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Abstract

	 A novel supervised classification algorithm is presented for remotely sensed images using 
the level set method under a statistical framework. The level set method was employed to capture the 
connectivity properties of land cover classes. This work demonstrated that land cover mapping under 
the maximum a posteriori criteria can be converted into an energy minimization problem of level set 
functions. Since the level set functions are real-valued, the optimum solution can be easily obtained 
from a gradient search technique. The experimental results showed significant improvements in term of 
the classification performance of the approach on both synthetic and satellite images when compared to 
the maximum likelihood classifier.
Keywords: image classification, land cover mapping, image segmentation, level set method

Introduction

	 Remote sensing images are widely used 
in a wide range of fields such as natural resource 
monitoring, urban planning, hazard assessment and 
especially land cover mapping. Image classification 
or land cover mapping is one of the most important 
applications of remote sensed images. The task 
of image classification is to categorize a pixel or 
group of pixels in a remote sensing image into 
one of several homogeneous land cover classes. 
Although this task is usually simple for trained 
personnel, it is difficult to program and hence, 
there is always a need for more sophisticated image 
classification algorithms. Gao and Mas (2008) 
considered two different kinds of classification 
methods—namely pixel-based and region-based 
classifications. In pixel-based methods (Wang et 

al., 2006), a feature vector corresponding to the 
detailed spectrum of reflected light is assigned 
to each pixel in an image. Then, by using these 
feature vectors, each pixel can be labeled into one 
of the designated land cover classes by comparison 
with all signature vectors of the classes of interest. 
Basically, a pixel will be labeled as Class A if its 
feature vector is closest to the signature vector of 
Class A. In region-based methods (Tarabalka et 
al. 2009), firstly, the image is divided into many 
regions using an image segmentation algorithm. 
Then, each region is classified into a land cover 
class based on its averaged feature vector in the 
region. The region-based approach is suitable for 
land cover mapping on remote sensing images 
since the land cover classes are likely to appear 
in connected regions rather than as isolated 
pixels. However, since region-based approaches 
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assign an entire region to one land cover class, 
the performance of this approach can be severely 
degraded in a scenario where the signal to noise 
ratio is low (Tarabalka et al., 2009). The approach 
that incorporates the spatial dependency of the 
land cover class among neighboring pixels into 
the pixel-based image classification should be 
more robust when dealing with severe noise than 
the region-based approaches since the effect of 
noise can be minimized when information from the 
neighboring pixels is incorporated (Kasetkasem 
and Varshney, 2003). 
	 Consequently, the objective of this paper 
was to combine the pixel-based and region-based 
algorithms for land cover mapping of remotely 
sensed images. Instead of assigning a pixel to 
one of the listed land cover classes, the approach 
used determined the edge of each land cover 
class such that the entire region inside the edge 
belongs to only one land cover class. To find the 
edge between land cover classes, the land cover 
mapping problem was modified into an image 
segmentation problem where active contour 
models can be applied. The active contour model 
was first introduced by Kass et. al. (1987) as an 
image segmentation algorithm to segment objects 
in an image using dynamic curves. The current 
approach aimed to model the dynamic curves as 
a snake that attempts to rest on the edges among 
homogenous regions. The resultant position of the 
snake corresponds to the minimization of an energy 
function. In fact, energy minimization approaches 
have been applied successfully in various image 
processing problems such as Kasetkasem and 
Varshney (2002, 2003), Kasetkasem et al. (2005), 
Kasetkasem and Varshney (2011) and Hachama 
et al. (2012). In recent years, the active contour 
model has been popularly implemented using the 
level set method (Osher and Sethian, 1988) and 
is called the geometric active contour model. In 
this model, contours are represented as the zero 
level set of a higher dimensional function that may 
break or merge naturally during the evolution, and 
the topological changes are thus automatically 

handled. Therefore, the geometric model is 
suitable for the proposed approach algorithm.

Material And Methods

Problem statement
	 Let X(S) denote the land cover map 
(LCM) where S is a set of pixels. We assume 
that there are L land cover classes in the area of 
interest and we let Λ ∈ {0, 1,…, L – 1} be the 
class labels. Therefore, we can express the LCM 
as X(S) ∈ ΛS. The label of LCM at pixel s = (u, 
v) is denoted by xs which can also be called the 
configuration of X(S) at the site s. The goal of the 
LCM is to label each pixel in the image into one 
of the known land cover classes. Figure 1 shows 
an example of the labeling of a two-class LCM. 
Here, the pixels outside and inside the rectangular 
box are labeled as one and two to indicate that 
they belong to Classes 1 and 2, respectively. As 
an alternative to labeling each pixel, one can also 
consider the land cover mapping process as a 
border extraction problem; that is, we want to find 
the borders between classes. For instance, if we 
extract the border (Figure 2) between Class 1 and 
Class 2 in Figure 1, we can identify that all pixels 
outside and inside the border belong to Classes 1 

Figure 1	 Example of a two-class land cover 
map.
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and 2, respectively. There are many approaches to 
represent borders. For instance, a border may be 
modeled as piece-wise continuous lines (Kass et 
al., 1987) or graphs of vertices and borders (Osher 
and Sethian, 1988). A more interesting idea is to 
represent contours as the zero level set of a higher 
dimensional function (such as two dimensional 
to three dimensional) called the signed distance 
function. 
	 The signed distance function determines 
the distance of a given point s from the boundary 
Ω in a space. Here, the sign is used to indicate 
whether s is inside or outside Ω. In this paper, 
we denote φ1(SR) for 1 ∈ Λ as a signed distance 
function for Class l defined in a domain SR ⊂ ℜ2 
where ℜ denotes the set of real numbers. The 
domain SR is called the extended pixel domain, and 
can be viewed as an extension of S that includes 
non-integer coordinates.Since φ1(SR) is the signed 
distance function, the value of φ1(s) represents how 
far a pixel s is from the edge, as given by Equation 
1:

	 φl (s) = −d(s, Ωl)if x(s) ≠ l




   d(s, Ωl)if x(s) = l
	 (1)

where Ω1 is the border of the land cover class 
l and d(s, Ω1) is the shortest distance from s to 
the border Ω1. For example, there are two signed 
distance functions, φ1(s) and φ2(s), indicating 
whether a pixel s is inside the border of Classes 1 
or 2, respectively. Figures 3a and 3b display the 

signed distance functions with respect to Class 1 
and Class 2, respectively, of the LCM given in 
Figure 1. We observe that, for pixels inside the 
border given in Figure 2, φ1(s) is negative whereas 
φ2(s) is positive. The signs of φ1(s) and φ2(s) are 
reversed when a pixel is outside the border given 
in Figure 2. In fact, we have φ1(s) = –φ2(s). Note 
here that both signed distance functions are zero 
at the border pixels in Figure 2. 
From the definition of the signed distance function, 
we can represent the LCM as Equation 2:

	 X lH
l

L

lS S( ) = ( )( )
=

−

∑
0

1
φ 	 (2)

Figure 2	 Border of the land cover map given in 
Figure 1.

Figure 3	 Signed distance functions of (a) Class 1 and (b) Class 2 for the land cover map in Figure 1.
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where H(z) is the Heaviside function defined as 
shown in Equation 3:

	 H z( ) = <
≥{0 0

1 0
,
,
    x
    x 	 (3)

	 Since the LCM is a function of the level 
set function, the probability density function of 
the LCM is the function of all signed distance 
functions (Equation 4):
	 Pr(X) = Pr(φ0, … , φL–1)	 (4)
	 Here and throughout the rest of the paper, 
we omit (S) for the sake of abbreviation. Hence, 
the marginal probability density function of the 
LCM can be written as Equation 5:

	 Pr Pr
exp

X
E
Z

X( ) = ( ) =
− ( ) φφ

φφ
	 (5)

where ф = {φ0, … , φL–1} is the collection of all 
signed distance functions, Z is the normalizing 
constant and Ex(ф) is the LCM energy function 
depending on the value of φ0, … , φL–1. This energy 
function should be defined such that land cover 
classes are more likely to appear as a connected 
region rather than as isolated pixels and all pixels 
in the LCM must belong to one and only one land 
cover class. Here, we apply the idea of the level 
set method proposed in Chan and Vese (2001) to 
model Ex(ф), and we have Equation 6:
	 Ex(ф) = Ep(ф) + E1(ф) + Ea(ф).	 (6)
The first energy term, Ep, ensures that φ1 is a valid 
signed distance function and we define the energy 
term as Equation 7:

	 E sp
l

L

s
lφφ( ) = ∇ ( ) −

=

−

∈
∑∑σ φ

0

1
21

2
1

S
( ) 	 (7)

where ∇ is the gradient operation and α is a non-
negative constant. This term imposes the condition 
that all signed distance functions in the Euclidean 
space must have the magnitude of the gradient 
equal to one, that is, |∇φl(s)| = 1 (Li et al., 2005).
	 The second and third energy terms, E1 
and Ea , represent the length (Li et al., 2005) and 
the area (Li et al., 2005) of the zero level curve 
φl(s), and are defined by Equation 8:

	 E c s sl
l

L

s
l lφφ( ) = ( )( ) ∇ ( )

=

−

∈
∑∑λ φ φ

0

1

S
,	 (8)

and Equation 9:

	 E H sa
l

L

s
lφφ( ) = ( )( )

=

−

∈
∑ ∑

0

1

1ν φ
S

,	 (9)

respectively. Here, c(.) is one if φl(s) changes sign 
within a pixel s, λ is a non-negative constant and 
ν1 can be positive or negative. We observe that the 
terms c(φ1(s))|∇φ1(s)| in Equation 8, and H(φ1(s)) 
in Equation 9 have non-zero values only on and 
inside the border of Class l, respectively. As a 
result, a land cover class associated with a large 
value of v1 is penalized more, and is less likely to 
occur in the LCM.
	 Next, we denote Y(S) as the observed 
multispectral image whose observation at a pixel 
s can be represented in the vector form as ys ∈ ℜB 
where B is the number of spectral bands. Here, 
we assume further that observed data at different 
pixels are statistically independent for a given 
LCM, as shown by Equation 10:
	 Pr Pr .Y|X |x

s
s s( ) = ( )

∈
∏
S

y 	 (10)

	 By using the representation given in 
Equation 2, the conditional probability can be 
written as a function of φ0, … , φL–1 as

Pr Pr PrY|X Y| |x l H
s l

L

s s l( ) = ( ) = =( ) ( )
∈ =

−

∏∑φφ
S 0

1
y φ

				   (11)
In this paper, the observed vector for a given land 
cover class is assumed to be multivariate Gaussian 
distributed (Equation 12):

Pr
exp

y
y y

s s

s x
T

x s x

B

x

|x
s s s

s

( ) =
− ( ) ( )





( )

− −−1
2

2

1

2

1
2

µµ µµΣ

Σπ

	

				   (12)
where μxs and Exs are the mean vector and 
covariance matrix of the land cover class xs. By 
substituting Equation 12 into Equation 11, the 
conditional probability becomes Equation 13:

	 Pr
exp

Y|
E Y|
ZY

φφ
φφ

( ) =
− ( )  	 (13)

where Equation 14 defines the relevant term:

E Y| H s
l

L

s
l s l

T
l s l lφφ µµ µµ( ) = ( )( ) ( ) ( ) +



− −

=

−

∈

−∑∑1
2 0

1
1

S
φ y yΣ Σln ,
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E Y| H s
l

L

s
l s l

T
l s l lφφ µµ µµ( ) = ( )( ) ( ) ( ) +



− −

=

−

∈

−∑∑1
2 0

1
1

S
φ y yΣ Σln , 			  (14)

and ZY is a normalizing constant. Note again 
that the term H(φ1(s)) is one if φ1(s) > 0 and zero 
otherwise. 
	 By using the chain rule, the a posteriori 
probability of the LCM given the observed 
multispectral images can be written as Equation 
15:

         Pr Pr
Pr Pr

Pr( )
.X|Y |Y

Y|
Y

( ) = ( ) =
( ) ( )

φφ
φφ φφ

	 (15)

	 Since Pr(Y) is independent of the choice 
of ф, it can be treated as a constant. Hence, we have 
Equation 16:
         Pr Pr Pr .φφ φφ φφ|Y C Y|

s
( ) = ( ) ( )

∈
∏
S

	 (16)

By substituting Equation 13 into Equation 16, we 
obtain Equation 17:

	 Pr exp ,φφ φφ|Y
Z'

E |Y( ) = − ( ) 
1 	 (17)

where Z´ is a normalizing constant and independent 
of the choice of X, and Equation 18:
	 E |Y E E Y|Xφφ φφ φφ( ) = ( ) + ( ). 	 (18)
	 By substituting Equation 6 – Equation 
9 and Equation 14 into Equation 18, we obtain 
Equation 19:

	
E |Y s s s

l

L

s
l

l

L

s
l lφφ( ) = ∇ ( ) −( ) + ( )( ) ∇ ( )

=

−

∈ =

−

∈
∑∑ ∑∑

0

1 2

0

1

2
1

S S

α
φ λ φ φc

	
		 E |Y s s s

l

L

s
l

l

L

s
l lφφ( ) = ∇ ( ) −( ) + ( )( ) ∇ ( )

=

−

∈ =

−

∈
∑∑ ∑∑

0

1 2

0

1

2
1

S S

α
φ λ φ φc  +	

		  + ( )( )
=

−

∈
∑∑
l

L

s
lH s

0

1

1
S
ν φ  +

		
+ ( ) ( ) ( ) +



− −

=

−

∈

−∑∑1
2 0

1
1

l

L

s
l s l

T
l s l lH

S
φ y yµµ µµΣ Σln

		 + ( ) ( ) ( ) +



− −

=

−

∈

−∑∑1
2 0

1
1

l

L

s
l s l

T
l s l lH

S
φ y yµµ µµΣ Σln 	 (19)

Next, we approximate the summation over all 
pixels in S by the integration over SR and the above 
equation can be written as Equation 20:

E |Y H H
l

L

l l l l l s l
Tφφ µµ( ) ≈ ∇ −( ) + ( ) ∇ + ( ) + ( ) ( )−

=

−

∑
0

1 2
12

1 1
2

α
φ λδ φ φ ν φ φ y ΣΣ Σl s l ls R

−
∈

−( ) +











∫ 1 y µµ ln ds

S

   E |Y H H
l

L

l l l l l s l
Tφφ µµ( ) ≈ ∇ −( ) + ( ) ∇ + ( ) + ( ) ( )−

=

−

∑
0

1 2
12

1 1
2

α
φ λδ φ φ ν φ φ y ΣΣ Σl s l ls R

−
∈

−( ) +











∫ 1 y µµ ln ds

S
	 (20)

Note here that we replace the function c(.) by the 
impulse function δ(.) since δ φls ds

R
( )∫ ∈S is the 

length of the border of Class l. We also omit the 
term (s) for the sake of abbreviation.

Optimum land cover mapping problem
	 The classifier based on the maximum a 
posteriori (MAP) criterion selects the most likely 
LCM among all possible LCMs given the observed 
image. The resulting probability of error is the 
minimum among all other classifiers. The MAP 
criterion is expressed as Equation 21 (Van Trees, 
1968 and Varshney 1997):
	 X X|Yopt

X
= ( ) arg max Pr 	 (21)

	 In general, Pr(X|Y) is a non-convex 
function and, therefore, a conventional optimization 
algorithm may not be applicable to solve Equation 
21. Furthermore, the number of possible LCMs 
is extremely large. For instance, there are more 
than  1.267 × 1030 possible LCM images assuming 
that an LCM is a binary image (having only two 
classes) of size 10 × 10 pixels. For multiclass 
problems such as land cover classification, this 
number increases greatly. As a result, in this paper, 
we propose to find the optimum solution with 
respect to φ1 instead. By using Equations 15 and 
17, the optimization problem becomes Equation 
22:
	 φφ φφ

φφ

opt E |Y= ( ) ( )
arg min 	 (22)

Optimization algorithm
	 Here, we assume that an analyst selects 
a sufficient number of training pixels from the 
observed image. These training pixels are used to 
estimate the unknown parameters (for example, 
mean vectors and covariance matrices) used in the 
characterization of each land cover classes. From 
our image model, and since φ0, … , φL–1 are real-
value functions, the optimum solution of Equation 
22 can be obtained by letting the derivative of 
E(ф|Y) with respect to φ1 for be equal to zero 
(Equation 23): 

          ∂
∂

( ) = = −
φl

E |Y     l Lφφ 0 0 1 1; , , , . 	 (23)
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	 By the calculus of variations (Li et al., 
2005), the first variation of the above energy 
function can be written as Equation 24:

	

∂ …( )
∂

−E Y|o L

l

φ φ

φ

, , 1

≈ − −
∇
∇























− ( ) ∇
∇









 +α φ

φ
φ

λδ φ
φ
φ

νl
l

l
l

l

l
ldiv div δδ φl( )

+ ( ) ( ) ( ) +



− −−1

2
1δ φ µ µl s l

T
l s l ly yΣ Σln 	 (24)

where ∆ is the Laplacian operator (Evans, 1998) 
and  div is the Divergence operator (Evans, 1998). 
Therefore, the function φ that minimizes this 
function satisfies the Euler Lagrange equations 
∂ …( )

∂
−E Y|o Lφ φ

φ

, , 1  = 0. The steepest descent process for 
minimization of the function E |Yo Lφ φ, ,…( )−1  can 
be employed and we have Equation 25:

	 φ φ τ
φ φ

φl
k

l
k o

k
L
k

l

E |Y
+ −

= −
∂ …( )

∂
1 1, ,

	 (25)

where the superscript k = 0,1,2, … denotes the 
iteration number, τ > 0 is the step size and φl

0 is 
the initial signed distance function of Class l. In 
this work, the initial signed distance functions are 
derived from the initial LCM denoted by Xinit. 
Here, the signed distance function at a pixel s of 
Class l is set to a positive value ρ if a pixel s in the 
initial LCM belongs to Class l, and is set to – ρ, 
otherwise (Equation 26):

	 φ
ρ
ρl

init

init
s

     x s
   x s

0 ( ) =
( ) =

− ( ) ≠




,
,

l
l
	 (26)

where Xinit(s) is the label of a pixel s in the initial 
LCM. Note here that, in this paper, ρ is equal to 2. 
	 Since the derivative given in Equation 
24 involves the impulse function, the derivative 
cannot be computed numerically. As a result, 
we follow the work of Samson et al. (2000) 
by approximating the Heaviside and impulse 
functions as Equation 27:

H iε
ε ε

ε

ε
ε

φ

φ πφ
φ

φ
φ

π( ) =
+ + 
















 ≤

>
< −









1
2
1 1

1
0

sin ,

,
, ,

	 (27)

and Equation 28:

δ φ
φ

φ
φ

πφ
φ

φ


 



i

i

i

dH
d

cos( ) =
( )

=
+ 
















 ≤

>









1
2

1

0

,

, ,
	(28)

respectively. Here  is a small positive value and, 
in this paper, we use the value of  equal to 1.0.
	 By applying the approximation given in 
Equation 28 into Equation 24, the first variation 
can be approximated as Equation 29:

	
∂ …( )

∂
≈−E |Y

Eo L

l
l

φ φ

φ

, , 1 ∆ 	 (29)

where (Equation 30):
	
∆E div divl l

l

l
l

l

l
= − −

∇
∇























− ( ) ∇
∇









α φ

φ
φ

λδ φ
φ
φ  + ( ) + ( ) −( ) −( ) +





−ν φ δ φ µ µδl l l s l
T

l s l ly y  Σ Σ1 ln

∆E div divl l
l

l
l

l

l
= − −

∇
∇























− ( ) ∇
∇









α φ

φ
φ

λδ φ
φ
φ  + ( ) + ( ) −( ) −( ) +





−ν φ δ φ µ µδl l l s l
T

l s l ly y  Σ Σ1 ln

				   (30)
Hence, from Equation 30, a new set of signed 
distance functions can be obtained from Equation 
31:
	 Φ Φ ∆Φk k k+ = −1 τ 	 (31)

where Φk k
L
k T

= 



−φ φ0 1  is a vector of 

the signed distance functions at a pixel and 
∆Φ ∆ ∆k

L
TE E= [ ]−0 1  is the updating vector 

for the kth iteration. Here, (.)T denotes the matrix 
transpose operation. 
	 For a given pixel, the new set of signed 
distance functions given in Equation 31 can lead 
to three scenarios: 1) only one signed distance 
function is greater than zero; 2) two or more signed 
distance functions are greater than zero; and 3) 
no signed distance function is greater than zero. 
In the first scenario, one and only one land cover 
class will be presented on a given pixel whereas 
the second and third scenarios correspond to 
cases where more than one land cover class are 
present and all land cover classes are absent on a 
pixel, respectively. Clearly, the second and third 
scenarios produce an invalid LCM. As a result, we 
propose to limit the update direction of Equation 
31 to be in the region such that H ll

L φ( ) =∑ =
− 10
1  to 

ensure that one and only one land cover class is 
present on a given pixel. To do that, the update 
direction must be perpendicular to the gradient of 
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H ll
L

 φ( ) =∑ =
− 10
1 . Hence, the valid update direction 

is given by Equation 32:
	 ∆Φ ∆Φ ∆Φ*k k k n n= − 〉〈 , 	 (32)
where 〈. , . 〉 is the inner product operation, and 
from Equation 33:

	 ∆n L
T

L
T=

( ) ( ) 

( ) ( ) 

−

−

δ δ

δ δ

φ φ

φ φ

 

 

0 1

0 1





	 (33)

is the normalized gradient vector of H ll
L

 φ( ) =∑ =
− 10
1 . 

Again, we replace H(φ1) with H(φ1) due to the 
same implementation reason given early in this 
section.  Figure 4 summarizes the proposed 
algorithm given in this section.

Results AND DISCUSSION

	 The performance of the proposed 
algorithm was examined with simulated and actual 
satellite data sets. These experiments compared the 
performance of the algorithm with the maximum 
likelihood classifier (MLC) since the MLC is well-

known and widely used in remote sensing image 
classification (Richards and Xiuping, 1999). 

Simulated dataset
	 The simulated experiment used the 256 
× 256 pixel gray scale image with two classes 
with mean values of 0 and 100 for Classes 0 and 
1, respectively. Figure 5 displays the ground truth 
image used in this example. Note here that Class 1 
appears as a ring in Figure 5. Next, the independent 
additive Gaussian noises with zero mean and 
standard deviation of σ were added to all pixels 
in the noiseless image to produce the observed 
noisy image. The values of σ were varied from 10 
to 1,000 to simulate different level of randomness. 
For σ = 10, the signal to noise ratio (SNR) of the 
observed noisy image was equal to 20 dB while, 
for σ = 1,000, the SNR was equal to dB. Figures 
6a—6c show the noisy images for the SNRs equal 
to 20, -2.22, -20dB, respectively.

Figure 4	 Flow chart for proposed algorithm.
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Figure 6	 Noisy images with signal to noise ratio of:  (a) 20dB, (b) -2.22dB and (c) -20dB.

Figure 5	 Synthetic image with two classes.

	 Next, the noisy images were initially 
classified using the maximum likelihood classifier 
(Wang et al., 2006) based on the given mean values 
and noise standard deviation. The initial classified 
images are given in Figures 7a–7c for various noise 

levels. As the noise standard deviation increased, 
the number of isolated pixels increased. In 
particular, for the noise standard deviation equal to 
1,000, the initial LCM became very noisy and the 
structure of the ring disappeared. The percentages 
of correctly classified pixels of the initial LCMs for 
σ equal to 10, 129.15 and 1,000 were 100, 65.12 
and 52.32%, respectively.
	 These initial LCMs were submitted to 
the proposed algorithm and the resulting LCMs 
obtained from the algorithms after 1,000 iterations 
for the parameter setup of α = 0.05, λ = 30.0, ν0 
= ν1 = -15.0, and τ = 0.003 are shown in Figures 
8a–8c, which show that the  algorithm can 
successfully extract the ring structure back for σ 
= 10 and 129.15. However, the algorithm could 
only partially extract the ring structure back from 

Figure 7	 Classified images using the maximum likelihood functions with signal to noise ratio of: (a) 
20dB, (b) -2.22dB and (c) -20dB.



Kasetsart J. (Nat. Sci.) 47(6) 961

the noisy observed image for the case where σ 
= 1,000. The percentages of correctly classified 
pixels obtained from the proposed algorithm for 
σ equal to 10, 129.15 and 1,000 were 100, 86.96 
and 65.49%, respectively. 
	 Next, the above experiment was repeated 
50 times and the averaged percentages of correctly 
classified pixels obtained from the proposed 
algorithm and the maximum likelihood classified 
are summarized in Table 1. From the t-statistics 
and the critical value for 5% type I error given 
in Table 1, the resulting LCMs obtained from 
the proposed algorithm were significantly better 

than those obtained from the MLC for σ = 16.68 
– 215.44. In fact, only at very high SNR (σ = 10) 
did both the proposed algorithm and the MLC 
perform similarly because both algorithms made 
very few classification errors.

Satellite data set
	 A multispectral image of a part of the 
Kasetsart University campus, Bangkok, Thailand 
from the QuickBird satellite (Figure 9) and 
ground data obtained by visual reference (Figure 
10) were used for this experiment. Eight land 
cover classes were identified—grass, water, road, 

Figure 8	 Classified images using the proposed method with signal to noise ratio of: (a) 20dB, (b) 
-2.22dB, (c) -20dB.

Table 1	 Percentages of correctly classified pixels for various noise levels.

Noise 

standard 
deviation

SNR
MLC Proposed Algorithm

t-statistic
Critical Value 
for 5% Type I 

Error
Mean SD Mean SD

	 10 20.0 100.0 0.0002 100.0 0.0 0.0 2.010
	 16.68 15.56 99.86 0.017 100.0 0.0026 7.91* 2.010
	 27.83 11.11 96.39 0.0644 99.92 0.0128 380.12* 2.010
	 46.42 6.67 85.91 0.129 99.14 0.0444 685.832* 2.000
	 77.43 2.22 74.08 0.1313 95.26 0.1611 720.623* 1.986
	 129.15 -2.22 65.05 0.192 87.18 0.3668 377.868* 1.993
	 215.44 -6.67 59.16 0.1799 78.36 0.4958 257.473* 2.000
	 359.38 -11.11 55.50 0.1969 71.67 0.7147 154.23* 2.003
	 599.48 -15.55 53.3003 0.1927 67.1867 0.5807 -160.48* 2.001
	1000 -20.0 52.0265 0.171 64.3973 0.6008 -140.04* 2.003
SNR = Signal to noise ratio; MLC = Maximum likelihood classifier.
* = Significant difference at P < 0.05 level of testing.
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shadow, building1, building2, building3 and tree. 
Building1, building2 and building3 corresponded 
to different roof colors in the satellite image. 
In the first stage, mean vectors and covariance 
matrices were estimated for all classes by manually 
selecting 1,242, 1,481, 1,144, 2,501, 4,012, 2,667, 
3,023 and 22,870 pixels for building1, building2, 
building3, grass, water, road, shadow and tree, 
respectively. The mean vectors for the eight classes 
are given in Table 2 (the covariance matrices are 
not shown for brevity). These mean vectors and 
the covariance matrices were used to obtain the 
initial LCM (Figure 11). A visual comparison 
between the initial LCM and the ground data 
(Figure 10) illustrates the poor performance of 

the MLC since there are many isolated pixels 
in the initial LCM. Next, the initial LCM, mean 
vectors and covariance matrices were input to the 
proposed algorithm and the resulting LCM after 
2,200 iterations is displayed in Figure 12. In this 
experiment, the level set parameters were: α = 1.0, 
λ = 25.0, νgrass = νwater = νroad = νshadow = νbuilding1 = 
νbuilding2 = νbuilding3 = νtree = 35.0, and τ = 0.0005. 
	 By visual inspection of Figures 11 and 
12, the resulting LCM obtained from the proposed 
algorithm is more connected with a substantial 
performance improvement over the initial LCM. 
Furthermore, the LCM in Figure 12 matched well 
with the reference data in terms of the smoothness 
of the classes. There were many mislabeled 

Figure 9	 Multispectral (Quickbird) image of a part of Kasetsart University, Bangkok, Thailand.

Figure 10	 Ground data for sample area at Kasetsart University campus, Bangkok, Thailand.
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Figure 12	 Resulting land cover map for sample area at Kasetsart University campus, Bangkok, Thailand 
from proposed method after 2200 iterations.

Table 2	 Mean vectors for all classes for sample area at Kasetsart University campus, Bangkok, 
Thailand.


Red Blue Green Near Infrared
Building1 235.8 295.6 148.3 163.4
Building2 333.2 523.6 385.4 477.7
Building3 286.3 408.7 328.6 408.4
Grass 241.1 341.2 209.9 502.5
Water 260.7 357.0 228.2 304.2
Road 272.9 380.4 249.0 322.1
Shadow 230.4 288.7 155.3 210.6
Tree 232.7 306.7 172.0 387.5

pixels between the classes of tree and grass in 
the initial LCM. However, these mislabeled 
pixels disappeared in the resulting LCM. For the 
quantitative performance evaluation, the confusion 
matrices for the initial LCMs and the resulting 
LCMs are shown in Tables 3 and 4. The majority 

of pixels belonged to the tree class. From Tables 
3 and 4, the percentages of correctly classified 
pixels for the initial and resulting LCMs were 
54.52 and 71.03%, respectively. The performance 
difference of more than 15% demonstrates the 
superior performance of the proposed algorithm. 

Figure 11	 Initial land cover map for sample area at Kasetsart University campus, Bangkok, 
Thailand.
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	 Next, the producer (Table 5) and user 
(Table 6) accuracies were compared for each land 
cover class between the initial (MLC) and resulting 
LCMs. The producer accuracies for the classes of 
tree and grass increased while the accuracies of the 
other land cover classes decreased. In particular, 
the producer accuracy for tree increased more than 
75% mainly because in the initial LCM (Figure11), 
a large number of pixels belonging to the tree 
class were mislabeled as grass. After applying 
the initial LCM to the proposed algorithm, these 

small mislabeled patches were removed and 
replaced by the surrounding tree class. Since the 
MAP criteria were employed in this paper, the 
goal of the proposed algorithm was to minimize 
the overall probability of misclassification for 
all land cover classes rather than the probability 
of misclassification for an individual land cover 
class.  As a result, the overall misclassification 
probably depended substantially on the mislabeled 
pixels in the class of tree because the majority 
of the area of interest was covered by trees. For 

Table 3	 Confusion matrix for the initial land cover map for sample area at Kasetsart University 
campus, Bangkok, Thailand.


Classified image Number of 
ground data 

pixels
Building1 Building2 Building3 Grass Water Road Shadow Tree

Ground Data
Building1 465 10 5 13 24 21 862 148 1548
Building2 4 1233 59 62 163 263 45 57 1886
Building3 3 75 1034 21 49 60 5 16 1263
Grass 2 71 38 2319 48 29 33 183 2723
Water 46 95 88 89 3205 585 461 297 4866
Road 21 176 82 143 1104 1215 368 295 3404
Shadow 204 107 22 75 364 177 2536 540 4025
Tree 222 520 245 3936 2313 984 4538 12527 25285

Number 
classified

967 2287 1573 6658 7270 3334 8848 14063 45000

Table 4	 Confusion matrix for the resulting land cover map for sample area at Kasetsart University 
campus, Bangkok, Thailand.


Classified image Number of 
 ground data 

pixels
Building1 Building2 Building3 Grass Water Road Shadow Tree

Ground Data
Building1 238 2 0 46 2 0 762 498 1548
Building2 286 771 0 348 68 11 24 378 1886
Building3 13 0 886 129 6 1 20 208 1263
Grass 48 9 0 2418 24 9 27 188 2723
Water 39 0 22 151 2963 262 206 1223 4866
Road 71 8 0 291 473 687 73 1801 3404
Shadow 13 24 0 236 241 9 2010 1492 4025
Tree 121 27 37 811 870 72 1358 21989 25285

Number 
classified

829 841 945 4430 4647 1051 4480 27777 45000
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Table 6	 Comparison of percentage user accuracy from the initial (MLC) and the resulting land 
cover map (LCM) for sample area at Kasetsart University campus, Bangkok, Thailand.


Land cover class MLC (%) Resulting LCM (%)
Building1 48.09 28.71
Building2 53.91 91.68
Building3 65.73 93.76
Grass 34.83 54.58
Water 44.09 63.75
Road 36.44 65.37
Shadow 28.66 44.87
Tree 89.08 79.16

the user accuracy, most land cover classes had 
higher accuracies when the resulting LCM was 
compared with the initial one. However, the 
classes of building1 and tree had low accuracies 
due to the increase in the mislabeled pixels in the 
resulting LCM. The main reason for the decrease 
in the user accuracy for the tree class was due to 
the small areas of roads, water and shadows that 
surrounded the trees and were classified in the tree 
class. Since the proposed algorithm promotes a 
more connected land cover map, the small patches 
of water, shadow and road were overwhelmed by 
the large patch of the tree class.

 
Conclusion

	 A novel supervised classification 
algorithm for remotely sensed images was 
presented using the level set method under a 

statistical framework. The land cover mapping 
problem was able to be converted to the energy 
minimization of the signed distance functions 
where the gradient search technique could be 
applied. As a result, the proposed method could 
be easily implemented. The performance of the 
proposed algorithm using synthetic and satellite 
images was demonstrated. The experimental 
results showed that the proposed algorithm could 
substantially outperform the maximum likelihood 
classifier for a simulated and real dataset.  

ACKNOWLEDGMENT

	 This research was supported in part 
by the Kasetsart Research and Development 
Institute (KURDI) under Grant Number 127.55. 
This research work was also supported in part by 
the Thailand Advanced Institute of Science and 

Table 5	 Comparison of percentage producer accuracy from the initial (MLC) and the resulting land 
cover map (LCM) for sample area at Kasetsart University campus, Bangkok, Thailand.


Land cover class MLC (%) Resulting LCM (%)
Building1 30.04 15.37
Building2 65.38 40.88
Building3 81.87 70.15
Grass 85.16 88.80
Water 65.87 60.89
Road 35.69 20.19
Shadow 63.01 49.94
Tree 49.54 86.96



Kasetsart J. (Nat. Sci.) 47(6)966

Technology (TAIST), the National Science and 
Technology Development Agency (NSTDA), 
Tokyo Tech Institute of Technology and Kasetsart 
University (KU).

LITERATURE CITED

Chan, T. and L. Vese. 2001. Active contours 
without edges. IEEE Trans. Imag. Proc., 
10: 266–277.

Evans, L. 1998. Partial Differential Equations. 
American Mathematical Society. Providence, 
RI, USA. 749 pp.

Gao, Y. and J.F. Mas. 2008. A comparison of the 
performance of pixel based and object based 
classifications over images with various 
spatial resolutions. Online Journal of Earth 
Sciences 2: 27–35.

Hachama, M., A. Desolneux and F. Richard. 2012. 
A Bayesian technique for image classifying 
registration. IEEE Trans. Image Process 
21(9): 4080–4091. 

Kasetkasem, T. and P.K. Varshney. 2003. Statistical 
characterization of clutter scenes based on a 
Markov random field model. IEEE Trans. 
on Aerospace and Electronic Systems 39: 
1035–1050.

__________. 2002. An image change detection 
algorithm based on Markov random field 
models.  IEEE Trans. on Geoscience and 
Remote Sensing 40:  1815–1823. 

__________. 2011.  An optimum land cover 
mapping algorithm in the presence of shadows. 
IEEE J. Sel. Topics Signal Process 5(3): 
592–605. 

Kasetkasem, T., M.K. Arora and P.K. Varshney. 
2005. Super-resolution land cover mapping 
using a Markov random field based approach. 
Remote Sens. Environ.  96(3–4): 302–314.

Kass, M., A.Witkin and D. Terzopoulos. 1987. 
Snakes: Active contour models. Intl J. 
Computer Vision  l: 312–333.

Li, C., C. Xu, C. Gui and M.D. Fox. 2005.  Level 
set evolution without re-initialization: A 
new variational formulation. Proc. IEEE 
Conference on Computer Vision and 
Pattern Recognition (CVPR) 1: 430–436.

Osher, S. and J.A. Sethian. 1988. Fronts propagating 
with curvature-dependent speed algorithms 
based on Hamilton-Jacobi formulations. J. 
Comp. Phys. 79: 12–49.

Richards, J.A. and J. Xiuping. 1999. Remote 
Sensing Digital Image Analysis. Springer. 
New York, NY, USA. 363pp. 

Samson, C., L. Blanc-Féraud, G.Aubert and J. 
Zerubia. 2000. A level set model for image 
classification. Int. J. Comput. Vision 40: 
187–197.

Tarabalka, Y., J.A. Benediktsson and J. Chanussot. 
2009. Spectral-spatial classification of 
hyperspectral imagery based on partitional 
clustering techniques. IEEE Trans. Geosci. 
Remote Sens. 47(8): 2973–2987.

Van Trees, H.L. 1968. Detection, Estimation, 
and Modulation Theory. Wiley. New York, 
NY, USA. 716 pp.

Varshney, P.K. 1997. Distributed Detection and 
Data Fusion. Springer. New York, NY, USA. 
276pp.

Wang, Y., X. Shwen and J. Xie. 2006.  A review of 
remote sensing image classification methods. 
Remote Sensing Information 2: 67–71.


