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Design for Bread Baking Temperature Profiles using Neural
Network Modeling Approach

Nantawan Therdthai

ABSTRACT

Various neural network models were developed to establish the relationship between tin

temperature profiles and bread quality. The best model was composed of 6 input neurons, 6 first hidden

layer neurons, 4 second hidden layer neurons and 4 output neurons with Log-sigmoid transfer functions.

During verification, the correlation coefficient and mean square error were 0.9356 and 53.9229

respectively. To produce sandwich bread with various levels of crust color and weight loss, the best neural

network model was used to design the tin temperature profiles for 4 baking zones.  To obtain the same

crust color and weight loss, the amount of increased tin temperatures for shorter baking time could be

estimated. However the pattern of tin temperature profiles was not significantly changed.  In contrast, the

pattern of tin temperature profiles required for producing light crust color (L-values of 55, 65 and 55) and

dark crust color (L-values of 50, 55 and 50) was significantly different. Therefore the neural network

model presented the potential to assist industry with designing the baking profile to obtain the desire crust

color pattern with shorter baking time and less weight loss.
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INTRODUCTION

Normally, baking process of bread was

controlled at certain temperature for the whole

baking period. But after the baker understood how

baking condition in each baking zone affects bread

quality, the step baking was introduced. The step

baking condition could be optimized to minimize

weight loss during baking (Therdthai et al., 2002).

To describe the baking process which is based on

heat and mass transfer mechanisms, several studies

have been conducted. The change during baking

process could be explained by mathematical models

(Zanoni et al., 1994; Baik et al., 2000; Broyart and

Trystram, 2002), computational fluid dynamic
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models (De Vries et al., 1995; Therdthai et al.,

2003; 2004; Mirade et al., 2004), kinetic models

(Zanoni et al., 1995a, 1995b) and neural network

models (Zhou and Fong, 2002). A neural network

is an information processing technique, using a

computer to simulate a human nervous system. A

large number of sample data including input and

output is required to train the neural network. The

network structure includes input layer, output layer

and hidden layer. Each layer is composed of a

number of neurons connected together by weights.

Combined weighted input factors are used to

estimate the output factors, using an iterative, trial

and error procedure (Horimoto et al., 1995).

Although the neural network is purely based on a
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black box approach, it could improve the accuracy

to predict bread quality from various process

conditions, compared to the statistical models

(Zhou and Fong, 2002). However, in order to

design appropriate process conditions for various

bread quality attributes, the model expressing the

reverse relationship is required. Therefore the

objective was aimed to develop a neural network

model to predict baking temperature profiles in

accordance with the desired product quality.

METHODOLOGY

Neural network modeling
Training: 96 Data sets of inputs (weight

loss, crumb temperature, top crust color, side crust

color, bottom crust color and baking time) and

outputs (average tin temperature in Zone 1, Zone

2, Zone 3 and Zone 4) were normalized into the

range of 0 and 1. The normalized data sets were

then used to train a neural network using the back-

propagation method (Matlab“6.5). Various four

layer neural network models with Tan-sigmoid

and Log-sigmoid transfer functions were

developed. As shown in Figure 1, Tan-sigmoid

transfer function can be used to generate the outputs

within the range of -1 and 1 whereas Log-sigmoid

transfer function can be used to generate the outputs

within the range of 0 and 1.

The model performance was determined

by the correlation coefficient (R) and mean square

error (MSE) between the modeled tin temperature

in Zone 1, Zone 2, Zone 3 and Zone 4 and the

corresponding measured values.

Verification: New 29 data sets of input and

output were normalized and introduced into the

model developed during training. To determine

the predictability of the model, the predicted tin

temperature in Zone 1, Zone 2, Zone 3 and Zone 4

were compared to the actual values. Rs and MSEs

were calculated to verify the model performance.

RESULTS AND DISCUSSION

Four-layer neural network models with

different numbers of hidden neuron and transform

function (Tan-sigmoid and Log-sigmoid) were

established. Their performances are shown in

Table 1.

The Log-sigmoid transfer function was

found to be slightly better than the Tan-sigmoid

transfer function, in contradictory to Zhou and

Fong (2002). This was possibly because the

relationship between input and output parameters

was presented in the reverse direction in this

paper. According to the model performance during

training and verification, the best model structure

was composed of six and four neurons in the first

and second hidden layers, respectively. During

modeling, R value and MSE were 0.9473 and

Figure 1 Characteristics of Tan-sigmoid and Log-sigmoid transfer functions.
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47.2813 respectively. Similar model performance

was also found during verification. Therefore the

6-6-4-4 neural network model was trained properly

and could reasonably predict tin temperature

profiles in four baking zones.

Process design using the neural network model
After several models had been established,

the best neural network model (the 6-6-4-4 neural

network model) was selected to design the baking

tin temperature profiles for different baking times

and bread characteristics including crust colors

and weight loss. For a baking index, the starch

gelatinization extent could be used to represent the

progression of baking. It was found that the

maximum starch gelatinization extent was obtained

after the crumb temperature met 95∞C (Zanoni et

al., 1995a). In this paper, the desired crumb

temperature was therefore set to 97∞C to ensure the

completion of bread baking.

According to the prediction of the neural

network model (Fig. 2), producing of bread crust

color with different patterns of L-value required

different tin temperature profiles in four zones. L-

values of commercial sandwich bread crust are

normally in the range of 50-56, 55-72 and 50-60

for top, side and bottom crust respectively. Higher

L-value indicated lighter crust color. To obtain

sandwich bread with L-values of 55-65-55 (top-

side-bottom crust) within 24 minutes, a high heating

rate should be applied at the beginning. Therefore

tin temperatures in Zones 1 and 2 were very high

to enhance crumb temperature. To obtain the

desired crust colors, Zone 3 and Zone 4

temperatures had to be decreased. Otherwise crust

colors could be too dark. This coincided with the

results of Therdthai et al. (2002) that temperatures

in Zones 3 and 4 significantly enhanced crust

colors. To obtain the same crust color by using a

longer baking time, Zone 1, Zone 2 and Zone 3

temperatures could be reduced, comparing with

the 24 minute baking process. To reduce weight

loss from 9% to 8%, the pattern of baking profile

was not significantly changed. However lower

temperatures should be applied in Zones 1, 2 and

3. Temperature in Zone 4 should be increased to

develop the same crust color with L-value of 55-

65-55. Therefore the pattern of temperature profile

to produce sandwich bread with 8-9% weight loss

and light crust color (L-value of 55-65-55) within

24-26 minutes tended to increase from Zone 1 to

Zone 2 before decreasing from Zone 3 to Zone 4.

Table 1 Model performances during modeling and verification.

Model Number of neurons Function Modeling Verification

First Second First Second R MSE R MSE

hidden hidden hidden hidden

layer layer layer layer

1 6 2 Tan Tan 0.9326 60.0409 0.9221 64.7608

2 6 4 Tan Tan 0.9413 52.6842 0.9337 56.8383

3 7 2 Tan Tan 0.9034 84.6287 0.8842 94.0541

4 7 4 Tan Tan 0.9204 71.1397 0.9007 82.6938

5 6 2 Log Log 0.9439 50.1778 0.9334 55.7298

6 6 4 Log Log 0.9473 47.2813 0.9356 53.9229

7 7 2 Log Log 0.9442 49.9011 0.9364 53.3232

8 7 4 Log Log 0.9426 51.3693 0.9345 55.5478
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Figure 2 Estimated temperature profiles to develop light crust color with L-values of 55-65-55 (top-

side-bottom crust).

Figure 3 Estimated temperature profiles to develop darker crust color with L-value of 50-55-50 (top-

side-bottom crust).
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As shown in Figure 3, to obtain darker and

more uniform crust color with L-values of 50-55-

50 (top-side-bottom crust), which were still in the

commercial crust color range, the pattern of baking

profiles was significantly different from the one

for producing crust color with L-values of 55-65-

55. This was because the process required the

significantly higher temperature in Zones 3 and 4
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to produce darker bread crust, comparing to the

process for crust color with L-values of 55-65-55.

Not only the higher temperatures in Zones 3 and 4

could enhance crust color development, but they

also possibly increased crumb temperature. As a

result, temperatures in Zones 1 and 2 which

normally enhanced crumb temperature (Therdthai

et al., 2002) could be reduced when higher

temperatures in Zones 3 and 4 were applied.

Therefore the process started with a lower

temperature in Zone 1. After that tin temperature

gradually increased to Zone 4 which was the

highest. For either a longer baking time process or

a lower weight loss process, the lower temperature

was required in all baking zones, which was similar

to the case of the lighter bread (L-values of 55-65-

55).

CONCLUSION

Four-layer neural network models were

established to predict the baking temperature

profiles for white sandwich bread. The best neural

network model showed a good agreement between

the predicted temperature profile and the actual

temperature profile. Therefore the neural network

model was applied to assist with the process design.

Using the neural network model developed, the

required temperature profiles could be estimated

in order to produce bread containing different

levels of crust color and weight loss within different

baking times. Therefore this approach could

provide the guidance to design the baking profile

in accordance with the specified bread quality.
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