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Integrating an Input Shaper with a Quantitative-Feedback-Theory-
Based Controller to Effectively Reduce Residual Vibration in
Slewing of a Two-Staged Pendulum with Uncertain Payload

Withit Chatlatanagulchail™, Puwadon Poedaeng! and Peter Heinrich Meckl?

ABSTRACT

In this study, a control system was proposed consisting of an outside-of-the-loop input shaper
and a feedback controller based on quantitative feedback theory. The input shaper convolves the reference
input with a properly designed impulse sequence to generate a shaped reference input that reduces the
excitation in the system’s modal frequencies, resulting in less residual vibration. Recently, the input
shaper has been placed inside-of-the-loop to attenuate noise-induced vibration under hard nonlinearity.
However, this setting cannot reduce the vibrations induced from plant-input and plant-output disturbances
as well as from plant model uncertainty. A controller was designed to meet various disturbance rejection
specifications, when plant uncertainty is also taken into account. The input shaper was then designed
using the closed-loop natural frequencies and damping. Together, the proposed control system could
effectively reduce residual vibrations especially those induced from disturbances and uncertainty. The
control system was applied to a two-staged pendulum where all masses were lumped together to create a
simplified model used in controller design, and the inertia forces of both links and payload were treated
as plant-input disturbance. Simulation and experimental results indicated that the control system was
very effective in residual vibration reduction in the presence of uncertainty and disturbances.
Keywords: vibration reduction, two-staged pendulum, input shaping, quantitative feedback theory

INTRODUCTION vibration is obtained. The input shaping technique

compared favorably with conventional filters, such

The input shaping technique, proposed
by Singer and Seering (1989, 1990) convolves the
reference input with a properly designed impulse
sequence. The impulse sequence is designed such
that all impulse responses cancel one another
producing vibration-free movement. By inspecting
its frequency spectrum, the resulting shaped
reference input practically has low spectrum
energy around the closed-loop system’s natural
frequencies, which explains how the low residual

as low-pass or notch filters, as was presented by
Singhose et al. (1995).

Recently, some research has investigated
placing the input shaper inside-of-the-loop, a
so-called closed-loop signal shaper (CLSS.)
Huey et al. (2008) reported that the CLSS can
reduce noise-induced vibration and alleviate the
detrimental effects caused by hard nonlinearity
such as saturation and rate limit. However, a CLSS
is not suitable for eliminating vibrations induced
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by plant-input and plant-output disturbances as
well as by plant model uncertainty. Staehlin and
Singh (2003) used the structure of the internal
model controller for the closed-loop control
without results on robustness. Kapila et al. (1999)
applied a closed-loop controller based on the
linear matrix inequality to a simulation problem.
However, the controller is quite complicated and
its use in practice is still limited. Zolfagharian
et al. (2013) used a proportional-derivative
(PD) and an iterative learning controller in the
feedback loop. A genetic algorithm was used to
adjust their gains to provide robustness. Huey
and Singhose (2010a) used root locus to show
that the closed-loop system, consisting of the
input shaper placed inside-of-the-loop and a
simple P, PID or lead controller, is susceptible to
instability. Stergiopoulos and Tzes (2010) applied
an H,, robust controller to the feedback loop with
the input shaper placed inside. The controller
addresses the uncertainty of the plant transfer
function’s denominator, which ensures accurate
tracking. Pai (2012) independently used a sliding
mode controller in the feedback loop to make
the closed-loop system behave like a reference
model. An input shaper was then designed to
suppress vibration of the reference model. Huey
and Singhose (2010b) used a PD in the feedback
loop. They concurrently designed the PD gains
and the input shaper parameters for a simple plant
by taking into account limits on the allowable
overshoot, residual vibration and actuator effort.

Because vibrations induced by
disturbances and uncertainty are substantial, it is
appropriate to put a controller inside-of-the-loop
to attenuate the disturbances when uncertainty
is present. Then, the input shaper can be placed
outside-of-the-loop to create a shaped reference
input for the resulting closed-loop system.
The ability of the controller in attenuating the
disturbances with pre-specified performance is
vital for the proposed setting.

Quantitative feedback theory (QFT) isa
frequency-based controller design technique that

was devised by Horowitz (1959) over fifty years
ago. The controller design is performed mainly on
the Nichols chart, where at a specific frequency,
the plant is viewed as an area containing possible
plant variations. The design on this so-called plant
template ensures robustness over all plant model
uncertainties. Parameters, such as disturbances
and noise rejection as well as tracking and control
effort, can be pre-specified to guarantee that the
closed-loop system will behave as desired.

QFT has recently become practical with
the invention of some computer-aided-design
packages (Houpis and Lamont, 1992; Sating, 1992;
Borghesani, 1993) and has been implemented in
various challenging applications such as the
control of a continuous stirred tank reactor (Houpis
and Chandler, 1992) the idle speed control of an
automotive fuel-injected engine (Franchek and
Hamilton, 1997) an F-16 flight control system
(Phillips et al., 1995), a waste water treatment
control system (Garcia-Sanz and Ostolaza, 2000),
large wind turbine control systems (Torres and
Garcia-Sanz, 2004) positioning a pneumatic
actuator (Karpenko and Sepehri, 2004) and the
coordinated control of formation flying spacecraft
(Garcia-Sanz and Hadaegh, 2004).

The objective of this paper was to
integrate these two very practical techniques—
namely, the input shaping technique and the QFT-
based controller—to create a control system that
can effectively reduce residual vibrations induced
from various sources such as reference input,
plant-input and plant-output disturbances, sensor
noise and plant uncertainty.

A two-staged pendulum was used as an
example application. The pendulum possesses a
quite complicated mathematical model, which
may not be suitable for the controller design.
Interestingly, by lumping all masses together
and by treating the inertia forces from swinging
motions of the links and the payload as plant-input
disturbances, a simple second-order model that
replicates the dynamics of the complicated model
of the pendulum was obtained.
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A QFT-based controller was designed
to attenuate the effect from the disturbance
above. It was shown that the controller also
attenuates the effect from noise and plant-output
disturbance. Following the controller design, an
input shaper was designed using the closed-loop
natural frequencies and damping. The overall
control system was able to greatly attenuate the
residual vibration under point-to-point motion.
The setting has proved to be very practical and
rather convenient. Since the input shaper can
perform in real-time, the method is also suitable
for attenuating the vibration of any arbitrary
motion command such as that given by a human
operator.

MATERIALS AND METHODS

Input shaping basics

More detail on the input shaping basics
can be found in Singer and Seering (1989) who
originated this technique.

For a one-degree-of-freedom, under-
damped, unforced, linear system, two impulses
IA:1 and IAZ2 may produce responses as shown in
Figure 1a. With proper design, the two responses

tl t2 t

Figure 1 System response of two impulses IA:l and
IA:2 for a one-degree-of-freedom, under-
damped, unforced, linear system over
time (t): (a) Without cancellation; and
(b) With cancellation.

can cancel each other leaving zero oscillation as
shown in Figure 1b.

Lett; =0and IA:l =1and set the amplitude
of the summation of the two impulse responses to
zero at a time t, to obtain Equation 1:

Cn
B oe ™ andt,-— ()
Op 1_C2
where { and o, are the damping ratio and natural
frequency of the system, respectively.

To reduce the sensitivity of the vibration
reduction to variations in the system damping ratio
and the natural frequency, the derivatives of the
summation of the responses, with respect to the
natural frequency and the damping ratio, are set to
zero yielding the magnitude and time of the third

impulse as Equation 2:
_2rn

E—e " andt,-— 2 . ()
o, 1- ¢
For a system with n modes, n impulse sequences
can be obtained in a similar manner, where one
natural frequency and one damping ratio are
considered at a time.

The impulse sequences developed can
be applied to the closed-loop system as shown in
Figure 2. The input shaper block represents the
on-line convolution operation between the impulse
sequences and an arbitrary reference input. The
natural frequencies and damping ratios used in
designing the impulse sequence are those of the
closed-loop system.

The output of the input shaper practically
has a low spectrum energy around the closed-loop

| Input " € GUP y

shaper

Figure 2 Closed-loop-system block diagram with
an input shaper (G is a controller, P is
a plant, r, e, u and y are the reference
input, error, plant input and plant
output, respectively).
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natural frequencies; therefore, the resonances can
be reduced resulting in less residual vibrations.

Quantitative feedback theory basics

QFT can be applied to feedback systems
as depicted in Figure 3.

Frequency-domain specifications are
described in terms of inequalities on the system’s
transfer functions from some inputs to some
outputs. For example, the plant-input disturbance
rejection specification is given by Equation 3:

ly/d)|=|PyP/(1+PGH)[ <8y,  (3)
the plant-output disturbance rejection specification
is given by Equation 4:

|y/do| =|Pso / (1+PGH)[ <840,  (4)
and the tracking specification is given by Equation
5:

o <|PGF/(1+PGH)| <B, ()
where P represents a linear plant in a set {P}
that contains all possible variations due to
uncertainties; H represents the sensor transfer
function; controller G and prefilter F are to be
synthesized to meet robust stability and closed-
loop specifications; d; and dg are disturbances at

0

plant input and output, respectively, together with
their transfer functions Py, and Pyo, respectively;
y is the plant output; 84, and d4p are two small
numbers; and o and B are tracking lower and
upper bounds. Other specifications such as noise
rejection, model matching and control effort can
also be specified.

For one frequency @ and one frequency-
domain specification, a bound can be computed
on the Nichols chart. The controller G and the
prefilter F must later be designed by loop shaping
to satisfy these bounds to ensure that all pertaining
specifications are met. QFT design steps will be
elaborated in the next section when the controller
and the prefilter are designed for the two-staged
pendulum. However, more details on QFT-based
controller design are available in Chatlatanagulchai
et al. (2008) and in some excellent textbooks
(Horowitz, 1993; Yaniv, 1999; Sidi, 2001; Houpis
et al., 2005).

Simulation of a two-staged pendulum
To demonstrate the performance of the

proposed control system, a two-staged pendulum

d, do

H

Figure 3 Applicable feedback system. Plant P represents a linear plant in a set {P} that contains all
possible variations due to uncertainties. H represents sensor transfer function. Controller G

and prefilter F are to be synthesized to meet robust stability and closed-loop specifications;
d, and dg, are disturbances at plant input and output, respectively, together with their transfer
functions Py, and P4, respectively; and n, r, e, u and y are the sensor noise, reference input,
error, plant input and plant output, respectively.
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was used as an example. The QFT-based controller
design and the input shaper design along with their
simulation results and discussions are given in this
section whereas the experimentation details will
be presented in the next section.

Obtaining a control-design model

The aim was to design a control system
for point-to-point movement of a two-staged
pendulum in the vertical plane whose diagram is
given in Figure 4. One of the potential applications
of this pendulum is the object-moving crane. The
pendulum system consists of a slider, two rigid
links and an uncertain payload. A linear motor
drives the pendulum system. The objective is to
move the payload from point to point, back and
forth, as fast as possible. This can be achieved only
when the oscillations of the links are minimized.

From Figure 4, the pendulum has three
degrees of freedom namely x, 6, and 6,, where
§ represents payload linear acceleration. Using
Lagrange’s method to find its equations of motion,
a set of three equations (summarized as Equation
6) is obtained:

mx+m1(x—5191j+mz(x—I191—5292J+mp(x—llel—lzez)

where the parameters are defined in Table 1.

It should be noted that, in deriving
the equations above, the assumption is made
that the centers of gravity of both links and the
payload have only horizontal velocity. Due to the
small amount of link movement in this gantry-
like application, the terms due to the vertical
movement are neglected to avoid complication.
For systems where the assumption of small-
signal linearization is inappropriate, the linear
time invariant equivalent method for large signals
presented in Horowitz (1993) can be used. All
parameters and their values are given in Table 1.

The equations of motion above are
nonlinear, which is an impediment to the use of

TR PR o T P
7ml[x791]731917m2(x7|1917392)|1+32(el+ez)
=y (%=1, =10, )l + 3y (B, + 8, ) + myg Z-sin 6, + myglysin o, o Figure 4 Diagram of a two-staged pendulum.
+M,g-2sin (0, + 0, )+ mygl, sin 0, +mygl, sin (6, +0,) - The pendulum has three degrees of
,mz(x,hél,%ézj%Jrjz(élJréz),mp(X,|1617|262)|2 _ freedom namely x, 6y, and 6,, where §

o | = G0 represents payload linear acceleration,
B+ B o mag a8 0l sin(6, +0;) and the other parameters are defined in

(6) Table 1.
Table 1 Parameters and their values for the two-staged pendulum based on the actual experimental
hardware.
Parameter Description Value

3,30, 3,
center of gravity (kg.m?)

Links and payload mass moment of inertia about the

7.5x104, 0.0082, 0.001

m, my, My, M, Slider, links, and payload mass (kg) 0.1,0.1,0.2,0.2
I3, 1, Links length (m) 0.3,0.7
C, Cq, Cy, Slider and links friction coefficients (kg.s™1) 1,0.01, 0.01

F Push force from screw (N)
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QFT. It is used as a true model to represent the
actual pendulum in the simulation.

For controller design, a simpler model
that can imitate the true model closely is needed.
The idea is to move all masses together as one rigid
body, so that then the oscillation of the links and
the payload is viewed as a plant-input disturbance,
which will be attenuated by the controller. When
all masses are lumped together, a simple second-
order model is obtained (Equation 7):

MX+cx =F+0,, (7
where M =m +m; + m, +m, and O, is the force
disturbance resulting from oscillations of the links
and payload and the free-body diagram of all the
horizontal forces in Figure 5 results in

. .. <y .. ..
ox=nuﬁ5+nh(qh+e[5j+mple+%b)

It can be shown that this simplified model with
disturbance is identical to the true model when
sin 6 = 0.

QFT-based controller design

The control system, shown in Figure 6,
comprises an outside-of-the-loop input shaper,
a QFT-based controller (G) and a QFT-based
prefilter (F). The QFT-based control system can be
designed so that the closed-loop system is robust
against uncertainty in the plant model as well as
being able to reject disturbances d, and do. In
this section, the QFT-based controller design is
presented whereas the input shaper design will be
given in the next section.

Input
shaper

The control-design plant model is a
simple second-order model given in Equation 7.
Comparing Figure 6 with Equation 7, the output
y is the slider displacement x ; the plant-input
disturbance d, is the inertia force O,; the plant-
output disturbance dg is, for example, ground
vibration; and the control input u is the force acting
on the sliding mass.

The design objective is to have the
displacement x track the reference input r as close
as possible whereas the inertia force disturbance
0O, from swinging of the links and payload, is
attenuated. It should be noted that the actual
objective is tracking of the payload not the slider.
However, by attenuating the swinging disturbance,
and later by applying the input shaper to the
closed-loop system, the swinging will be greatly

© 0 M5

S

m, (6,1, +6,1,)

Figure5 Free-body diagram showing all
horizontal forces. (M = m + my +
m, + m, and O, = force disturbance
resulting from oscillations of the links
and payload, I, I, = link lengths.)

d, do

- '° N

Figure 6 Closed-loop system block diagram consisting of an input shaper, a quantitative-feedback-
theory-based controller (G), prefilter (F), r, e, u and y are the reference input, error, plant
input and plant output, respectively and d, and dq are disturbances at plant input and output,

respectively.
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reduced and the payload displacement will closely
approximate the slider displacement.

Considering the control-design plant
model in Equation 7, without the disturbance Oy,
a second-order transfer function is obtained as
shown in Equation 8:

X(s) 1

m: Ms? +cs’ ®)

where M and ¢ are as defined previously and their
values are given in Table 1. By allowing M and
¢ to have +10% variations from their nominal
values, the transfer function (Equation 8) can be
plotted on the Nichols chart as Figure 7. The 10%
variations come from the difference between the
simplified control design model (Equation 8) and
the true model (Equation 6) representing the actual
pendulum. At each frequency, there are four points;
each represents one set of plant parameters. Note
that for clarity, only five frequencies are displayed
when the design includes more frequencies ranging
from 0.1 to 100 rad.s1.

The design specifications are as follows.
To effectively attenuate the inertia force disturbance
O, set dg; = -15 dB in the plant-input disturbance
rejection specification (Equation 3). To attenuate

Kasetsart J. (Nat. Sci.) 48(1)

the plant-output disturbance, use 340 = 4 dB for
the plant-output disturbance rejection specification
(Equation 4). For tracking, use

24.75
a=—— 7——an
s°+10s+25

B 101
s% +14s+100

in the tracking specification (Equation 5), where
o and P are second-order transfer functions with
appropriate step responses to be used as lower and
upper bounds. In this case, the tracking lower-
bound and upper-bound are arbitrary because there
is no specific requirement on how the mass should
move. The focus is on the vibration reduction of
the payload. The lower and upper bounds are there
to ensure that the whole assembly will move fast
enough to see the effect of the payload vibration.
All the specifications can be tightened as long
as the control input is still within the saturation
limit.

At a given frequency, each specification
can be written as a bound on the Nichols chart.
In this case, at a given frequency, there are three
bounds from Equations 3-5. The intersection of
these three bounds produces the strictest bound.
The strictest bounds are shown in Figure 8 for
various frequencies.

T
I
20~ - T %T —————
I I
I
I
I
I
I

0.1rads +
0F T .
| o |
g | *8 |
£ o S S N
8 kg |
s 1 ’\ 0.5rads
S | l
T e
© * lrads *
20F e ﬁi 7777777 e T
3rads ' |
L i e i e E—
Ji<—8rads ' | |
-180 -135 -90

Open-Loop Phase (degrees)

Figure 7 Plant templates at various frequencies. The asterisks mark the design point.
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The final loop shape is the plot between  Since the prefilter F is outside-of—the-loop, it is
loop gain |GP| and phase £GP after the controller  designed to satisfy only the tracking bounds. The
G is designed. The controller G that satisfies all ~ prefilter is given by
bounds is given by 6.0688

~ 1955.8085 (5+1.616) s+6.069

(s+17.46)(s+29.17)

(1) 0.Irad/s
40 U/ JI4
30 N pa | o
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1/ jIA
30 0.5rad.s
3) 1 3
ROINOMEONO) 2O
P ‘-- (N ] a 1
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Figure 8 Specification bounds and final loop shape ( The solid black line is the final loop shape, ®
indicates the plant-input disturbance rejection bound, @ indicates the plant-output disturbance
rejection bound and @ indicates the tracking bound).
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Simulation results with the simplified
plant (Equation 8) are given in Figure 9. Figure
9a shows the magnitude of the transfer function
from dg to y whose maximum values are below the
upper bound &4 for all plant variations. Figure 9b
shows the magnitude of the transfer function from
r to y whose values are within the bounds for all
plant variations.

10°
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=
o -15 1+G | {
5 +GP
B oo
=
30
0
40 -
107 10° 10
Frequency (rad.s™)
-10
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w =10 | \
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E 50| \
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= \
= .60 | \
-70 | h
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0.4 Y

Amplitude (m)
(=]

0 5
Time (s)

Figure 9

Magnitude (dB)
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Figure 8 shows that the tracking
specification is tightened at low frequencies (0.1-1
rad.s™1) resulting in over design at 3 rad.s and
> 8 rad.s’1, which also shows in Figure 9b. This
over design at high frequencies can be reduced
at the expense of sacrificing the low-frequency
specifications.

Frequency (rad.s™)

Upper
Bound

Amplitude (m)

Amplitude (m)

-
0.4 L L
il 5 s 10
Time (s)

Frequency-domain and time-domain responses). P, G and F are the plant, controller and

prefilter, respectively. y, d; and dq are the plant output, plant-input disturbance and plant-
output disturbance, respectively. dqo, dqi, &, and f are the plant-output disturbance rejection
specification, plant-input disturbance rejection specification, tracking specification lower

bound and upper bound, respectively.
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Figure 9c shows the magnitude of the
transfer function from d, to y, which is well
below its bound 84,. Figure 9d, 9e and 9f present
tracking, plant-output disturbance rejection and
plant-input disturbance rejection responses in
the time domain, respectively, when r, dy and d,
are square waves with 0.3 m amplitude. It can be
seen that all the outputs y from both dg and d, are
attenuated substantially whereas the output y from
the reference r is able to track the square wave
within the pre-specified bounds.

Input shaper design

The input shaper requires the natural
frequencies and damping ratios of the closed-loop
system. Using the true model, with sin 6 = 6 and
the controller and the prefilter obtained previously,
the closed-loop natural frequencies and damping
ratios can be computed. The natural frequencies
of the underdamped modes are w; = 2.83 rad.s™,
o, = 6.82 rad.s! and w; = 17.1 rad.s’L. The
corresponding damping ratios are & = 9.35x1072,
& =2.15x10" and &; = 8.13x102.

Three impulses are used per one natural
frequency and damping ratio. Three impulses
were chosen to provide some robustness against
uncertainties in the exact modes for the real
system. Using more impulses results in greater
robustness but with a slower response time due
to the slower reference signal. The amplitudes

X _]161 _(ll + 1: ]e:
s §

Displacement (m)
=]

30 40 50 60 7D

Time (s)

90 100

Displacement (m)

159

and timing of the impulses can be found using
Equations 1 and 2, wheret; =0 and F; = 1 However,
for the shaped input to have the same end point
as that of the original reference input, the three
impulses must sum to one, so the three impulses
are scaled down accordingly. Three sets of three
impulses are convolved together producing a final
sequence of 27 impulses. This final sequence will
be convolved with any incoming reference input
to produce a shaped input that will minimally
excite the closed-loop system natural frequencies,
resulting in substantially less vibration.

The simulation results were obtained
from implementing the control system in Figure 6
on the true model (Equation 6) of the two-staged
pendulum, where the controller, the prefilter and
the input shaper were designed previously. Figure
10 compares the payload position output, which is
computed from x, 6;, and 0, to be x—1,0,—(I1+1,)
0,, with a square-wave reference input. Figure
1010a shows the QFT-based control being used
but without input shaping, whereas Figure 10b
shows the QFT-based control being used with
input shaping. It can be seen that the payload
vibration is reduced substantially as a result of
moving the pendulum from point to point. The
3% settling time was also reduced from 17 to 4
s. Figure 11 shows the control input used in each
case. The QFT-based control with input shaping
used substantially less control effort but achieved

sx=16, (1, +1,)0,

o
12

=
-

06

0 IC 20 30 40 30

Time (s)

60 70 BO

Figure 10 Payload position and its reference (r): () Quantitative feedback theory (QFT)-based controller
without input shaping, (b) QFT-based controller with input shaping.
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an even faster settling time than without input
shaping.

The advantage of using QFT-based
control together with input shaping is that the
control system from the simplified second-order
plant model can be designed with the swinging
motion of both links and the payload being treated
as force disturbances. The control system can be
designed to reject the disturbances, thus reducing
their detrimental effects on residual vibration.

RESULTS

Figure 12 provides a block diagram of the
experimental arrangement. Two optical encoders
measured the relative angular positions 8, and 6,
of the links. Another optical encoder, attached to
the motor, measured the motor shaft’s angular
position, which can be converted to the slider’s
linear position x. An uncertain payload container,
carrying some movable coins, was placed at the tip.
An accelerometer was attached near the payload
to measure its linear acceleration.

A host computer, running Labview
(National Instruments; Austin, TX, USA) and
Matlab (Mathworks; Natick, MA, USA) software,
was used to communicate with the user and a target
computer. The impulse sequence was designed off-
line using Matlab. The real-time hardware-in-the-
loop experiment was performed using Labview.

6
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A target computer contained two data
acquisition cards whose functions were to acquire
sensor signals and to send out actuator command
from the control algorithm. One analog input
(Al) channel, one analog output (AO) channel,
and three counter channels were used in the
experiment. The target operated using a Labview
Real-Time operating system.

The host and target computers were
connected to each other via a local area network
line. A control signal was sent as voltage to a motor
amplifier board to amplify to a level that could
drive the direct current (DC) motor. An integrated
circuit chip accelerometer was mounted at the tip
to measure linear acceleration. A DC power supply
provided current to the motor amplifier board.

A sampling time of 1 ms was used for
the hardware. The closed-loop controller was
described in the QFT-based controller design
section, and the impulse sequence was described
in the input shaper design section. However, in
actual implementation, the impulse sequence must
convolve in real-time with any incoming reference
position command given by the human operator.

To do that, let IS(t) represent an impulse
sequence of n impulses. It can be expressed in the
time domain as Equation 9:

IS(t) =S AS(t-t),0<t <ty (9)

i=1

4
bul' uh' A

Control Input (N)
(-]

Control Input (N)

n ( o i gl
W L > W
/ /
u 2
u
4 -4 2
E IE
-6 L . L . L n . -6 L L L L L L L
0 10 20 30 40 S0 60 70O 8D 90 100 0 10 20 30 40 S50 60 70 30 90 100
Time (s) Time (s)

Figure 11 Control input: (a) Quantitative feedback theory (QFT)-based controller without input shaping,
(b) QFT-based controller with input shaping. (u = Control input.)
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where 4(t) is the Dirac delta function, A; and t; are Since r(t — 1) = r(-t + t) can be viewed as a mirror
the amplitude and time of the i impulse measured ~ image of r(t) about the vertical axis shifting by the
in meters and seconds, respectively. Suppose  amount oft, the convolution result can be obtained
convolving this impulse sequence with a step  graphically as Figure 13. Figure 13a shows IS(t)
reference input r(t) is needed. The convolution is  and r(t). Figure 13b plots the mirror image r(-t).
given by Equation 10: Figure 13¢ shows r(-7) shifted by t. Finally, Figure
13d shows the resulting convolution 1S*r.
IS*r={" IS(7)r(t-7)d (10)
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* Matlab 0, i
CTRL |« '
) i
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Figure 12 Diagram of the experimental setup. (LAN = local area network, Al = analog input channel,
Ao = analog output channel, CTR1, CTR2, CTR3 = counter channels, § = payload linear
acceleration, 0, and 0, = relative angular positions of links, x = displacement coordinate, 0
= motor angle and V = input voltage.)
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The impulse sequence had 27 impulses
spanning 450 time steps, when one time step
equaled one sampling period of 0.01 s. In real-time
convolution, 450 shift registers were added in the
Labview program to store the current reference
command r(t.ent) as Well as its previous 449
values. This reference command was given to
the system in real-time by a human operator. A
fixed array containing the impulse sequence was
multiplied by the reference command stored in
the shift registers. In this way, the most current
command was multiplied by the first impulse, and
the subsequent commands were multiplied by the
subsequent impulses as shown in Figure 13c.

A toggle switch was written in the
program to turn the input shaper on and off. A
turntable knob was also added to the program to

let an operator control the pendulum as desired.
The readings from the knob were interpreted
as the reference position to be followed by the
pendulum’s payload position.

Figure 14 plots the pendulum’s payload
position (x—1,6,—(l;+1,)6,) versus its desired
trajectory given arbitrarily by the operator. By
switching from the shaped to the unshaped
reference inputs, it was clear that with the shaped
input, the payload was able to settle faster with
substantially less vibrations than in the unshaped
case, which suffered from severe residual
vibration. The experimental result of the input
shaper was not as good as that of the simulation
given in the input shaper design section because
of the imperfection of the system identification in
obtaining a dynamic model of the system.

a ) _f(f) ______ .

SR .
LI

. 1] '-53(3)4\1\4.\/]\1‘ :
¢ r(-t+1)

| Tt’rfr atalh :
d ?h J1s@r(e+ tar

Figure 13 Graphical interpretation of the convolution process: (a) IS(t) and r(t); (b) plot of mirror

image r(-t); (c) shows r(-t) shifted by t; (d) shows the resulting convolution IS*r. (r = Step

reference input; IS = Input shaper impulse sequence; T = Time, t = A specific time.)



Kasetsart J. (Nat. Sci.) 48(1)

Figure 15 shows the signal from the
accelerometer at the tip, with substantially higher
acceleration output during the unshaped period.
The root-mean-square value of the acceleration
was four times higher during the unshaped period
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than during the shaped period. Figure 16 contains
the control input voltage to the motor amplifier.
The control input had higher amplitude during the
unshaped period.
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Figure 14 Tracking result for the shaped and unshaped cases (actual pendulum position = solid line,

desired value = dashed line.)
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Figure 15 Payload acceleration for shaped and unshaped cases.
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DISCUSSION

Some researchers have investigated
placing the input shaper inside-of-the-loop, a
so-called closed-loop signal shaper (CLSS.)
Huey et al. (2008) reported that the CLSS could
reduce noise-induced vibration and alleviate the
detrimental effects caused by hard nonlinearity
such as saturation and rate limit but a CLSS was
not suitable for eliminating vibrations induced by
plant-input and plant-output disturbances as well
as by plant model uncertainty. Staehlin and Singh
(2003) used the structure of the internal model
controller for the closed-loop control without
results on robustness. Kapila et al. (1999) applied
a closed-loop controller based on the linear matrix
inequality to a simulation problem. However,
the controller is quite complicated and its use in
practice is still limited. Because vibrations induced
by disturbances and uncertainty are substantial, it
is appropriate to put a controller inside-of-the-loop
to attenuate the disturbances when uncertainty
is present. Then, the input shaper can be placed
outside-of-the-loop to create a shaped reference

input for the resulting closed-loop system.
The ability of the controller in attenuating the
disturbances with pre-specified performance is
vital for the proposed setting.

CONCLUSION

A control system consisting of a QFT-
based controller, placed inside-of-the-loop, and
an input shaper, placed outside-of-the-loop,
delivered excellent results, both in simulation
and in experiment, in reducing the oscillation of
an uncertain payload of a two-staged pendulum,
when the pendulum was commanded to move
from point to point by a human operator. The
QFT-based controller could be designed such that
the effects from plant model uncertainties and
external disturbances to the plant output were kept
small and below pre-defined specifications. As a
result, the vibration normally induced by these
uncertainties and disturbances was reduced by
the controller, so the input shaper could focus on
attenuating the vibration induced by the reference
input.
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Figure 16 Control input to the motor amplifier for shaped and unshaped cases.
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