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ABSTRACT

	 In this study, a control system was proposed consisting of an outside-of-the-loop input shaper 
and a feedback controller based on quantitative feedback theory. The input shaper convolves the reference 
input with a properly designed impulse sequence to generate a shaped reference input that reduces the 
excitation in the system’s modal frequencies, resulting in less residual vibration. Recently, the input 
shaper has been placed inside-of-the-loop to attenuate noise-induced vibration under hard nonlinearity. 
However, this setting cannot reduce the vibrations induced from plant-input and plant-output disturbances 
as well as from plant model uncertainty. A controller was designed to meet various disturbance rejection 
specifications, when plant uncertainty is also taken into account. The input shaper was then designed 
using the closed-loop natural frequencies and damping. Together, the proposed control system could 
effectively reduce residual vibrations especially those induced from disturbances and uncertainty. The 
control system was applied to a two-staged pendulum where all masses were lumped together to create a 
simplified model used in controller design, and the inertia forces of both links and payload were treated 
as plant-input disturbance. Simulation and experimental results indicated that the control system was 
very effective in residual vibration reduction in the presence of uncertainty and disturbances.
Keywords: vibration reduction, two-staged pendulum, input shaping, quantitative feedback theory

INTRODUCTION

	 The input shaping technique, proposed 
by Singer and Seering (1989, 1990) convolves the 
reference input with a properly designed impulse 
sequence. The impulse sequence is designed such 
that all impulse responses cancel one another 
producing vibration-free movement. By inspecting 
its frequency spectrum, the resulting shaped 
reference input practically has low spectrum 
energy around the closed-loop system’s natural 
frequencies, which explains how the low residual 

vibration is obtained. The input shaping technique 
compared favorably with conventional filters, such 
as low-pass or notch filters, as was presented by 
Singhose et al. (1995).
	 Recently, some research has investigated 
placing the input shaper inside-of-the-loop, a 
so-called closed-loop signal shaper (CLSS.) 
Huey et al. (2008) reported that the CLSS can 
reduce noise-induced vibration and alleviate the 
detrimental effects caused by hard nonlinearity 
such as saturation and rate limit. However, a CLSS 
is not suitable for eliminating vibrations induced 
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by plant-input and plant-output disturbances as 
well as by plant model uncertainty. Staehlin and 
Singh (2003) used the structure of the internal 
model controller for the closed-loop control 
without results on robustness. Kapila et al. (1999) 
applied a closed-loop controller based on the 
linear matrix inequality to a simulation problem. 
However, the controller is quite complicated and 
its use in practice is still limited. Zolfagharian 
et al. (2013) used a proportional-derivative 
(PD) and an iterative learning controller in the 
feedback loop. A genetic algorithm was used to 
adjust their gains to provide robustness. Huey 
and Singhose (2010a) used root locus to show 
that the closed-loop system, consisting of the 
input shaper placed inside-of-the-loop and a 
simple P, PID or lead controller, is susceptible to 
instability. Stergiopoulos and Tzes (2010) applied 
an H∞ robust controller to the feedback loop with 
the input shaper placed inside. The controller 
addresses the uncertainty of the plant transfer 
function’s denominator, which ensures accurate 
tracking. Pai (2012) independently used a sliding 
mode controller in the feedback loop to make 
the closed-loop system behave like a reference 
model. An input shaper was then designed to 
suppress vibration of the reference model. Huey 
and Singhose (2010b) used a PD in the feedback 
loop. They concurrently designed the PD gains 
and the input shaper parameters for a simple plant 
by taking into account limits on the allowable 
overshoot, residual vibration and actuator effort.
	 Because  v ibra t ions  induced by 
disturbances and uncertainty are substantial, it is 
appropriate to put a controller inside-of-the-loop 
to attenuate the disturbances when uncertainty 
is present. Then, the input shaper can be placed 
outside-of-the-loop to create a shaped reference 
input for the resulting closed-loop system. 
The ability of the controller in attenuating the 
disturbances with pre-specified performance is 
vital for the proposed setting.
	 Quantitative feedback theory (QFT) is a 
frequency-based controller design technique that 

was devised by Horowitz (1959) over fifty years 
ago. The controller design is performed mainly on 
the Nichols chart, where at a specific frequency, 
the plant is viewed as an area containing possible 
plant variations. The design on this so-called plant 
template ensures robustness over all plant model 
uncertainties. Parameters, such as disturbances 
and noise rejection as well as tracking and control 
effort, can be pre-specified to guarantee that the 
closed-loop system will behave as desired.
	 QFT has recently become practical with 
the invention of some computer-aided-design 
packages (Houpis and Lamont, 1992; Sating, 1992; 
Borghesani, 1993) and has been implemented in 
various challenging applications such as the 
control of a continuous stirred tank reactor (Houpis 
and Chandler, 1992) the idle speed control of an 
automotive fuel-injected engine (Franchek and 
Hamilton, 1997) an F-16 flight control system 
(Phillips et al., 1995), a waste water treatment 
control system (Garcia-Sanz and Ostolaza, 2000), 
large wind turbine control systems (Torres and 
Garcia-Sanz, 2004) positioning a pneumatic 
actuator (Karpenko and Sepehri, 2004) and the 
coordinated control of formation flying spacecraft 
(Garcia-Sanz and Hadaegh, 2004).
	 The objective of this paper was to 
integrate these two very practical techniques— 
namely, the input shaping technique and the QFT-
based controller—to create a control system that 
can effectively reduce residual vibrations induced 
from various sources such as reference input, 
plant-input and plant-output disturbances, sensor 
noise and plant uncertainty. 
	 A two-staged pendulum was used as an 
example application. The pendulum possesses a 
quite complicated mathematical model, which 
may not be suitable for the controller design. 
Interestingly, by lumping all masses together 
and by treating the inertia forces from swinging 
motions of the links and the payload as plant-input 
disturbances, a simple second-order model that 
replicates the dynamics of the complicated model 
of the pendulum was obtained.
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	 A QFT-based controller was designed 
to attenuate the effect from the disturbance 
above. It was shown that the controller also 
attenuates the effect from noise and plant-output 
disturbance. Following the controller design, an 
input shaper was designed using the closed-loop 
natural frequencies and damping. The overall 
control system was able to greatly attenuate the 
residual vibration under point-to-point motion. 
The setting has proved to be very practical and 
rather convenient. Since the input shaper can 
perform in real-time, the method is also suitable 
for attenuating the vibration of any arbitrary 
motion command such as that given by a human 
operator.

MATERIALS AND METHODS

Input shaping basics
	 More detail on the input shaping basics 
can be found in Singer and Seering (1989) who 
originated this technique.
	 For a one-degree-of-freedom, under-
damped, unforced, linear system, two impulses 
F̂1 and F̂2 may produce responses as shown in 
Figure 1a. With proper design, the two responses 

can cancel each other leaving zero oscillation as 
shown in Figure 1b.
	 Let t1 = 0 and F̂1 = 1 and set the amplitude 
of the summation of the two impulse responses to 
zero at a time t2 to obtain Equation 1:

	 F̂      e2
1 2
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n
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where ζ and ωn are the damping ratio and natural 
frequency of the system, respectively.
	 To reduce the sensitivity of the vibration 
reduction to variations in the system damping ratio 
and the natural frequency, the derivatives of the 
summation of the responses, with respect to the 
natural frequency and the damping ratio, are set to 
zero yielding the magnitude and time of the third 
impulse as Equation 2:
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For a system with n modes, n impulse sequences 
can be obtained in a similar manner, where one 
natural frequency and one damping ratio are 
considered at a time.
	 The impulse sequences developed can 
be applied to the closed-loop system as shown in 
Figure 2. The input shaper block represents the 
on-line convolution operation between the impulse 
sequences and an arbitrary reference input. The 
natural frequencies and damping ratios used in 
designing the impulse sequence are those of the 
closed-loop system.
	 The output of the input shaper practically 
has a low spectrum energy around the closed-loop 

Figure 1	 System response of two impulses F̂1 and 
F̂2 for a one-degree-of-freedom, under-
damped, unforced, linear system over 
time (t): (a) Without cancellation; and 
(b) With cancellation.
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Figure 2	 Closed-loop-system block diagram with 
an input shaper (G is a controller, P is 
a plant, r, e, u and y are the reference 
input, error, plant input and plant 
output, respectively).
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natural frequencies; therefore, the resonances can 
be reduced resulting in less residual vibrations.

Quantitative feedback theory basics
	 QFT can be applied to feedback systems 
as depicted in Figure 3. 
	 Frequency-domain specifications are 
described in terms of inequalities on the system’s 
transfer functions from some inputs to some 
outputs. For example, the plant-input disturbance 
rejection specification is given by Equation 3:
	 y d P P PGHI dI dI/ / ,= +( ) <1 δ 	 (3)
the plant-output disturbance rejection specification 
is given by Equation 4:
	 y d P PGHO dO dO/ / ,= +( ) <1 δ 	 (4)
and the tracking specification is given by Equation 
5:
	 α β≤ +( ) ≤PGF PGH/ ,1 	 (5)
where P represents a linear plant in a set {P} 
that contains all possible variations due to 
uncertainties; H represents the sensor transfer 
function; controller G and prefilter F are to be 
synthesized to meet robust stability and closed-
loop specifications; dI and dO are disturbances at 

plant input and output, respectively, together with 
their transfer functions PdI and PdO, respectively; 
y is the plant output; δdI and δdO are two small 
numbers; and α and β are tracking lower and 
upper bounds. Other specifications such as noise 
rejection, model matching and control effort can 
also be specified.
	 For one frequency ω and one frequency-
domain specification, a bound can be computed 
on the Nichols chart. The controller G and the 
prefilter F must later be designed by loop shaping 
to satisfy these bounds to ensure that all pertaining 
specifications are met. QFT design steps will be 
elaborated in the next section when the controller 
and the prefilter are designed for the two-staged 
pendulum. However, more details on QFT-based 
controller design are available in Chatlatanagulchai 
et al. (2008) and in some excellent textbooks 
(Horowitz, 1993; Yaniv, 1999; Sidi, 2001; Houpis 
et al., 2005).

Simulation of a two-staged pendulum	
	 To demonstrate the performance of the 
proposed control system, a two-staged pendulum 

Figure 3	 Applicable feedback system. Plant P represents a linear plant in a set {P} that contains all 
possible variations due to uncertainties. H represents sensor transfer function. Controller G 
and prefilter F are to be synthesized to meet robust stability and closed-loop specifications; 
dI and dO are disturbances at plant input and output, respectively, together with their transfer 
functions PdI and PdO, respectively; and n, r, e, u and y are the sensor noise, reference input, 
error, plant input and plant output, respectively.
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was used as an example. The QFT-based controller 
design and the input shaper design along with their 
simulation results and discussions are given in this 
section whereas the experimentation details will 
be presented in the next section.

Obtaining a control-design model
	 The aim was to design a control system 
for point-to-point movement of a two-staged 
pendulum in the vertical plane whose diagram is 
given in Figure 4. One of the potential applications 
of this pendulum is the object-moving crane. The 
pendulum system consists of a slider, two rigid 
links and an uncertain payload. A linear motor 
drives the pendulum system. The objective is to 
move the payload from point to point, back and 
forth, as fast as possible. This can be achieved only 
when the oscillations of the links are minimized.
	 From Figure 4, the pendulum has three 
degrees of freedom namely x, θ1 and θ2, where 
s̈ represents payload linear acceleration. Using 
Lagrange’s method to find its equations of motion, 
a set of three equations (summarized as Equation 
6) is obtained:
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where the parameters are defined in Table 1.
	 It should be noted that, in deriving 
the equations above, the assumption is made 
that the centers of gravity of both links and the 
payload have only horizontal velocity. Due to the 
small amount of link movement in this gantry-
like application, the terms due to the vertical 
movement are neglected to avoid complication. 
For systems where the assumption of small-
signal linearization is inappropriate, the linear 
time invariant equivalent method for large signals 
presented in Horowitz (1993) can be used. All 
parameters and their values are given in Table 1.
	 The equations of motion above are 
nonlinear, which is an impediment to the use of 

Figure 4	 Diagram of a two-staged pendulum. 
The pendulum has three degrees of 
freedom namely x, θ1, and θ2, where s̈ 
represents payload linear acceleration, 
and the other parameters are defined in 
Table 1.
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Table 1	 Parameters and their values for the two-staged pendulum based on the actual experimental 
hardware.


	 Parameter 	 Description 	 Value
J1, J2, Jp Links and payload mass moment of inertia about the 

center of gravity (kg.m2)
7.5×10-4, 0.0082, 0.001

m, m1, m2, mp Slider, links, and payload mass (kg) 0.1, 0.1, 0.2, 0.2
l1, l2, Links length (m) 0.3, 0.7
c, c1, c2, Slider and links friction coefficients (kg.s-1) 1, 0.01, 0.01
 F Push force from screw (N)
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QFT. It is used as a true model to represent the 
actual pendulum in the simulation. 
	 For controller design, a simpler model 
that can imitate the true model closely is needed. 
The idea is to move all masses together as one rigid 
body, so that then the oscillation of the links and 
the payload is viewed as a plant-input disturbance, 
which will be attenuated by the controller. When 
all masses are lumped together, a simple second-
order model is obtained (Equation 7):
	 Mx cx F Ox�� �+ = + , 	 (7)
where M = m + m1 + m2 + mp  and Ox is the force 
disturbance resulting from oscillations of the links 
and payload and the free-body diagram of all the 
horizontal forces in Figure 5 results in

	O m
l

m l
l

m l lx p= + +




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 + +( )1 1

1
2 1 1 2

2
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It can be shown that this simplified model with 
disturbance is identical to the true model when 
sin θ ≈ θ.

QFT-based controller design
	 The control system, shown in Figure 6, 
comprises an outside-of-the-loop input shaper, 
a QFT-based controller (G) and a QFT-based 
prefilter (F). The QFT-based control system can be 
designed so that the closed-loop system is robust 
against uncertainty in the plant model as well as 
being able to reject disturbances dI and dO. In 
this section, the QFT-based controller design is 
presented whereas the input shaper design will be 
given in the next section.

	 The control-design plant model is a 
simple second-order model given in Equation 7. 
Comparing Figure 6 with Equation 7, the output 
y is the slider displacement x ; the plant-input 
disturbance dI is the inertia force Ox; the plant-
output disturbance dO is, for example, ground 
vibration; and the control input u is the force acting 
on the sliding mass.
	 The design objective is to have the 
displacement x track the reference input r as close 
as possible whereas the inertia force disturbance 
Ox from swinging of the links and payload, is 
attenuated. It should be noted that the actual 
objective is tracking of the payload not the slider. 
However, by attenuating the swinging disturbance, 
and later by applying the input shaper to the 
closed-loop system, the swinging will be greatly 

Figure 5	 Free-body diagram showing all 
horizontal forces. (M = m + m1 + 
m2 + mp and Ox = force disturbance 
resulting from oscillations of the links 
and payload, l1, l2 = link lengths.)

Figure 6	 Closed-loop system block diagram consisting of an input shaper, a quantitative-feedback-
theory-based controller (G), prefilter (F), r, e, u and y are the reference input, error, plant 
input and plant output, respectively and dI and dO are disturbances at plant input and output, 
respectively.
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reduced and the payload displacement will closely 
approximate the slider displacement.
	 Considering the control-design plant 
model in Equation 7, without the disturbance Ox, 
a second-order transfer function is obtained as 
shown in Equation 8:

	
X s
F s Ms cs
( )
( )

=
+

1
2 ,	 (8)

where M and c are as defined previously and their 
values are given in Table 1. By allowing M and 
c to have ±10% variations from their nominal 
values, the transfer function (Equation 8) can be 
plotted on the Nichols chart as Figure 7. The 10% 
variations come from the difference between the 
simplified control design model (Equation 8) and 
the true model (Equation 6) representing the actual 
pendulum. At each frequency, there are four points; 
each represents one set of plant parameters. Note 
that for clarity, only five frequencies are displayed 
when the design includes more frequencies ranging 
from 0.1 to 100 rad.s-1.
	 The design specifications are as follows. 
To effectively attenuate the inertia force disturbance 
Ox, set δdI = -15 dB in the plant-input disturbance 
rejection specification (Equation 3). To attenuate 

the plant-output disturbance, use δdO = 4 dB for 
the plant-output disturbance rejection specification 
(Equation 4). For tracking, use

              α =
+ +
24 75
10 252

.
s s

 and β =
+ +

101
14 1002s s

 

in the tracking specification (Equation 5), where 
α and β are second-order transfer functions with 
appropriate step responses to be used as lower and 
upper bounds. In this case, the tracking lower-
bound and upper-bound are arbitrary because there 
is no specific requirement on how the mass should 
move. The focus is on the vibration reduction of 
the payload. The lower and upper bounds are there 
to ensure that the whole assembly will move fast 
enough to see the effect of the payload vibration. 
All the specifications can be tightened as long 
as the control input is still within the saturation 
limit.
	 At a given frequency, each specification 
can be written as a bound on the Nichols chart. 
In this case, at a given frequency, there are three 
bounds from Equations 3–5. The intersection of 
these three bounds produces the strictest bound. 
The strictest bounds are shown in Figure 8 for 
various frequencies. 

Figure 7	 Plant templates at various frequencies. The asterisks mark the design point.
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	 The final loop shape is the plot between 
loop gain |GP| and phase ∠GP after the controller 
G is designed. The controller G that satisfies all 
bounds is given by

	
G

s
s s

=
+( )

+( ) +( )
1955 8085 1 616

17 46 29 17
. .

. .
.

Since the prefilter F is outside-of–the-loop, it is 
designed to satisfy only the tracking bounds. The 
prefilter is given by

	
F

s
=

+
6 0688

6 069
.

.
.

Figure 8	 Specification bounds and final loop shape ( The solid black line is the final loop shape,  
indicates the plant-input disturbance rejection bound,  indicates the plant-output disturbance 
rejection bound and  indicates the tracking bound).
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	 Simulation results with the simplified 
plant (Equation 8) are given in Figure 9. Figure 
9a shows the magnitude of the transfer function 
from dO to y whose maximum values are below the 
upper bound δdO for all plant variations. Figure 9b 
shows the magnitude of the transfer function from 
r to y whose values are within the bounds for all 
plant variations. 

	 Figure 8 shows that the tracking 
specification is tightened at low frequencies (0.1–1 
rad.s-1) resulting in over design at 3 rad.s-1 and 
≥ 8 rad.s-1, which also shows in Figure 9b. This 
over design at high frequencies can be reduced 
at the expense of sacrificing the low-frequency 
specifications.

Figure 9	 Frequency-domain and time-domain responses). P, G and F are the plant, controller and 
prefilter, respectively. y, dI and dO are the plant output, plant-input disturbance and plant-
output disturbance, respectively. δdO, δdI, α, and β are the plant-output disturbance rejection 
specification, plant-input disturbance rejection specification, tracking specification lower 
bound and upper bound, respectively.
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	 Figure 9c shows the magnitude of the 
transfer function from dI to y, which is well 
below its bound δdI. Figure 9d, 9e and 9f present 
tracking, plant-output disturbance rejection and 
plant-input disturbance rejection responses in 
the time domain, respectively, when r, dO and dI 
are square waves with 0.3 m amplitude. It can be 
seen that all the outputs y from both dO and dI are 
attenuated substantially whereas the output y from 
the reference r is able to track the square wave 
within the pre-specified bounds.

Input shaper design
	 The input shaper requires the natural 
frequencies and damping ratios of the closed-loop 
system. Using the true model, with sin θ ≈ θ and 
the controller and the prefilter obtained previously, 
the closed-loop natural frequencies and damping 
ratios can be computed. The natural frequencies 
of the underdamped modes are ω1 = 2.83 rad.s-1, 
ω2 = 6.82 rad.s-1 and ω3 = 17.1 rad.s-1. The 
corresponding damping ratios are ξ1 = 9.35×10-2, 
ξ2 = 2.15×10-1 and ξ3 = 8.13×10-2. 
	 Three impulses are used per one natural 
frequency and damping ratio. Three impulses 
were chosen to provide some robustness against 
uncertainties in the exact modes for the real 
system. Using more impulses results in greater 
robustness but with a slower response time due 
to the slower reference signal. The amplitudes 

and timing of the impulses can be found using 
Equations 1 and 2, where t1 = 0 and F̂1 = 1 However, 
for the shaped input to have the same end point 
as that of the original reference input, the three 
impulses must sum to one, so the three impulses 
are scaled down accordingly. Three sets of three 
impulses are convolved together producing a final 
sequence of 27 impulses. This final sequence will 
be convolved with any incoming reference input 
to produce a shaped input that will minimally 
excite the closed-loop system natural frequencies, 
resulting in substantially less vibration.
	 The simulation results were obtained 
from implementing the control system in Figure 6 
on the true model (Equation 6) of the two-staged 
pendulum, where the controller, the prefilter and 
the input shaper were designed previously. Figure 
10 compares the payload position output, which is 
computed from x, θ1, and θ2 to be x–l1θ1–(l1+l2)
θ2, with a square-wave reference input. Figure 
1010a shows the QFT-based control being used 
but without input shaping, whereas Figure 10b 
shows the QFT-based control being used with 
input shaping. It can be seen that the payload 
vibration is reduced substantially as a result of 
moving the pendulum from point to point. The 
3% settling time was also reduced from 17 to 4 
s. Figure 11 shows the control input used in each 
case. The QFT-based control with input shaping 
used substantially less control effort but achieved 

Figure 10	 Payload position and its reference (r): (a) Quantitative feedback theory (QFT)-based controller 
without input shaping, (b) QFT-based controller with input shaping.
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an even faster settling time than without input 
shaping.
	 The advantage of using QFT-based 
control together with input shaping is that the 
control system from the simplified second-order 
plant model can be designed with the swinging 
motion of both links and the payload being treated 
as force disturbances. The control system can be 
designed to reject the disturbances, thus reducing 
their detrimental effects on residual vibration.

RESULTS

	 Figure 12 provides a block diagram of the 
experimental arrangement. Two optical encoders 
measured the relative angular positions θ1 and θ2 
of the links. Another optical encoder, attached to 
the motor, measured the motor shaft’s angular 
position, which can be converted to the slider’s 
linear position x. An uncertain payload container, 
carrying some movable coins, was placed at the tip. 
An accelerometer was attached near the payload 
to measure its linear acceleration.
	  A host computer, running Labview 
(National Instruments; Austin, TX, USA) and 
Matlab (Mathworks; Natick, MA, USA) software, 
was used to communicate with the user and a target 
computer. The impulse sequence was designed off-
line using Matlab. The real-time hardware-in-the-
loop experiment was performed using Labview.

	 A target computer contained two data 
acquisition cards whose functions were to acquire 
sensor signals and to send out actuator command 
from the control algorithm. One analog input 
(AI) channel, one analog output (AO) channel, 
and three counter channels were used in the 
experiment. The target operated using a Labview 
Real-Time operating system.
	 The host and target computers were 
connected to each other via a local area network 
line. A control signal was sent as voltage to a motor 
amplifier board to amplify to a level that could 
drive the direct current (DC) motor. An integrated 
circuit chip accelerometer was mounted at the tip 
to measure linear acceleration. A DC power supply 
provided current to the motor amplifier board.
	 A sampling time of 1 ms was used for 
the hardware. The closed-loop controller was 
described in the QFT-based controller design 
section, and the impulse sequence was described 
in the input shaper design section. However, in 
actual implementation, the impulse sequence must 
convolve in real-time with any incoming reference 
position command given by the human operator.
	 To do that, let IS(t) represent an impulse 
sequence of n impulses. It can be expressed in the 
time domain as Equation 9:

	
IS t A t t t ti i

i

n

i i( ) = −( ) ≤ <
=

+∑ δ
1

10,
	

(9)

Figure 11	 Control input: (a) Quantitative feedback theory (QFT)-based controller without input shaping, 
(b) QFT-based controller with input shaping. (u = Control input.)
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where δ(t) is the Dirac delta function, Ai and ti are 
the amplitude and time of the ith impulse measured 
in meters and seconds, respectively. Suppose 
convolving this impulse sequence with a step 
reference input r(t) is needed. The convolution is 
given by Equation 10:

	 IS r IS r t d∗ = ( ) −( )
−∞

∞
∫ τ τ τ 	 (10)

Since r(t − τ) = r(-τ + t) can be viewed as a mirror 
image of r(τ) about the vertical axis shifting by the 
amount of t, the convolution result can be obtained 
graphically as Figure 13. Figure 13a shows IS(τ) 
and r(τ). Figure 13b plots the mirror image r(-τ). 
Figure 13c shows r(-τ) shifted by t. Finally, Figure 
13d shows the resulting convolution IS*r.

Figure 12	 Diagram of the experimental setup. (LAN = local area network, AI = analog input channel, 
Ao = analog output channel, CTR1, CTR2, CTR3 = counter channels, s̈ = payload linear 
acceleration, θ1 and θ2 = relative angular positions of links, x = displacement coordinate, θ  
= motor angle and V = input voltage.)
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	 The impulse sequence had 27 impulses 
spanning 450 time steps, when one time step 
equaled one sampling period of 0.01 s. In real-time 
convolution, 450 shift registers were added in the 
Labview program to store the current reference 
command r(tcurrent) as well as its previous 449 
values. This reference command was given to 
the system in real-time by a human operator. A 
fixed array containing the impulse sequence was 
multiplied by the reference command stored in 
the shift registers. In this way, the most current 
command was multiplied by the first impulse, and 
the subsequent commands were multiplied by the 
subsequent impulses as shown in Figure 13c.
	 A toggle switch was written in the 
program to turn the input shaper on and off. A 
turntable knob was also added to the program to 

let an operator control the pendulum as desired. 
The readings from the knob were interpreted 
as the reference position to be followed by the 
pendulum’s payload position. 
	 Figure 14 plots the pendulum’s payload 
position (x–l1θ1–(l1+l2)θ2) versus its desired 
trajectory given arbitrarily by the operator. By 
switching from the shaped to the unshaped 
reference inputs, it was clear that with the shaped 
input, the payload was able to settle faster with 
substantially less vibrations than in the unshaped 
case, which suffered from severe residual 
vibration. The experimental result of the input 
shaper was not as good as that of the simulation 
given in the input shaper design section because 
of the imperfection of the system identification in 
obtaining a dynamic model of the system.

Figure 13	 Graphical interpretation of the convolution process: (a) IS(τ) and r(τ); (b) plot of mirror 
image r(-τ); (c) shows r(-τ) shifted by t; (d) shows the resulting convolution IS*r. (r = Step 
reference input; IS = Input shaper impulse sequence; τ = Time, t = A specific time.)
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	 Figure 15 shows the signal from the 
accelerometer at the tip, with substantially higher 
acceleration output during the unshaped period. 
The root-mean-square value of the acceleration 
was four times higher during the unshaped period 

than during the shaped period. Figure 16 contains 
the control input voltage to the motor amplifier. 
The control input had higher amplitude during the 
unshaped period. 
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Figure 14	 Tracking result for the shaped and unshaped cases (actual pendulum position = solid line, 
desired value = dashed line.)

Figure 15	 Payload acceleration for shaped and unshaped cases.
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Figure 16	 Control input to the motor amplifier for shaped and unshaped cases.

DISCUSSION

	 Some researchers have investigated 
placing the input shaper inside-of-the-loop, a 
so-called closed-loop signal shaper (CLSS.) 
Huey et al. (2008) reported that the CLSS could 
reduce noise-induced vibration and alleviate the 
detrimental effects caused by hard nonlinearity 
such as saturation and rate limit but a CLSS was 
not suitable for eliminating vibrations induced by 
plant-input and plant-output disturbances as well 
as by plant model uncertainty. Staehlin and Singh 
(2003) used the structure of the internal model 
controller for the closed-loop control without 
results on robustness. Kapila et al. (1999) applied 
a closed-loop controller based on the linear matrix 
inequality to a simulation problem. However, 
the controller is quite complicated and its use in 
practice is still limited. Because vibrations induced 
by disturbances and uncertainty are substantial, it 
is appropriate to put a controller inside-of-the-loop 
to attenuate the disturbances when uncertainty 
is present. Then, the input shaper can be placed 
outside-of-the-loop to create a shaped reference 

input for the resulting closed-loop system. 
The ability of the controller in attenuating the 
disturbances with pre-specified performance is 
vital for the proposed setting.

CONCLUSION

	 A control system consisting of a QFT-
based controller, placed inside-of-the-loop, and 
an input shaper, placed outside-of-the-loop, 
delivered excellent results, both in simulation 
and in experiment, in reducing the oscillation of 
an uncertain payload of a two-staged pendulum, 
when the pendulum was commanded to move 
from point to point by a human operator. The 
QFT-based controller could be designed such that 
the effects from plant model uncertainties and 
external disturbances to the plant output were kept 
small and below pre-defined specifications. As a 
result, the vibration normally induced by these 
uncertainties and disturbances was reduced by 
the controller, so the input shaper could focus on 
attenuating the vibration induced by the reference 
input.
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