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ABSTRACT

	 Let K be an algebraic number field, OK its ring of integers. An order O in K is a subring of OK  
which contains a Z -basis for the field K. The conductor of O is the largest ideal of OK contained in O. 
This paper showed that Z + ƒ is the only one order in quadratic number fields having conductor ideal   
and conductor ideals were characterized in a Galois extension over Q.
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INTRODUCTION

	 Throughout this paper, let Z, Z+  and Q 
denote the set of integers, the set of positive integers 
and the set of rational numbers respectively. 
	 Let K be an algebraic number field. 
OK denotes the ring of integers of the field K. A 
subring O of  K is called an order if O is a finitely 
generated Z-module containing a  Z-basis for K, or 
equivalently, O is a subring of finite index within 
the ring of integers of K. For each order, there is a 
special ideal which is called the conductor of the 
order. In quadratic number fields, it is well known 
that the conductor ideal is just the principal ideal  
(a) for some a ∈ Z+.
	 Furtwängler (1919) showed how ideals in 
the ring of integers of an algebraic number field can 
be conductor ideals. His results were again given 
in a new variant of proof by Lettl and Prabpayak 
(2014). Prabpayak (2014) studied orders in pure 
cubic number fields. He characterized conductor 
ideals of order and he could determine the number 
of all orders with the given conductor ideal in such 
fields. 

	 Let ƒ be a conductor ideal in a quadratic 
number field. This paper shows that there 
exists exactly one order in this field with the 
conductor ideal ƒ. Moreover, conductor ideals are 
characterized in a Galois extension over Q.

MATERIALS AND METHOD

	 Let K be an algebraic number field. For 
any non-zero ideal I of OK , let N(I) denote its 
norm. For any non-maximal order O in K, the set  
ƒ = {x∈ K | xOK ⊂ O} is called the conductor of 
O . Then ƒ is an ideal of O and also of OK . So, call 
ƒ the conductor ideal of O. It can be easily shown 
that  Z+ƒ is the smallest order in OK containing  
ƒ. Therefore  Z + ƒ ⊂ O. 

Theorem 1. Let  K   be an algebraic number field and 
P   be a rational prime with ( )p pO P PK

e
g
eg= = 1

1
   

where P1,...,Pg are distinct prime ideals of OK and  
g,e1,...,eg are positive integers. Let ri denote the 
inertial degree of Pi , i.e. N P pi

ri( ) = . Let k be a 
positive integer. Then Pi

k is a conductor ideal if and 
only if one of the following two conditions holds:
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	 1.	 ri >2, 
	 2.	 ri = 1 and k is not congruent to 1 
modulo ei.

Theorem 2. Let K be an algebraic number field  
and p be a rational prime with ( )p P Pe

g
eg= 1

1
   

where P1,...,Pg are distinct prime ideals of OK  
of norm N P pi

ri( ) =  and g,e1,...,eg are positive 
integers. Let ki be non-negative integers for 
i =1,...,g . Put f P Pk

g
kg= 1

1


. Then ƒ is the 
conductor ideal of some order in K if and only if 
for every integer 1< i < g  with ki > 1 then: if  ri=1 
and ki ≡ 1mod ei, then there exists some j∈{1,...,g} 

\{i} with k
k

e
ej

i

i
j>

−1 .

	 Theorem 1 and Theorem 2 were given by 
Furtwängler (1919) which show how any ideal in 
the ring of integer of some algebraic number field 
can be a conductor ideal.

Theorem 3. Let  K  be an algebraic number field. 
Let ƒ be an ideal of OK and ƒ= ƒ1... ƒg where ƒi 
are ideals of OK of norm N f pi i

ri( ) =   with positive 
integers ri and pairwise different prime numbers  
pi. Then there exists an order in K with conductor 
ideal ƒ if and only if for all non-negative integer 
1< i < g there exist orders Oi  in K with conductor 
ideal ƒi.

	 Theorem 3 was given by Prabpayak 
(2014). From this theorem, it suffices to investigate 
those ideals ƒ whose norm is a power of some 
rational prime p, and the characterization of ƒ  
depends on how the principal ideal (p) factors into 
prime ideals of OK.

RESULTS AND DISCUSSION

	 Let K be a quadratic number field. As 
mentioned above, it suffices to investigate ideals 
whose norm is a power of some rational prime p, 
and the characterization of those ideals depends 
on how the principal ideal (p) factors into prime 

ideals of OK, now let  p  be a prime number. Then, 
there are three possibilities of decomposition of  p  
that p factors into prime ideals of OK. Using the 
notations in Theorem 2:
Case 1: p ramifies in K. This is  (p) = P2. It is 
known that n = e1r1+...+egrg. Then, e1 = 2 and 
r1=1. By Theorem 1, for every positive integer k, 
Pk is a conductor ideal when k is not congruent 
to 1 modulo 2. Thus k is even, and then there is a 
positive integer d such that k =2d. Now Pk = P2d 

= (p)d.
Case 2: p splits in K as (p) = P1P2 where P1 and 

P2 are different prime ideals of OK. Then r1 = r2 = 

e1 = e2 = 1. Let f P Pk k= 1 2
1 2 with positive integers 

k1,k2. Since r1 = 1 and k1 ≡ 1mode1, by Theorem 

2, ƒ is a conductor ideal when k k
e

e2
1

1
2

1
>

− . But 

e1 = e2 = 1, then, obtain k1<k2. Also, r2 = 1 and  
k2 ≡ 1 mode2, then ƒ is a conductor ideal when 

k k
e

e1
2

2
1

1
>

− , i.e., k2 < k1. It follows that ƒ is 

a conductor ideal whenever k1=k2. Therefore

f P P P P P P pk k k k k k= = = =1 2 1 2 1 2
1 2 1 1 1 1( ) ( ) .

Case 3: p is inert or p remains prime. Then e1 = 
1 and r1 = 2. By Theorem 1, (p)k is a conductor 
ideal for all positive integers k.
	 From the three cases it can be concluded 
that for any positive integer k , (p)k is a conductor 
ideal. Now it can be described how conductor 
ideals in quadratic number fields can be obtained 
by using the fact that every positive integer greater 
than 1 can be expressed as the product of primes 
and Theorem 3.
	 Let ƒ be an ideal of OK. It is known that 
all conductor ideals are just of the form (p)k for 
arbitrary k ∈ Z+. By Theorem 3, the ideal ƒ is a 
conductor ideal if and only if there exists a ∈ Z+  
such that ƒ = (a) = aOK. Suppose K d= Q  with a 
unique square-free integer  d ∈ Z\{1}. Then{1,ω} 
is an integral basis for the field K, where

ω =

+
≡













1
2

1 4d d

d

  if 

        otherwise

mod ,

.
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The ring of integers of K is given by OK = Z + 
ωZ. Let ƒ = (a) be a conductor ideal with a ∈ Z+. 
Then Z + ƒ is an order in OK with conductor ideal 
ƒ. Since Z + ƒ = Z + aOK = Z + aωZ, (1, aω) is a 
Z -basis for the order Z + ƒ.
	 Let A: = Z + ƒ. If O is another order in 
OK with conductor ideal ƒ, then one can prove 
that A is the smallest order in OK with conductor 
ideal  ƒ. Then,  A ⊂ O ⊂ OK. There exists a,b ∈ 
Z+ such that (1, a+bω) is a Z -basis for O. Then 
(1, bω) is also a Z -basis for O and b ≠ 1. Since 
(1, ω) is a Z -basis for OK, (b,bω) is a Z -basis for 
bOK. Hence (b) ⊂ O . But aω ∈ A ⊂ O, then there 
exist m,n ∈ Z+ such that aω = m + nbω. Thus a 
= nb. Suppose that n > 1. Then a is divisible by 
b. It follows that (a) is strictly contained in (b). 
This is a contradiction to the maximality of ƒ in 
O. Hence n = 1, and thus a = b. This means A = 
O. Therefore A is the only order in the quadratic 
number field K with conductor ideal ƒ.
	 Let K be a Galois extension over Q  
and [K : Q] = n. Let p be a prime number and 
( )p P Pe

g
eg= 1

1
  where g is a positive integer and  

P1,...,Pg are distinct prime ideals of OK. Then all 
ramification indices are equal, e1 = e2 = ... = eg = 
e  for some e ∈ Z+, and so are the inertial degrees, 
i.e., r1 = r2 = ... = rg = r for some r ∈ Z+. Thus, egr 
= n. Let f P Pk

g
kg= 1

1
  with k1,...,kg ∈ Z+. Theorem 

2 can be used to investigate all ideals ƒ which are 
conductor ideals. 
	 Suppose e = 1. By Theorem 2, if r ≥ 
2, there is no restriction on ki for all i. Then 
consider the case that r = 1. Assume k1 ≤ k2 ≤ ... 
≤ kg. Since ki ≡ 1 modei and ki < kg always hold 
for all i ≠ g, it satisfies conditions of Theorem 2, 
and thus there is no restriction on ki for all i ≠ g. 
Next conditions on kg can be determined. Since 
eg = 1 and kg ≡ 1modeg hold, the condition ki ≥ 
kg must hold for some i ≠ g. Choose the weakest 
condition kg-1 ≥ kg and this implies kg-1 = kg. Hence 

f P P P P Pk k
g
k

g
k

g
kg g g= − −

− − −
1 2 2 1

1 2 2 1 1
  is a conductor 

ideal. Therefore ƒ is a conductor ideal if and only 
if the largest value of the exponents ki appears 

twice.
	 If e ≥ 2, then it follows from Theorem 2 
that there is no restrictions on ki (i = 1,...,g) when  
r ≥ 2. For r = 1, assume k1 ≤ k2 ≤ ... ≤ kg. For each  
j∈{1,...,g}, if kj is not congruent to 1 modulo ej , 
then the following condition must hold:

∃ ≠ >
−

= −l j k
k

e
e kl

j

j
l j: .

1
1

                        This implies ∃l ≠ j:kl > kj. By the assumption, the 
condition above holds for all j ≠ g by taking kl = kg. 
Then there is no restriction on ki for i = 1,...,g–1. If 
kg ≡ 1modeg, then kl ≥ kg must hold for some l ≠ g. 
Choose the weakest condition kg-1 > kg, and then 

kg-1 = kg. Hence f P P P P Pk k
g
k

g
k

g
kg g g= − −

− − −
1 2 2 1

1 2 2 1 1
  is  

a conductor ideal. Therefore f P Pk
g
kg= 1

1
  is a 

conductor ideal if and only if the largest value of 
the exponents ki appears twice.
	 For g = 1, use Theorem 1 directly to 
investigate all conductor ideals ƒ.

CONCLUSION

	 The following theorems arise from the 
above:

Theorem 4. Let K be a quadratic number field. 
For any conductor ideal ƒ in OK, there is exactly 
one order in OK with conductor ideal ƒ, namely, 
Z + ƒ.

Theorem 5. Let K be a Galois extension over Q  
and let p be a prime number with ( )p P Pe

g
eg= 1

1
   

where P1,...Pg are distinct prime ideals of OK and  
e1,...,eg are positive integers. Let f P Pk

g
kg= 1

1
   

with positive integers k1,...,kg. Then ƒ is a 
conductor ideal if and only if the inertial degree 
of Pi is larger than 1 or in case the inertial degree 
equals 1: If the largest of the exponents ki is 
congruent to 1 modulo ei then the exponents ki  
must appear twice.
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