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Daily Monitoring of Soil Moisture in Thailand by FY-2E Satellite

Watcharee Veerakachen* and Mongkol Raksapatcharawong

ABSTRACT

Soil moisture is an important factor in monitoring and warning of drought and landslide disasters.
Direct observations of soil moisture are point-based which restricts measuring soil moisture across a wide
area continuously. In Thailand, soil moisture measurements are also observed only for a specific purpose.
A method for soil moisture estimation throughout the country does not exist due to the same limitation.
Recent advanced technology in satellite remote sensing provides alternatives to indirectly estimate soil
moisture with high temporal and spatial resolutions. This study presents an efficient technique to observe
daily soil moisture based on apparent thermal inertia derived from FY-2E satellite data. The technique
can estimate daily soil moisture throughout Thailand at 5 x 5 km pixel resolution. The results exhibited
good consistency between observed daily soil moisture and other relevant factors, for example, diurnal
temperature change and daily rainfall. This work suggests that the proposed technique is a feasible
solution for daily soil moisture monitoring nationwide.
Keywords: apparent thermal inertia (ATI), daily soil moisture, diurnal temperature, FY-2E, soil moisture

estimation

INTRODUCTION

The global warming effect has an impact
on the severity of disasters worldwide. Each year,
Thailand experiences flood and drought alternately.
In 2011, the Big Flood caused unimaginable losses
and casualties to Thai people. That incident
prompted calls for an effective water management
and early disaster warning mechanism to mitigate
the tragic results. The ability to observe factors
contributing to such disasters is crucial to making
informed decisions. Two relevant factors are
rainfall and soil moisture. Rainfall is widely
accepted as a triggering factor for flood and
landslide disasters and also plays a major role
in drought disaster (Larsen, 2008; Jessup and
Colucci, 2012). However, only heavy rainfall can

cause damage in hazardous terrains with sufficient
soil moisture. While weather forecast systems are
becoming more complicated in order to predict
rainfall events worldwide with the aid of satellite,
radar and ground-based observations, this is not
the case for soil moisture estimation.

In general, soil moisture has high spatial
and temporal variations. Direct observations of
soil moisture are point-based which restricts the
measurement of soil moisture across wide areas
continuously. Indirect observation methods usually
derive soil moisture through mathematical models
that describe the relationship between remotely
sensed data and soil moisture data. Therefore, it
is difficult to develop a soil moisture estimation
model in Thailand where ground truthing of data
is extremely limited. There is no evidence in the
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literature of dynamic soil moisture maps available
for effective drought/landslide monitoring and
warning system from any agencies in Thailand.
The current study developed a feasible method
for soil moisture estimation with high spatial and
temporal resolution to effectively support disaster
monitoring and warning under the constraint of
using minimal ground truth observations.

Recent advanced technology in satellite
remote sensing provides alternatives to estimate
soil moisture with high temporal and spatial
resolution (Wang and Zhang, 2005). Several
techniques have been proposed for the indirect
evaluation of soil moisture (Wang and Qu, 2009).
Among them, satellite data based on optical,
thermal infrared, passive microwave and active
microwave measurements are used (Schmugge,
1978), each with different physical principles,
advantages and constraints: optical remote sensing
techniques observe soil reflection with limitations
due to surface penetration and cloud contamination
but have the advantage of fine spatial resolution
and wide coverage; thermal infrared techniques
sense surface temperature with similar advantages
and constraints to that of optical techniques;
passive microwave techniques mainly observe
brightness temperature, dielectric properties and
soil temperature (Moran et al., 2004). These
techniques have advantages in low atmospheric
noise and moderate surface penetration but with
low spatial resolution, while active microwave
techniques offer similar advantages to passive
microwave with high spatial resolution but their
narrow swath width results in low temporal
resolution and limited coverage area (Moran et
al., 2004).

Considering the purpose of the study,
optical and infrared techniques would fulfill the
requirements of temporal resolution and wide
coverage. Regarding optical remote sensing
techniques, soil moisture has a negative effect
on reflectance (Curcio and Petty, 1951). Several
empirical approaches have been proposed to

describe the relationship between soil moisture and
its reflectance (Leone and Sommer, 2000; Lobell
and Asner, 2002; Liu et al., 2003). However, little
attention has been paid to the use of the optical
domain compared with the thermal infrared
domain because the spectral characteristics of
soil depend on numerous factors, such as mineral
composition, organic matter, soil texture, and
surface roughness (Asner, 1998) causing wide
variation when applied to other locations outside
the calibration conditions (Wang and Qu, 2009).

Thermal infrared techniques measure the
thermal emission of the Earth with wavelengths
between 3.5 and 14 pum (Curran, 1985). This
method is based on the relationship of the
remotely measured surface soil temperature and
the soil moisture. Techniques proposed range from
the simple such as the thermal inertia method
(Tramutoli etal., 2001) to complicated techniques
such as the temperature/vegetation index method
(Moran et al., 1994). The thermal inertia method
showed that surface soil moisture is correlated with
the diurnal range of the surface soil temperature
(Friedl and Davis, 1994). Verstraeten (2006) found
that the apparent thermal inertia (ATI) derived
directly from multispectral satellite imagery can
be used to calculate the volumetric soil moisture
using a linear empirical equation. This method is
simple and easy to use and has a clear physical
meaning; however, it can achieve high accuracy
only when applied to a region with little or
no vegetation cover (Xue and Ni, 2006). The
normalized difference vegetation index (NDVI)
and land surface temperature (LST) are combined
to estimate soil moisture under the soil-vegetation-
atmosphere-transfer (SVAT) model (Carlson et al.,
1994). This method overcomes the drawback of the
ATI technique at the expense of model complexity.
A support vector machine (SVM) based on
statistical learning theory has also been applied
to increase the accuracy of satellite-retrieved soil
moisture estimates (Ahmad et al., 2010) as well as
the artificial neural network (ANN) model (Jiang
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and Cotton, 2004). However, the SVM and ANN
techniques require large numbers of training data
sets to achieve the expected accuracy which is not
possible with currently accessible data.

To address the lack of land assimilation
data and NDVI derived from earth observation
satellites, this study presents an efficient technique
to observe diurnal soil moisture using apparent
thermal inertia (ATI) derived directly from
FY-2E satellite data. FY-2E is a geostationary
satellite located above the equator at longitude
105°E (Dong and Zhang, 1998). This enables it
to obtain images of the whole of Thailand every
hour. Hourly visible (VIS) and infrared (IR) data,
broadcast through the DVB-S system supported by
the Chinese government, is received and archived
by the Chulabhorn Satellite Receiving Station
(CSRS) at Kasetsart University and the technique
provides nationwide daily soil moisture estimation
at 5 x 5 km spatial resolution (Dong and Zhang,
1998). Similar work (Tramutoli et al., 2001) has
shown that the ATI index can provide useful
information related to an indirect estimate of soil
moisture.

MATERIALS AND METHODS

Data and study sites

Two groups of datasets were involved in
this study—FY-2E satellite observations and soil
moisture measurements. Hourly satellite data from
five radiometers scanning channels are received
by CSRS in (.VSR) format with the data structure
shown in Figure 1. The data from each channel are
extracted and converted into numerical data using
a conversion table provided in the documentation
(DOC) sectors. IR data bits are converted into
brightness temperatures while VIS data bits are
converted into percent albedo. All converted data
are archived in an XML file with 16-bit PNG
format. The use of numerical methods for satellite
data retrieval is more efficient compared to the
image processing method as the latter process uses
a sample of data from the image and converts it
into a most likely approximation.

The characteristics of the five sensors
onboard are shown in Table 1. The long wave
infrared channel (IR1) and the split window
channel (IR2) represent infrared surface/cloud-

v

= Upper bils data (8-bit) |} Ir _____ data (6-b11) 1 low bits data (2-bit) 3
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Code Information sectors
Sec. Image data sectors
IR4 data
IR1~IR3 upper buts data VIS1~VIS4 data sector IR1-~IR3 lower bts
sector 6 bits data sector
(8 bits) ) @ bits) (10 bits)

SYNC | DOC IR1 IR2 IR3 Vis1 VIS2 | VIS3 VIS4 IR1 IR2 IR3 IR4

20408 20408 | 57060 | S5T060 | 57060 | 57060 | 6662 | 6662 | 6662 24990

364848 bits (552.8 nulliseconds)

Figure 1 Structure of FY-2E satellite data format.
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Table 1 FY-2C/E onboard sensor characteristics.

Channel 1D Channel name Wave length (pum) Spatial resolution (km)
IR1 Long wave infrared 10.80 5.00
IR2 Split window 12.00 5.00
IR3 Water vapor 6.80 5.00
IR4 Medium wave infrared 3.80 5.00
VIS Visible 0.73 1.25

top temperature. The water vapor channel (IR3)
measures the moisture content in the middle
atmosphere that indicates deep convective clouds.
The medium wave infrared channel (IR4) is
usually used for the detection of fog and low-level
clouds at night due to the influence of visible light
on the brightness temperature of this channel.
The visible channel (VIS) is used primarily for
observing visible cloud and other surface features
including surface albedo. The model developed
in this study uses only IR1 and VIS data for
computing the diurnal temperature and surface
albedo, respectively.

Soil moisture data were provided
by the Geotechnical Engineering Research
and Development Center (GERD), Kasetsart
University. Two study sites in Uttaradit province,
northern Thailand, were considered. The sites
were DK station located in Maepoon district
and NL station located in Namlee district whose
GPS values are shown in Figure 2. The former
is covered with vegetation whereas the latter
is mostly bare soil. The data were collected for
one year from July 2010 until June 2011. The
soil moisture sensors used at each station return
voltages corresponding to the percentage of soil
moisture measured every minute. However,
the voltage values were occasionally out of the
specified range of the sensors. Therefore, data
were first filtered for quality control before being
converted into the percentage of soil moisture
(PSM) using the calibration TDR files for each
station.

Soil moisture estimation models
Soil moisture estimation models were

17.713420, 99.991392

Figure 2 Locations in Uttaradit province,
northern Thailand showing location
coordinates of: (a) DK station in
Maepoon district; and (b) NL station in
Namlee district (sourced from Google
Earth).

developed based on the concept of thermal inertia
(TI). Soil Tl is a physical property describing the
impedance to temperature change (\erstraeten,
2006) which can be expressed using Equation 1:

TI = J(2Cr) (1)

where A is the soil thermal conductivity and Cy
is the soil heat capacity. The TI proportionally
increases as the soil water content increases,
thereby reducing the diurnal temperature
fluctuation range.

With advances in satellite technology,
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satellite remote sensing has the capability to
measure the Earth’s surface temperature and relate
it to soil moisture. An apparent thermal inertia
(ATI) derived directly from satellite sensing data
is a simple surrogate of TI. Claps and Laquardia
(2004) showed the relationship between the
ATT and the surface albedo (o) and the diurnal
temperature range (AT) derived from satellite data
using Equation 2:

l1-a
ATl =—— 2
AT @

The volumetric soil moisture (Ws) can
be calculated using the linear empirical equation
in Equation 3:

W =a,- ATl +4&, (3)
where ay,a; are empirical parameters.

A conceptual diagram of the study
is shown in Figure 3. The surface albedo (o)
is derived from the VIS channel of the FY-2E
satellite. Hourly data received from the satellite
vary not only due to soil moisture but also due to
the distance and the angle between the sun and the
satellite positions. Therefore, the daily averaged
surface albedo is computed from data received
from 1100 to 1600 hours on that day.

The diurnal temperature range (AT)
is defined as the difference between the land
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Figure 3 Conceptual diagram showing
development of soil moisture estimation
model based on apparent thermal inertia
(ATI) method using FY-2E satellite
data. (W5 = Volumetric soil moisture
and ag,a; = Empirical parameters.)

surface temperatures at midday and midnight. The
calculation of land surface temperature directly
from FY-2E is a very complicated task consisting
of many parameters for radiometric calibration,
cloud screening procedures, emissivity correction,
topology correction and atmospheric correction
which make it infeasible at present. Therefore,
the brightness temperature derived from the IR1
channel is used instead for cloud screening (at IR1
> 287K). The midday (Tgay) and midnight (Tpigne)
surface temperatures are approximated using the
average brightness temperature received during
1100 to 1600 hours and 2300 pm to 0400 hours,
respectively, to reduce any cloud contamination
effect on the measured temperature.

Figure 4 shows the time diagram of
satellite data used to approximate the surface
albedo and diurnal temperature range. These data
are mapped with averaged soil moisture measured
by both stations on the same day. Both satellite-
derived parameters are used to calculate the daily
ATI that corresponds to the average percentage of
soil moisture (PSM). After cloud screening and
data qualification processes, the data collected
from July 2010 to June 2011 resulted in 79 and
97 available datasets, respectively, for model
development using linear regression. The model
that describes the relationship between PSM and
ATI can be expressed using Equation 4:

PSM = ag-ATI + ay, @)
where ag = 22.667 and a; = 37.224 for DK station
and ag = -15.829 and a; = 50.05 for NL station.
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Figure 4 Surface albedo and diurnal temperature
range derived from FY-2E satellite and
land soil moisture measured by stations
used for model development (all
numbers are in 24-hour time format).
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The NL model contradicted the physical meaning
of thermal inertia and soil moisture relationship
even though the surrounding area was not densely
covered with vegetation. Therefore, the DK model
was chosen to investigate the feasibility of using
satellite-derived ATI for monitoring the variation
of land soil moisture.

RESULTS AND DISCUSSION

Temperature and rainfall are factors
contributing to soil moisture variations. In
particular, the soil water content tends to dry up
under high temperature when there is no rainfall.
Due to limited ground truthing, the accuracy of
the soil moisture estimation model cannot be
assessed. However, the feasibility of soil moisture
estimation for disaster management was studied
by comparing the estimated soil moisture with the
diurnal temperature and daily rainfall. Two data
sets downloaded from the website of the Thailand
Meteorological Department (TMD; http://www.
tmd.go.th) were selected for comparison purposes.
The first data set consisted of Thailand weather
maps indicating daily maximum and minimum
temperatures and daily rainfall on 19 March
2013. The soil moisture for each 5 x 5 km pixel
was estimated based on the DK model using IR1
and VIS data from the FY-2E satellite received
on the same day. The daily soil moisture map
was then generated across the country. Figure
5a indicates the area with a high percentage of
soil moisture in the circled area. Compared to
other regions shown on the map, this result is
in agreement with the daily rainfall (Figure 5b)
around that area where more rainfall is related
to higher percent soil moisture. Moreover, the
maximum temperature on that day is in the lowest
range (Figure 5¢) compared to other areas while
the minimum temperature is in the highest range
(Figure 5d). This implies that the encircled area
had a lower diurnal temperature change than other
areas which corresponds to the higher percentage
of soil moisture estimated from the model. The

white areas indicate where the model returned no
value due to the cloud screening process leaving
insufficient data for the computation.

The other data set consisted of 3-hourly
temperatures in Uttaradit province obtained from
the TMD website and collected from 13 March to
30 March 2013. These data were used to compute
the daily maximum and minimum temperatures for
calculating the temperature difference (Figures 5¢
and 5d, respectively), as a surrogate for the daily
diurnal temperature range. The corresponding
daily soil moisture estimates shown in Figure 5a
were computed using IR1 and VIS data from the
FY-2E satellite at the pixel co-located with the
TMD weather station in Uttaradit. For the period
of this study, the diurnal temperature range tended
to decrease while the estimated daily soil moisture
tended to increase, conforming to the expected
relationship between the two parameters.

The results in Figure 6 show good
agreement between the satellite-observed soil
moisture and other relevant factors (the diurnal
temperature change and daily rainfall). This work
suggests that soil moisture observation by the
FY-2E satellite has potential for daily soil moisture
monitoring across the country. Consequently,
the results can be used to generate relevant
information supporting an effective disaster
monitoring and warning system, for example, a
dynamic hazard map for a landslide monitoring
and warning system.

CONCLUSION

An application of FY-2E meteorological
satellite data was used for daily soil moisture
estimation to support disaster monitoring and
warning. This indirect observation of soil moisture
can achieve both high temporal and spatial
resolution nationwide. A simple ATl method was
chosen under the constraint to use only FY-2E
data. Theoretically, this ATI value has a linear
relationship with the soil water content. Two
different sites were selected for empirical model
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development: the DK station and the NL station
in Uttaradit. Albedo and the diurnal temperature
range derived from VIS and IR channel were
successfully used to calculate the apparent
thermal inertia (ATI). The result was expanded to
successfully estimate daily soil moisture across
Thailand. Based on the temperature and rainfall
data from TMD, the results from the model showed

Kasetsart J. (Nat. Sci.) 48(2)

that daily estimated soil moisture changes were in
agreement with the diurnal temperature range and
daily rainfall. Although the model accuracy cannot
be assessed (due to limited ground truth data),
it was considered an efficient tool for daily soil
moisture estimation to support disaster monitoring
and warning in Thailand.
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Figure 5 Modeled output and relevant meteorological data for 19 March 2013 from the Thai
Meteorological Department (a) Percentage daily soil moisture (white color indicates no data);
(b) Daily rainfall (mm); (c) Maximum temperature (°c); and (d) Minimum temperature (°c).
The circled area shows high soil moisture content.
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in Uttaradit province from 13 March to 30 March 2013.
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