

Jordan Derivations on Rings

Orapin Wootijiruttikal and Utsanee Leerawat

ABSTRACT

An additive mapping $d : R \rightarrow R$ is called a Jordan derivation on a ring R if $d(a^2) = d(a)a + ad(a)$ for all $a \in R$. Two general forms of $d^n(aba)$ and $d^n(abc+cba)$, where $a, b, c \in R$ and $n \in \mathbb{N}$, are established. It is also shown that if d is a Jordan derivation on a commutative ring R and P is a semiprime ideal or prime ideal of R where R/P is characteristic – free, then $d(P) \subseteq P$ if and only if $d^n(P) \subseteq P$ for all positive integers $n \geq 2$.

Key words: derivation, Jordan derivation, ring

INTRODUCTION

An additive mapping $d : R \rightarrow R$ is called a derivation on R if $d(ab) = d(a)b + ad(b)$ for all pairs $a, b \in R$. An additive mapping $d : R \rightarrow R$ is called a Jordan derivation if $d(a^2) = d(a)a + ad(a)$ holds for all $a \in R$. Obviously, every derivation is a Jordan derivation.

Herstein(1957) showed that if d is a Jordan derivation on a ring R such that characteristic is not 2, then $d(aba) = d(a)ba + ad(b)a + abd(a)$ and $d(abc+cba) = d(a)bc + ad(b)c + abd(c) + d(c)ba + cd(b)a + cbd(a)$ for all $a, b, c \in R$.

In 1998, Creedon investigated a ring of characteristic – free, semiprime ideal on ring and proved that, if d is a derivation on a ring R and P is a semiprime ideal of R , such that R/P is characteristic – free and $d^k(P) \subseteq P$, for any fixed positive integer k , then $d(P) \subseteq P$.

In this paper we will consider d as a Jordan derivation on a ring R and establish general forms of $d^n(aba)$ and $d^n(abc+cba)$ for all positive integer n .

We also show that if d is a Jordan derivation on a commutative ring R and P is a semiprime ideal or prime ideal of R where R/P is characteristic – free, then we have $d(P) \subseteq P$ if and only if $d^n(P) \subseteq P$ for all positive integer $n \geq 2$.

MATERIALS AND METHODS

For the proof results we need the following lemmas.

Lemma 1. [Herstein, Lemma 3.1] *Let R be a ring such that characteristic is not 2 and let d be a Jordan derivation on R . Then for all $a, b, c \in R$ the following statements hold :*

- (i) $d(ab + ba) = d(a)b + ad(b) + d(b)a + bd(a)$,
- (ii) $d(aba) = d(a)ba + ad(b)a + abd(a)$,
- (iii) $d(abc + cba) = d(a)bc + ad(b)c + abd(c) + d(c)ba + cd(b)a + cbd(a)$.

Lemma 2. [Creedon, Lemma 4] *Suppose P is a semiprime ideal of a ring R and L is a left ideal satisfying $L^n \subseteq P$, for some positive integer n . Then $L \subseteq P$.*

RESULTS AND DISCUSSION

Theorem 1. Let R be a ring such that characteristic is not 2. If d is a Jordan derivation on R , then for all $a, b \in R$ and for each positive integer n , $d^n(aba)$

$$= \sum_{\substack{i+j+k=n \\ i,j,k \in \{0,1,2,\dots,n\}}} \binom{n}{i \ j \ k} d^i(a) d^j(b) d^k(a)$$

PROOF. The proof will be finished by induction on n .

If $n = 1$, the result is just by Lemma 1 (ii) in materials and methods, so we assume $n > 1$ and assume that $d^n(aba)$

$$= \sum_{\substack{i+j+k=n \\ i,j,k \in \{0,1,2,\dots,n\}}} \binom{n}{i \ j \ k} d^i(a) d^j(b) d^k(a).$$

$$\begin{aligned} \text{Since } d^{n+1}(aba) &= d(d^n(aba)), \quad d^{n+1}(aba) = \\ &= d \left[\sum_{\substack{i+j+k=n \\ i,j,k \in \{0,1,2,\dots,n\}}} \binom{n}{i \ j \ k} d^i(a) d^j(b) d^k(a) \right] \\ &= \sum_{\substack{i+j+k=n+1 \\ i,j,k \in \{0,1,2,\dots,n,n+1\}}} \binom{n+1}{i \ j \ k} d^i(a) d^j(b) d^k(a). \end{aligned}$$

the proof is complete. #

Theorem 2. Let R be a ring such that characteristic is not 2. If d is a Jordan derivation on R , then for all $a, b, c \in R$ and for each positive integer n ,

$$\begin{aligned} d^n(abc+cba) &= \sum_{\substack{i+j+k=n \\ i,j,k \in \{0,1,2,\dots,n\}}} \binom{n}{i \ j \ k} [d^i(a) d^j(b) d^k(c) \\ &\quad + d^i(c) d^j(b) d^k(a)] \end{aligned}$$

PROOF. We linearize the result of Theorem 1 by replacing a by $a+c$ to obtain

$$\begin{aligned} d^n((a+c)b(a+c)) &= \sum_{\substack{i+j+k=n \\ i,j,k \in \{0,1,2,\dots,n\}}} \binom{n}{i \ j \ k} d^i(a+c) d^j(b) d^k(a+c) \end{aligned}$$

$$\begin{aligned} &= \sum_{\substack{i+j+k=n \\ i,j,k \in \{0,1,2,\dots,n\}}} \binom{n}{i \ j \ k} d^i(a) d^j(b) d^k(a) \\ &\quad + \sum_{\substack{i+j+k=n \\ i,j,k \in \{0,1,2,\dots,n\}}} \binom{n}{i \ j \ k} d^i(a) d^j(b) d^k(c) \\ &\quad + \sum_{\substack{i+j+k=n \\ i,j,k \in \{0,1,2,\dots,n\}}} \binom{n}{i \ j \ k} d^i(c) d^j(b) d^k(a) \\ &\quad + \sum_{\substack{i+j+k=n \\ i,j,k \in \{0,1,2,\dots,n\}}} \binom{n}{i \ j \ k} d^i(c) d^j(b) d^k(c) \\ &= d^n(abc) \\ &\quad + \sum_{\substack{i+j+k=n \\ i,j,k \in \{0,1,2,\dots,n\}}} \binom{n}{i \ j \ k} d^i(a) d^j(b) d^k(c) \\ &\quad + \sum_{\substack{i+j+k=n \\ i,j,k \in \{0,1,2,\dots,n\}}} \binom{n}{i \ j \ k} d^i(c) d^j(b) d^k(a) \\ &\quad + d^n(cbc). \end{aligned}$$

On the other hand, $d^n((a+c)b(a+c))$

$$= d^n(aba + cbc + cba + abc)$$

$$= d^n(aba) + d^n(cbc) + d^n(cba+abc)$$

Comparing the two equations, we get the result. #

For the next results, we need the following lemmas.

Lemma 3. Let P be an ideal of a ring R such that characteristic is not 2. If d is a Jordan derivation on R , then for all $a \in P$ and for all positive integers r we have $d^r(a^s) \in P$ for all $s = r+1, r+2, \dots$

PROOF. We will proof by induction on r . Obviously, for $r = 1$ $d(a^2) \in P$. If $s \geq 2$, $d(a^{s+1}) = d(aa^{s-1}a)$. Using Lemma 1(ii) in Materials and methods, with $b = a^{s-1}$ we obtain $d(aa^{s-1}a) = d(a)a^{s-1}a + ad(a^{s-1})a + aa^{s-1}d(a)$. Since $a \in P$, $d(aa^{s-1}a) \in P$. Hence $d(a^s) \in P$ for all $s \geq 2$. Next,

we assume that $r \geq 2$ and $d^r(a^s) \in P$ for all $r=2, \dots, n$ and $s = r+1, r+2, \dots$. Since $d^{n+1}(a^{n+2}) = d^{n+1}(aa^n a)$, by theorem 1 we have $d^{n+1}(aa^n a)$

$$= \sum_{\substack{i+j+k=n+1 \\ i,j,k \in \{0,1,2,\dots,n,n+1\}}} \binom{n+1}{i \ j \ k} d^i(a) d^j(a^n) d^k(a).$$

Therefore $d^{n+1}(aa^n a) \in P$ because $a \in P$. Hence $d^{n+1}(a^{n+2}) \in P$. Let $n+2 = t$, $u \in \mathbb{N}$ and suppose that $d^{n+1}(a^s) \in P$ for all $s = t+1, t+2, \dots, t+u$. Since $d^{n+1}(a^{t+u+1})$

$$= \sum_{\substack{i+j+k=n+1 \\ i,j,k \in \{0,1,2,\dots,n,n+1\}}} \binom{n+1}{i \ j \ k} d^i(a) d^j(a^{n+u+1}) d^k(a)$$

and $a \in P$, then $d^{n+1}(a^{t+u+1}) \in P$. Hence $d^{n+1}(a^s) \in P$ for $s > n+1$. Thus we conclude that $d^r(a^s) \in P$ for all $s = r+1, r+2, \dots$ $\#$

Lemma 4. *Let P be an ideal of R such that characteristic is not 2 and let $x \in P$. Suppose that d is a Jordan derivation on R . Then $d^n(x^n) - n!(dx)^n \in P$ for all positive integers n .*

PROOF. By definition of prime ideal, the result holds for $n = 1$. If $n \geq 2$, suppose $d^n(x^n) - n!(dx)^n \in P$. Since $d^{n+1}(x^{n+1}) = d^{n+1}(xx^{n-1}x)$, by Theorem 1 we have $d^{n+1}(xx^{n-1}x)$

$$= \sum_{\substack{i+j+k=n+1 \\ i,j,k \in \{0,1,2,\dots,n,n+1\}}} \binom{n+1}{i \ j \ k} d^i(x) d^j(x^{n-1}) d^k(x).$$

Since $x \in P$,

$$\begin{aligned} & \sum_{\substack{i+j+k=n+1 \\ i,j,k \in \{0,1,2,\dots,n,n+1\}}} \binom{n+1}{i \ j \ k} d^i(x) d^j(x^{n-1}) d^k(x) \\ &= \binom{n+1}{1 \ n-1 \ 1} d(x) d^{n-1}(x^{n-1}) d(x) + P. \end{aligned}$$

Thus $d^{n+1}(x^{n+1}) \in (n+1)n [d(x) d^{n-1}(x^{n-1}) d(x)] + P$, and so $d^{n+1}(x^{n+1}) \in (n+1)!(dx)^{n+1} + P$. Hence $d^{n+1}(x^{n+1}) - (n+1)!(dx)^{n+1} \in P$. Inductively we have $d^n(x^n) - n!(dx)^n \in P$. $\#$

Theorem 5. *If d is a Jordan derivation on a commutative ring R and P is a semiprime ideal of R for which R/P has characteristic-free, then $d(P) \subseteq P$ if and only if $d^n(P) \subseteq P$ for all positive integer $n \geq 2$.*

PROOF. Suppose that $d^n(P) \subseteq P$ for all positive integer $n \geq 2$. Lemma 4 says that $d^n(x^n) - n!(dx)^n \in P$ for all $x \in P$. Since $d^n(x^n) \in P$, we see that $n! [d(x)]^n \in P$. Hence, $[d(x)]^n \in P$. Consider the ideal $\langle d(x) \rangle + P$ of R , we have $(\langle d(x) \rangle + P)^n \subseteq P$. Therefore, by Lemma 2 in Materials and Methods, we see that $(\langle d(x) \rangle + P) \subseteq P$, and hence $d(P) \subseteq P$. The reverse implication is obvious. $\#$

The following theorem can be proven in a similar way.

Theorem 6. *If d is a Jordan derivation on a commutative ring R and P is a prime ideal of R such that $P \neq R$ and R/P has characteristic-free, then $d(P) \subseteq P$ if and only if $d^n(P) \subseteq P$ for all positive integer $n \geq 2$.*

CONCLUSION

Results of the studying show that:

1. If d^n is a Jordan derivation on a ring R such that characteristic is not 2, then

$$\begin{aligned} & 1.1 \quad d^n(aba) \\ &= \sum_{\substack{i+j+k=n \\ i,j,k \in \{0,1,2,\dots,n\}}} \binom{n}{i \ j \ k} d^i(a) d^j(b) d^k(a) \\ & 1.2 \quad (abc+cba) \\ &= \sum_{\substack{i+j+k=n \\ i,j,k \in \{0,1,2,\dots,n\}}} \binom{n}{i \ j \ k} [d^i(a) d^j(b) d^k(c)] \\ & \quad + d^i(c) d^j(b) d^k(a) \end{aligned}$$

for all $a, b, c \in R$ and for any positive integer n .

2. If d is a Jordan derivation on a commutative ring R and P is a semiprime ideal of R (or prime ideal of R such that $P \neq R$) for which R/P has characteristic-free, then $d(P) \subseteq P$ if and only if $d^n(P) \subseteq P$ for all positive integer $n \geq 2$.

ACKNOWLEDGEMENTS

This work was supported by a grant from the Graduate School, Kasetsart University.

LITERATURE CITED

Creedon, T. 1998. Derivations and prime ideals. **Mathematical Proceedings of the Royal Irish Academy.** 2: 223-255.

Herstein, I.N. 1957. Jordan derivations of prime rings. **Proceedings of the American Mathematical Society.** 8: 1104-1110.