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Conductor ideals in Galois extensions

Chanwit Prabpayak

ABSTRACT

Let K be an algebraic number field, O its ring of integers. An order O in K is a subring of Oy

which contains a Z -basis for the field K. The conductor of O is the largest ideal of Oy contained in O.

This paper showed that Z+ f is the only one order in quadratic number fields having conductor ideal

and conductor ideals were characterized in a Galois extension over Q.
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INTRODUCTION

Throughout this paper, let Z, Z* and Q
denote the set of integers, the set of positive integers
and the set of rational numbers respectively.

Let K be an algebraic number field.
Oy denotes the ring of integers of the field K. A
subring O of K is called an order if O is a finitely
generated Z-module containing a Z-basis for K, or
equivalently, O is a subring of finite index within
the ring of integers of K. For each order, there is a
special ideal which is called the conductor of the
order. In quadratic number fields, it is well known
that the conductor ideal is just the principal ideal
(a) for some a € Z".

Furtwéngler (1919) showed how ideals in
the ring of integers of an algebraic number field can
be conductor ideals. His results were again given
in a new variant of proof by Lettl and Prabpayak
(2014). Prabpayak (2014) studied orders in pure
cubic number fields. He characterized conductor
ideals of order and he could determine the number
of all orders with the given conductor ideal in such
fields.

Let f be a conductor ideal in a quadratic
number field. This paper shows that there
exists exactly one order in this field with the
conductor ideal f. Moreover, conductor ideals are
characterized in a Galois extension over Q.

MATERIALS AND METHOD

Let K be an algebraic number field. For
any non-zero ideal / of Oy , let N(J) denote its
norm. For any non-maximal order O in K, the set
f={xe K| xOgc O} is called the conductor of
O .Then fis anideal of O and also of Oy . So, call
f the conductor ideal of O. It can be easily shown
that Z+f is the smallest order in Ok containing
f. Therefore Z+ f < O.

Theorem 1. Let K be an algebraic number field and
P be arational prime with (p) = pOy = B "-Pgeg
where P,...,P, are distinct prime ideals of Og and
g.€1,...,¢g are positive integers. Let r; denote the
inertial degree of P; , i.e. N(P) = p". Let k be a
positive integer. Then Ek is a conductor ideal if and

only if one of the following two conditions holds:
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1. r;>2,
2. r;=1 and k is not congruent to 1
modulo e;.

Theorem 2. Let K be an algebraic number field
and p be a rational prime with (p)=R" --~P;g
where P,...,P, are distinct prime ideals of Og
of norm N(P)=p" and g.ey,....e, are positive
integers. Let k; be non-negative integers for
i=1,..g. Put f=ph ...P;g. Then f is the
conductor ideal of some order in K if and only if
for every integer 1<i<g with k; > 1 then: if »=1
and k;= Imod e;, then there exists some je {1,...,g}
\{i} with &, > b _1ej.
e.

1

Theorem | and Theorem 2 were given by
Furtwéngler (1919) which show how any ideal in
the ring of integer of some algebraic number field
can be a conductor ideal.

Theorem 3. Let K be an algebraic number field.
Let f be an ideal of O and f= f... f, where f;

are ideals of Og of norm N(f;) = p;* with positive
integers r; and pairwise different prime numbers
p:- Then there exists an order in K with conductor
ideal f if and only if for all non-negative integer
1<i < g there exist orders O; in K with conductor
ideal f;.

Theorem 3 was given by Prabpayak
(2014). From this theorem, it suffices to investigate
those ideals f whose norm is a power of some
rational prime p, and the characterization of f
depends on how the principal ideal (p) factors into
prime ideals of Ok.

RESULTS AND DISCUSSION

Let K be a quadratic number field. As
mentioned above, it suffices to investigate ideals
whose norm is a power of some rational prime p,
and the characterization of those ideals depends
on how the principal ideal (p) factors into prime

ideals of Oy, now let p be a prime number. Then,
there are three possibilities of decomposition of p
that p factors into prime ideals of Oy. Using the
notations in Theorem 2:

Case 1: p ramifies in K. This is (p) = P2 It is
known that n = e;r|++egr, Then, e, = 2 and
r1=1. By Theorem 1, for every positive integer &,
P¥ is a conductor ideal when k is not congruent
to 1 modulo 2. Thus & is even, and then there is a
positive integer d such that k =2d. Now Pk= pd
=(p)".

Case 2: p splits in K as (p) = P;P, where P| and
P, are different prime ideals of Og. Then r; =r, =
er=e=1.Let f = Plk1 I’2k2 with positive integers
ky,k>. Since ry = 1 and &y = lmode;, by Theorem

2, f is a conductor ideal when k, > k1

e,. But
e

1
e; = e, = 1, then, obtain k;<k,. Also, , = 1 and
ky, = 1 mode,, then f is a conductor ideal when

-1
K, > k2 e, i.e., ky < ky. It follows that f is
)

a conductor ideal whenever k;=k,. Therefore
f=RIB? =RUPY =(RR)" = (p)"

Case 3: p is inert or p remains prime. Then e¢; =
1 and 7, = 2. By Theorem 1, (p)* is a conductor
ideal for all positive integers k.

From the three cases it can be concluded
that for any positive integer &, (p)* is a conductor
ideal. Now it can be described how conductor
ideals in quadratic number fields can be obtained
by using the fact that every positive integer greater
than 1 can be expressed as the product of primes
and Theorem 3.

Let f be an ideal of Oy. It is known that
all conductor ideals are just of the form (p)* for
arbitrary k € Z*. By Theorem 3, the ideal f is a
conductor ideal if and only if there exists a € Z*
such that f = (a) = aOg. Suppose K = Q\/E with a
unique square-free integer d € Z\{1}. Then{1,m}
is an integral basis for the field K, where

1+\/E
2

if d =1mod 4,

\/E otherwise.
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The ring of integers of K is given by Ox = Z +
wZ. Let f =(a) be a conductor ideal with a € Z.*.
Then Z + f is an order in Ok with conductor ideal
f.SinceZ+ f=Z+aOx=7Z+awZ,(l,aw)isa
Z. -basis for the order Z + f.

Let A: =Z + f. If O is another order in
Oy with conductor ideal f, then one can prove
that A4 is the smallest order in O with conductor
ideal f. Then, 4 < O < Ok. There exists a,b €
Z7 such that (1, a+bw) is a Z -basis for O. Then
(1, bw) is also a Z -basis for O and b # 1. Since
(1, w) is a Z -basis for O, (b,bw) is a Z -basis for
bOg. Hence (b) — O . Butaw € A c O, then there
exist m,n € Z* such that aw = m + nbw. Thus a
= nb. Suppose that n > 1. Then a is divisible by
b. It follows that (a) is strictly contained in (b).
This is a contradiction to the maximality of f in
O. Hence n = 1, and thus a = b. This means 4 =
O. Therefore 4 is the only order in the quadratic
number field K with conductor ideal f.

Let K be a Galois extension over Q
and [K : Q] = n. Let p be a prime number and
(p)=PR" ---Pgeg where g is a positive integer and
Py,...,Pg are distinct prime ideals of Ok. Then all
ramification indices are equal, e; = e, = - = ¢, =
e for some e € Z*, and so are the inertial degrees,
ie,r =r,==r,=rforsomer e Z". Thus, egr
=n.Let f = Plkl ---P;g with ki,...,k, € Z*. Theorem
2 can be used to investigate all ideals f which are
conductor ideals.

Suppose e = 1. By Theorem 2, if » >
2, there is no restriction on ki for all i. Then
consider the case that » = 1. Assume k; <k, < ...
< kg. Since k; = 1 mode; and k; < k, always hold
for all i # g, it satisfies conditions of Theorem 2,
and thus there is no restriction on £; for all i # g.
Next conditions on k, can be determined. Since
e, = 1 and k, = Imode, hold, the condition k; >
ko must hold for some i # g. Choose the weakest

condition kg

kg2 ket kgt
f=p"p" P PP is a conductor

ideal. Therefore f is a conductor ideal if and only

.1 = kgand this implies k,_; = k,. Hence

if the largest value of the exponents k; appears

twice.

If e > 2, then it follows from Theorem 2
that there is no restrictions on k; (i = 1,...,¢) when
r=2.Forr=1,assume k; <k, < <k,. For each
Jjeil,...g}, if k; is not congruent to 1 modulo ¢;,
then the following condition must hold:

k]

J

This implies 3/ # j:k; > k;. By the assumption, the
condition above holds for all j # g by taking k; = k,.
Then there is no restriction on k; fori = 1,...,g—1. If
kq=1mode,, then k; > k, must hold for some /# g.
Choose the weakest condition k.| > k,, and then
kg1 = ky. Hence f = B P2 ... P2 Pl plat s
a conductor ideal. Therefore f = Plk1 ---P; §is a
conductor ideal if and only if the largest value of
the exponents k; appears twice.

For g = 1, use Theorem 1 directly to
investigate all conductor ideals f.

CONCLUSION

The following theorems arise from the
above:

Theorem 4. Let K be a quadratic number field.
For any conductor ideal f in Oy, there is exactly
one order in O with conductor ideal f, namely,
Z+f.

Theorem 5. Let K be a Galois extension over Q
and let p be a prime number with (p) = B ---P;g
where P),...P, are distinct prime ideals of Ok and
ej,...,e, are positive integers. Let f = Plk1 ---ngg
with positive integers ki,...,k,. Then f is a
conductor ideal if and only if the inertial degree
of P; is larger than 1 or in case the inertial degree
equals 1: If the largest of the exponents £; is
congruent to 1 modulo ¢; then the exponents £;
must appear twice.
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