42 6.67 85.91 0.129 99.14 0.0444 685.832" 2.000
77.43 2.22 74.08 0.1313 95.26 0.1611 720.623" 1.986
129.15  -2.22 65.05 0.192 87.18 0.3668 377.868" 1.993
21544  -6.67 59.16 0.1799 78.36 0.4958 257.473" 2.000

359.38  -11.11 55.50 0.1969 71.67 0.7147 154.23* 2.003

599.48 -15.55 53.3003 0.1927 67.1867 0.5807 -160.48" 2.001
1000 -20.0 52.0265 0.171 64.3973 0.6008 -140.04" 2.003

SNR = Signal to noise ratio; MLC = Maximum likelihood classifier.

* = Significant difference at P < 0.05 level of testing.
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shadow, building1, building2, building3 and tree.
Building1, building2 and building3 corresponded
to different roof colors in the satellite image.
In the first stage, mean vectors and covariance
matrices were estimated for all classes by manually
selecting 1,242, 1,481, 1,144,2,501,4,012, 2,667,
3,023 and 22,870 pixels for buildingl, building2,
building3, grass, water, road, shadow and tree,
respectively. The mean vectors for the eight classes
are given in Table 2 (the covariance matrices are
not shown for brevity). These mean vectors and
the covariance matrices were used to obtain the

initial LCM (Figure 11). A visual comparison
between the initial LCM and the ground data
(Figure 10) illustrates the poor performance of

shadow water buidling3 buidling2

Kasetsart J. (Nat. Sci.) 47(6)

the MLC since there are many isolated pixels
in the initial LCM. Next, the initial LCM, mean
vectors and covariance matrices were input to the
proposed algorithm and the resulting LCM after
2,200 iterations is displayed in Figure 12. In this
experiment, the level set parameters were: .= 1.0,
A=25.0, Vgrass = Vwater = Vroad = Vshadow = Vbuildingl =
Vbuilding2 = Vbuilding3 = Viree = 39-0, and T = 0.0005.

By visual inspection of Figures 11 and
12, the resulting LCM obtained from the proposed
algorithm is more connected with a substantial
performance improvement over the initial LCM.
Furthermore, the LCM in Figure 12 matched well
with the reference data in terms of the smoothness
of the classes. There were many mislabeled

tree grass building1 road

Figure 10 Ground data for sample area at Kasetsart University campus, Bangkok, Thailand.
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pixels between the classes of tree and grass in
the initial LCM. However, these mislabeled
pixels disappeared in the resulting LCM. For the
quantitative performance evaluation, the confusion
matrices for the initial LCMs and the resulting
LCMs are shown in Tables 3 and 4. The majority

Table 2 Mean vectors for all classes for sample

of pixels belonged to the tree class. From Tables
3 and 4, the percentages of correctly classified
pixels for the initial and resulting LCMs were
54.52 and 71.03%, respectively. The performance
difference of more than 15% demonstrates the
superior performance of the proposed algorithm.

area at Kasetsart University campus, Bangkok,

Thailand.
Red Blue Green Near Infrared
Building1 235.8 295.6 148.3 163.4
Building2 333.2 523.6 385.4 477.7
Building3 286.3 408.7 328.6 408.4
Grass 241.1 341.2 209.9 502.5
Water 260.7 357.0 228.2 304.2
Road 272.9 380.4 249.0 322.1
Shadow 230.4 288.7 155.3 210.6
Tree 232.7 306.7 172.0 387.5

Figure 11 Initial land cover map for sample area at Kasetsart University campus, Bangkok,

Thailand.

Figure 12 Resulting land cover map for sample area at Kasetsart University campus, Bangkok, Thailand

from proposed method after 2200 iterations.
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Next, the producer (Table 5) and user
(Table 6) accuracies were compared for each land
cover class between the initial (MLC) and resulting
LCMs. The producer accuracies for the classes of
tree and grass increased while the accuracies of the
other land cover classes decreased. In particular,
the producer accuracy for tree increased more than
75% mainly because in the initial LCM (Figurel1),
a large number of pixels belonging to the tree
class were mislabeled as grass. After applying
the initial LCM to the proposed algorithm, these

Kasetsart J. (Nat. Sci.) 47(6)

small mislabeled patches were removed and
replaced by the surrounding tree class. Since the
MAP criteria were employed in this paper, the
goal of the proposed algorithm was to minimize
the overall probability of misclassification for
all land cover classes rather than the probability
of misclassification for an individual land cover
class. As a result, the overall misclassification
probably depended substantially on the mislabeled
pixels in the class of tree because the majority
of the area of interest was covered by trees. For

Table 3 Confusion matrix for the initial land cover map for sample area at Kasetsart University

campus, Bangkok, Thailand.

Classified image

Number of

Buildingl Building2 Building3 Grass Water Road Shadow Tree  ground data
pixels
Ground Data
Building1 465 10 5 13 24 21 862 148 1548
Building2 4 1233 59 62 163 263 45 57 1886
Building3 3 75 1034 21 49 60 5 16 1263
Grass 71 38 2319 48 29 33 183 2723
Water 46 95 88 89 3205 585 461 297 4866
Road 21 176 82 143 1104 1215 368 295 3404
Shadow 204 107 22 75 364 177 2536 540 4025
Tree 222 520 245 3936 2313 984 4538 12527 25285
Number 967 2287 1573 6658 7270 3334 8848 14063 45000
classified

Table 4 Confusion matrix for the resulting land cover map for sample area at Kasetsart University

campus, Bangkok, Thailand.

Classified image Number of

Buildingl Building2 Building3 Grass Water Road Shadow Tree  ground data
pixels

Ground Data

Building1 238 2 0 46 2 0 762 498 1548
Building2 286 771 0 348 68 11 24 378 1886
Building3 13 0 886 129 6 1 20 208 1263
Grass 48 9 0 2418 24 9 27 188 2723
Water 39 0 22 151 2963 262 206 1223 4866
Road 71 8 0 291 473 687 73 1801 3404
Shadow 13 24 0 236 241 9 2010 1492 4025
Tree 121 27 37 811 870 72 1358 21989 25285
Number 829 841 945 4430 4647 1051 4480 27777 45000

classified
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the user accuracy, most land cover classes had
higher accuracies when the resulting LCM was
compared with the initial one. However, the
classes of buildingl and tree had low accuracies
due to the increase in the mislabeled pixels in the
resulting LCM. The main reason for the decrease
in the user accuracy for the tree class was due to
the small areas of roads, water and shadows that
surrounded the trees and were classified in the tree
class. Since the proposed algorithm promotes a
more connected land cover map, the small patches
of water, shadow and road were overwhelmed by
the large patch of the tree class.

CONCLUSION

A novel supervised classification
algorithm for remotely sensed images was
presented using the level set method under a

statistical framework. The land cover mapping
problem was able to be converted to the energy
minimization of the signed distance functions
where the gradient search technique could be
applied. As a result, the proposed method could
be easily implemented. The performance of the
proposed algorithm using synthetic and satellite
images was demonstrated. The experimental
results showed that the proposed algorithm could
substantially outperform the maximum likelihood
classifier for a simulated and real dataset.
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Land cover class MLC (%) Resulting LCM (%)
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Building2 5391 91.68
Building3 65.73 93.76
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Water 44.09 63.75
Road 36.44 65.37
Shadow 28.66 4487
Tree 89.08 79.16
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