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 Extremum-Seeking Gain-Scheduled Adaptive Input Shaping 
Applied to Flexible-Link Robot
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ABSTRACT

	 Input shaping was used to design a finite impulse response (FIR) prefilter. This filter, when 
convoluted with a reference input, produces a shaped reference input that avoids resonance, resulting in 
significantly less residual vibration. A flexible system that follows this shaped reference input is able to 
move from point to point faster due to less settling time. The problem with traditional input shaping is 
that the filter requires knowledge of the system’s natural frequencies and damping ratios and hence its 
performance deteriorates when the system is time varying. This paper proposed a novel adaptive input 
shaping algorithm. The system’s natural frequencies and damping ratios were gain-scheduled based on 
system-measured states and were simultaneously adjusted by extremum seeking for minimum residual 
vibration. The proposed algorithm was applied to the point-to-point movement of a one-link, flexible-link 
robot manipulator whose payload varied with time. The experimental results confirmed the effectiveness 
of the proposed algorithm, compared with the unadaptive case. 
Keywords: adaptive input shaping, extremum seeking, gain scheduling, flexible link robot

INTRODUCTION

	 Input shaping was proposed by Singer 
and Seering (1990), based on the posicast control 
idea of Smith (1957), to reduce residual vibration 
from point-to-point movement of lightly damped 
systems. The technique uses the idea of having 
two impulse responses cancel each other for 
zero vibration. If the first impulse is applied at 
time zero, the unknowns are then the time and 
magnitude of the second impulse. With knowledge 
of the natural frequency and damping ratio of the 
system, the unknowns can be found in closed 
form by setting the impulse responses to zero. 
The train of two impulses can be put in a finite 

impulse response (FIR) filter format. The filter will 
then be placed after the reference input to create 
a shaped reference input that will avoid exciting 
the system’s vibratory modes. For system with n 
modes, n FIR filters are required.
	 However knowledge of the natural 
frequency and damping ratio of the system may be 
inaccurate due to imperfect system identification, 
a time-varying system and external disturbance 
among other factors, causing  performance 
deterioration of the input shaper (Singer and 
Seering, 1990). 
	 One way to abate the problem is that, 
instead of two, more impulses are added to the 
impulse train to provide robustness against the 
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natural frequency and damping ratio variations 
(Vaughan et al., 2008). These additional impulses 
are found from setting the higher-order derivatives 
of the impulse responses to zero. The problem with 
using more impulses is that the shaped reference 
input is slower, resulting in slower point-to-point 
movement (Singer and Seering, 1990).
	 Adaptive schemes are discussed below 
and can be divided into two groups: 1) an indirect 
adaptive scheme, where the natural frequencies 
and damping ratios of the system are identified in 
real time and used in input shaping filter design; 
and 2) a direct adaptive scheme, where the input 
shaping filter is designed directly from real-time 
adaptive algorithms.
	 Reported studies on indirect adaptive 
schemes include Pereira et al. (2012) who used a 
modified algebraic identification method to identify, 
in real time, the first-mode natural frequency of a 
single-link, flexible robot manipulator. However, 
the proposed method requires a simplified 
plant mathematical model, only identifies a 
parameter and has no obvious extension to a 
more complicated system. Stergiopoulos and 
Tzes (2007) investigated an adaptive input 
shaping of a nonlinear system. In their work, a 
simple pendulum’s nonlinear equation of motion 
was used to compute the natural frequency and 
damping ratio for the adaptive input shaper. The 
effectiveness of the algorithm then depends on 
the accuracy of the nonlinear model. In Bodson 
(1998), the natural frequency and damping ratio 
of the plant were found by assuming that the 
plant was represented by a standard second-
order lightly damped transfer function. Then, the 
adaptive inverse technique was used to identify the 
parameters in real-time. However, the method is 
restricted to a type of plant, and deviation from the 
actual plant may disqualify using this method. Tzes 
and Yurkovich (1993) applied a real-time version 
of a frequency domain system identification 
method—called empirical transfer function 
estimation contained in Ljung (1987)—to estimate 
plant natural frequencies. The method is based on 

assumptions of the actual plant being linear and 
a smooth function of frequencies. Only natural 
frequencies, not damping ratios, can be adapted 
with this method. Kozak et al. (2004) linearized 
the nonlinear plant model around operating points. 
Then, the natural frequencies and damping ratios 
were obtained from the linearized plant models 
and used by the input shaper. The effectiveness 
of the algorithm again depends on the accuracy 
of the nonlinear model.
	 Reported studies on direct adaptive 
schemes include Cole and Wongratanaphisan 
(2013) who designed a full-order FIR filter, whose 
coefficients were obtained from a zero residual 
vibration orthogonality condition. The FIR filter 
is adapted in real time when new measurements 
become available using a recursive least-square 
algorithm. The measurements are those of the 
shaped reference input and the vibratory state 
such as a strain gauge signal. The proposed 
method requires the persistent excitation of the 
inputs and is computationally expensive. Park 
et al. (2006) used two conventional numerical 
optimization methods—the golden section search 
and the secant methods—to directly adjust the 
impulse magnitude and timing of the input shaper 
to minimize a vibratory magnitude measure. In 
order to perform the search, the method requires 
iterative movement of the system and, therefore, is 
suitable only for systems such as industrial robots 
that have has repetitive maneuvers. Cutforth and 
Pao (2004) used a similar technique to that of 
Park et al. (2006) but instead used the percent 
vibration, introduced by Rhim and Book (2001), 
as the vibratory magnitude measure. The modified 
algorithm does not require repetitive movement, 
but the plant must be linear in order to compute the 
percent vibration. Rhim and Book (2004) proposed 
an adaptive scheme similar to that of Cole and 
Wongratanaphisan (2013). The scheme is based 
on the idea that the flexible system and the input 
shaper can be commuted, which requires that the 
system be linear.
	 In this paper, a novel adaptive input 
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shaping algorithm—the so-called extremum-
seeking gain-scheduled input shaping (EGI)—is 
presented. The system’s natural frequencies and 
damping ratios are gain-scheduled based on 
system-measured states and are simultaneously 
adjusted by extremum seeking (Ariyur and 
Krstic, 2003; Zhang and Ordonez, 2012) for 
minimum residual vibration. The proposed 
algorithm has several advantages: 1) EGI does 
not require a mathematical model of the plant. 
The system’s natural frequencies and damping 
ratios are determined off-line and can be obtained 
from experiments or human experience. The 
extremum-seeking algorithm will further adjust the 
system’s natural frequencies and damping ratios 
for minimum residual vibration. Being a model-
independent method, EGI can then be naturally 
applied to more complicated or nonlinear systems; 
2) EGI adapts multiple parameters. The system’s 
natural frequencies and damping ratios of all 
vibratory modes can be simultaneously adapted 
by the extremum-seeking algorithm for minimum-
possible residual vibration; 3) EGI does not require 
persistent excitation of inputs. The convergence of 
the method is provided by the extremum-seeking 
algorithm; 4) EGI can be implemented as transfer 
functions (for the extremum-seeking part) and 
a look-up table (for the gain-scheduled part) 
and; therefore, is low on computational effort; 
5) EGI does not require repetitive maneuvers. 
The extremum-seeking continues to adjust the 
parameters for minimum vibration even when the 
gain scheduling is not accurate.

MATERIALS AND METHODS

Input Shaping
	 Consider the two impulse responses 
shown in Figure 1. For a one-degree-of-freedom, 
unforced, under-damped, linear system, the 
response to an impulse with magnitude 1̂F  is given 
by Equation 1:
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where y is the response, ζ is the damping ratio, ωn 
is the natural frequency, m is the mass, and t1 is the 
time the impulse is applied. Another impulse 2̂F  
can then be designed with appropriate magnitude 
and timing to obtain perfect cancellation of the 
two impulse responses (Chatlatanagulchai and 
Saeheng, 2009; Chatlatanagulchai et al. 2009) 
using the knowledge of ωn and ζ of the system.
	 The input shaping method (Singer and 
Seering, 1990) in its simplest form is shown in 
Figure 2, where: r  is the reference input; F1 and F2 
are two normalized impulses applied at time t1 and 
t2, which can be realized as an FIR filter; r is the 
shaped reference input, which is the convolution 
between r  and the input shaping FIR filter; and 
y is the output of a flexible open-loop or closed-
loop system with known natural frequency ωn and 
damping ratio ζ.

Figure 1	 Cancellation of two impulse responses  
( 1̂F  and 2̂F ) at times t1 and t2 : (a) System 
responses of two impulses; (b) Addition 
of two impulse responses. y (t) is the 
response. 1̂F  and 2̂F  are the magnitudes 
of the first and second impulses. t1 and 
t2 are the time locations of the first and 
second impulses.
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Perturbation-Based extremum seeking
	 A diagram of the perturbation-based 
extremum seeking method is shown in Figure 3. 
The objective is to find x so that y = f (x) attains 
its extremum value. As opposed to the gradient 
method, in which the function f must be known 
in closed form in order to find the gradient, the 
extremum seeking method does not need the 
knowledge of f. The method estimates the local 
gradient of f by tracking the variation of the 
function in response to small perturbations. 

	 If x̂ is the estimate and x* is an extremum 
point of f, it is necessary to show next that the 
estimation error ˆx̃ x x∗= −  will approach zero 
asymptotically with the system in Figure 3. The 
output value is given by Equation 2:

( ) ( )( ) ( ) ( )
ˆ

ˆ ˆsin sin
x x

fy f x f x a t f x a t
x

ω ω
=

∂
= = + ≈ +

∂
	(2)

where the last approximation is from the first-order 
Taylor’s series of f around x̂ The high-pass filter 
removes the constant f (x̂), resulting in Equation 
3: 

Figure 2	 Input shaping for a flexible system, where r  is the reference input; F1 and F2 are two normalized 
impulses applied at time t1 and t2, which can be realized as a finite impulse response (FIR) 
filter; r is the shaped reference input, which is the convolution between r  and the input shaping 
FIR filter; and y is the output of a flexible open-loop or closed-loop system with known natural 
frequency ωn and damping ratio ζ.

Figure 3	 Perturbation-based extremum seeking, where x(t) is the independent signal, f(x) is the function 
to be minimized, y(t) is the minimized signal, yh(t) is the signal from the high-pass filter, ω 
is the designed frequency, ζ(t) is the signal to the low-pass filter, yl(t) is the signal from the 
low-pass filter, γ is the adaptation gain, x t( ) is the signal after multiplying the adaptation gain, 
x0 is the bias signal, ˆx̃ x x∗= −(t) is the signal after bias and a is the amplitude of the sine wave.
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After the low-pass filter, which removes the 
cos(2ωt) term, the estimated local gradient is given 
by Equation 5:
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and the updating law shown in Equation 6:
	 ˆ lx x yγ= = 	 (6)
where x0 is constant and could be an initial guess 
of x* and γ is a negative constant design parameter 
used as adaptation gain.
Consider the second-order Taylor’s series of f 
around x*, as shown in Equation 7:
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where ′( ) =∗f x 0 because x*is an extremum point 
of f. The local gradient is then given by Equation 
8:
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Because ˆ lx x yγ= =, using equations,  and  results in 
Equation 9:
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which shows that x  will  approach zero 
asymptotically, provided that a < 0 when in a 
maximization problem ( ( ) )′′ <∗f x 0  or a > 0 when 
in a minimization problem ( ( ) )′′ >∗f x 0

Flexible-Link robot system
	 The proposed flexible-link robot hardware 
used in the experiments is shown in Figure 4. A 
30 cm steel ruler is used as the flexible link. 
An adjustable payload is placed at its tip. An 

accelerometer is attached at the tip, a strain gauge 
near the pivot and an optical encoder to measure 
the DC motor’s angle.
	 A schematic diagram is given in Figure 5, 
where θ is the motor angle, θs is additional angle of 
the payload as obtained from the strain gauge, θp 
= θ + θs is the payload angle, and ap is the payload 
acceleration, measured from the accelerometer.
	 Figure 6 shows the real-time control 
system setup. A National Instrument (National 
Instruments; Austin, TX, USA) system was used. 
Note that u is the control input sent to the motor 
driver.
	 Because the input shaping needs the 
natural frequencies and damping ratios of the 

Figure 4	 The flexible-link robot hardware used 
in our experiments.

Figure 5	 Schematic diagram of the flexible-link 
robot.
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system, a closed-loop experiment was performed 
where there is no payload by having the reference 
motor angle θr be a sweep square wave with 20° 
amplitude and sweeping frequencies from 0.1 to 

0.5 Hz in 60 s. A PI controller with kp = 0.1 and ki = 
0.05 was used. Figure 7 contains the periodogram 
of ap, showing the first-mode natural frequency of 

Figure 6	 Schematic diagram of real-time control system. u is the command input to the motor driver 
board. θ is the motor angular position.

Figure 7	 Periodogram of acceleration showing the first and second modes.
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3.2 Hz and the second-mode natural frequency of 
24.5 Hz.
	 The first-mode damping ratio was 
obtained by fixing one end of the flexible arm, 
giving initial angular displacement, then releasing 
and measuring θs with the strain gauge. Figure 8 
shows the time in seconds versus the angle θs in 
volts, which is the unit of the strain gauge signal. 
From the logarithmic decrements formula, the 
damping ratio ζ was computed as
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		                 ζ = 0.0192
This damping ratio was used for both the first mode 
and second mode.

Unadaptive input shaping
	 Figure 9 contains a diagram of the 
unadaptive input shaping, where F is the input 
shaper, C is the PI controller, P is the flexible arm, 
θr is the motor reference angle, θr is the motor 
shaped reference angle, and e is the motor angle 
tracking error. Other variables are as previously 
defined.
	 The input shaper F uses the closed-loop 
natural frequencies and damping ratios as design 
parameters, which are unchanged in the unadaptive 
case.
	 With the same PI controller as that of 
the previous section, and P is defined by Equation 
10:

Figure 8	 Strain gauge signal to determine the damping ratio.

Figure 9	 Diagram of the unadaptive input shaping, where θr is the unshaped reference, θr is the shaped 
reference, e is the tracking error, u is the control effort, ap is the payload acceleration, θp is 
the payload angular position and θ is the motor angular position. F is the pre-filter; C is the 
feedback controller and P is the plant.
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where ω ω ζn n1 2 1, , , and ζ 2 are those of the previous 
section, the closed-loop natural frequencies and 
damping ratios of the first and second modes can 
then be computed as ωn1 = 21.105 rad.s-1, ωn2 = 
153.804 rad.s-1, ζ1 = 0.017, and ζ2 = 0.019.
	 The input shaper F can be written as an 
FIR filter using Equation 11:
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where ts is the sampling time, and z is the 
z-transform operator. 
	 The payload acceleration must be put 
in a quantifiable form to be able to be reduced 
which requires the design of a quantity as shown 
by Equation 12:

	 ˆ p pa a dt= ∫ 	 (12)

where the integration is taken over the preceding 
movement of the flexible link.

Extremum-Seeking gain-scheduled input 
shaping system
	 When the payload changes,  the 
performance degradation found in the unadaptive 
case is because the actual system’s natural 
frequencies and damping ratios change with the 
payload but the unadaptive input shaping was 
designed based on fixed natural frequencies 
and damping ratios. Here, an adaptive system is 
presented to adjust these design parameters on-
line. The system, shown in Figure 10, consists 
of four parts: the input shaper, the closed-loop 
motor controller, the extremum seeking and the 
gain scheduler. The outputs from the extremum 

Figure 10	 Extremum-seeking, gain-scheduled input shaping system, where θr is the unshaped reference, 
θr is the shaped reference, e is the tracking error, u is the control effort, ˆ pa  is the quantified 
payload acceleration, ˆ pra  is the reference signal for ˆ pa , θp is the payload angular position 
and θ is the motor angular position, y is the signal to be minimized, x1 is the output of the 
extremum seeking algorithm, mp is the payload mass, x1 is the output of the gain scheduler, 
ωn1 and ωn2 are the first and second natural frequencies and ζ1 and ζ1 are the first and second 
damping ratios and f (x) is the minimized function.
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seeking and the gain scheduler are added together 
and are supplied to the input shaper in adapting its 
parameters.
	 The input shaper receives an unshaped 
motor reference trajectory and outputs the shaped 
motor reference trajectory. The information used 
by the input shaper is the first-mode and second-
mode natural frequencies and damping ratios of 
the closed-loop motor controller system. The input 
shaper here has the same structure as that of the 
unadaptive input shaper.
	 The closed-loop motor controller system 
comprises the PI controller and the flexible-link 
robot manipulator. The motor angular position is 
fed back to the PI controller, whose gains are the 
same as those of the previous section.
	 The extremum seeking system tries to 
minimize ˆ ˆpr py a a= - , where ˆ pra  is the reference for 
ˆ pa  and is set to zero throughout the experiments. 
The outputs from the extremum seeking are x1 = 
{Δωn1, Δωn2, Δζ1, Δζ2}, which are the changes 
in the natural frequencies and damping ratios of 
both modes. Recall that x1 will be found by the 
extremum seeking to minimize y.
	 For the case when the gain-scheduler is 
not used, the following design parameters are used 
for the extremum seeking: ω = 2 rad.s-1;  a high-
pass filter s / (s + h), where h = 0.5; a low-pass 
filter l / (s + l), where l = 1; aωn1

 = 1, aζ1 = 0.001, 
aωn2

 = 1, aζ2 = 0.0015, are amplitudes of the sine 
functions in the algorithm; γωn1

 = -100, γζ1 = -0.07, 
γωn2

 = -1,000, γζ2 = -0.1, are the adaptation gains.

	 For the case when the gain-scheduler is 
used, the following design parameters are used for 
the extremum seeking: aωn1

 = 0.1, aζ1 = 0.0001, aωn2
 

= 0.1, aζ2 = 0.00015, are amplitudes of the sine 
functions in the algorithm; γωn1

 = -10, γζ1 = -0.007, 
γωn2

 = -100, γζ2 = -0.01, are the adaptation gains. 
Other design parameters are the same as those 
when the gain-scheduler is not used. Note that 
because the gain scheduler supplies the nominal 
values of the natural frequencies and damping 
ratios, the extremum seeking is less involved and 
its gains are reduced.
	 The gain scheduler receives the payload 
mass mp as input. In an actual industrial system, 
the payload mass can be measured by installing a 
force sensor. In this case, there are four levels of 
payload using small silver coins: 0 coins; 3 coins; 
6 coins and 9 coins. 
	 Table 1 contains the closed-loop 
natural frequencies and damping ratios with 
various payloads. These nominal values,  
x n n2 1 2 1 2={ }ω ω ζ ζ, , , ,

 
were obtained from 

repeating the experiment in the previous section 
with the altered amount of payload and were used 
by the gain scheduler.

RESULTS

	 The experiments with the flexible-link 
robot system shown in Figure 4 used as the 
objective having the payload track a square-wave 
reference, of 20° amplitude and 30 s period, as 
closely as possible, with minimum settling time 

Table 1	 Closed-loop natural frequencies and damping ratios, obtained from experiments, with 
different coin payloads.


0 coins 3 coins 6 coins 9 coins

21 18 15 12

0.017 0.015 0.012 0.010

153 130 100 70

0.019 0.016 0.013 0.010

ωn1 and ωn2 are the first and second natural frequencies. ζ1 and ζ 2 are the first and second damping ratios.  

ωn1 rad.s-1( )
ζ1

ωn2 rad.s-1( )
ζ 2
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and residual vibration while the small silver coin 
payload changed from 0 to 9 to 3 to 6 then back 
to 9 coins during maneuvering. 
	 Four cases were compared experimentally: 
1) without input shaping (WI); 2) with unadaptive 
input shaping (UI); 3) extremum seeking together 
with input shaping (EI) and 4) extremum seeking 
with gain scheduling and input shaping (EGI).
	 Figure 11 contains the comparative 
results between WI and EGI—the worst case 

versus the best case. The experiment had no coin 
payload. Figure 11a and Figure 11b are motor 
angular positions θ and their references in the WI 
and EGI cases, respectively. The dashed lines are 
references, and the solid lines are actual positions. 
Figure 11c and Figure 11d are payload angular 
positions θp and their references in the WI and EGI 
cases, respectively. Figure 11e and Figure 11f are 
payload accelerations ap in the WI and EGI cases, 
respectively. Figure 11g and Figure 11h are control 

Figure 11	 Comparison between cases without input shaping and with extremum-seeking gain-scheduled 
input shaping (EGI): (a) Motor angular position and its reference (without input shaping); 
(b) Motor angular position and its reference (EGI); (c) Payload angular position (without 
input shaping); (d) Payload angular position (EGI); (e) Payload acceleration (without input 
shaping); (f) Payload acceleration (EGI); (g) Motor control input (without input shaping); 
(h) Motor control input (EGI).
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inputs given to the motor in the WI and EGI cases, 
respectively. The control saturation is at ± 2.5 V.
	 Figure 12 compares the accumulated 
payload vibration ˆ pa , given in Equation, for all 
four cases (WI, UI, EI and EGI). Note that the 
accumulated payload vibration is taken over one 
movement cycle of the flexible link; therefore, it 
appears as steps. The input shaper is started with 
the 0-coin design parameters given in 
	 Table 1. Then, in the UI case, the 
input shaper keeps the same design parameters 
throughout the experiment, whereas, in the EI 
and EGI cases, the design parameters are changed 
based on the algorithms. 
	 Figure 13 concentrates on the accumulated 
payload vibration ˆ pa  of the EGI case, which shows 
the merit of having the extremum seeking further 
adjust the design parameters given by the gain 
scheduler.

	 Figure 14 contains a comparison of the 
adaptations of the design parameters between the 
EI and EGI cases.

DISCUSSION

	 In Figure 11a and Figure 11b, with the PI 
controller, the motor is able to follow its reference 
quite well in both cases. Note that in EGI, the 
reference is more tapered due to convolution 
between the square wave and the train of impulses 
in the input shaper.
	 In Figure 11c and Figure 11d, the 10% 
settling time in the WI case is 10 s while in the 
EGI case, it is 0.5 s. The outstanding transient 
performance of the EGI is due mainly to nearly 
zero payload vibration.
	 In Figure 11e and Figure 11f, it can 
be seen that WI has a high-level of payload 
acceleration, while EGI has almost none.

Figure 12	 Comparison of accumulated payload vibration among various cases.
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Figure 13	 A closer look at the accumulated payload vibration of extremum-seeking gain-scheduled 
input shaping.

Figure 14	 Adaptations of natural frequencies and damping ratios used by the input shaper: (a) First-
mode natural frequency; (b) First-mode damping ratio; (c) Second-mode natural frequency; 
(d) Second-mode damping ratio, a comparison between extremum seeking together with 
input shaping and extremum-seeking gain-scheduled input shaping cases.
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	 In Figure 11g and Figure 11h, the control 
saturation is at ± 2.5 V. WI violates this control 
saturation briefly at points where the reference 
changes, while EGI has the control input well 
within the saturation limit.
	 In Figure 12, in the WI case, when the 
input shaper is not used, ˆ pa  ranges from 0.48 to 
0.68 V.s. The highest level of payload vibration is 
with the 3-coin payload, followed by the 6- and 
9-coin payloads, respectively, because the lighter 
the payload, the higher the acceleration. In the UI 
case, when only the input shaper is used without 
adaptation, ˆ pa  ranges from 0.16 to 0.3 V.s. The 
lowest payload vibration is during the 3-coin 
payload, followed by the 6- and 9-coin payloads, 
respectively, because the unadaptive input shaper 
is designed with the 0-coin design parameters, and 
so is more favorable to a lighter payload case. In 
the EI case, when the input shaper is adapted by the 
extremum seeking algorithm only, ˆ pa  ranges from 
0.1 to 0.2 V.s. At each payload change, it is evident 
that the extremum seeking starts to adapt the input 
shaper immediately without having to wait for 
some repetitive cycles. The vibration continuously 
lessens after each payload change; however, the 
adaptation still takes some time before a minimum 
vibration level is reached. In the EGI case, when 
the input shaper is adapted by the extremum 
seeking and gain scheduling algorithms, ˆ pa  ranges 
from 0.07 to 0.13 V.s. Although the steady-state 
payload vibration of the EGI case is comparable to 
that of the EI case, the transient payload vibration 
(at each payload change) is much improved 
because the initial design parameters of the input 
shaper jump to new and appropriate values as 
given by the gain scheduler. Note that ˆ pa  of 0.07 
is about the minimum value that can be attained 
with almost no residual vibration at all.
	 Figure 13 shows the merit of having 
the extremum seeking further adjust the design 
parameters given by the gain scheduler. During 
the 3- and 6-coin payloads, the payload vibration 
is in decreasing trends due to the further adaptation 
provided by the extremum seeking. Note that, 

during the 9-coin payload, no improvement in 
vibration is obvious because the payload vibration 
is already around its minimum value.
	 In Figure 14, in the EI case, all design 
parameters gradually adapt to new appropriate 
values, whereas, in the EGI case, all design 
parameters are started close to appropriate values 
by the gain scheduler, resulting in less adaptation 
required and less transient residual vibration.

CONCLUSION

	 Unadaptive input shaping uses fixed 
design parameters, resulting in degrading vibration 
reduction performance when applied with uncertain 
and time-varying systems. A new adaptive 
algorithm using extremum seeking and gain 
scheduling was proposed. The extremum seeking 
is a mathematical, model-free, optimization 
algorithm that locally finds the optimum point by 
using a perturbing sine-wave signal to approximate 
the gradient of the cost function. Being a local 
approximation method, the extremum seeking 
takes more time and loses its effectiveness when 
the system’s character jumps, as for example with 
a sudden change in payload. The gain scheduling 
can then be used to provide a look-up table of 
initial design parameters suitable for each system 
character.
	 The proposed adaptive algorithm proved 
its effectiveness by being applied to the point-
to-point movement of a very flexible-link robot 
manipulator. The residual vibration was reduced to 
almost zero even when the payloads were changed 
during maneuvering.
	 Future research may concentrate on 
several aspects. 1) The gain scheduler needs to 
know the system state (in this case, the payload 
amount), in order to look up the appropriate design 
parameters for the input shaper. Even though 
a physical sensor can be put into the system to 
measure such state, it might be preferable to 
develop an algorithm to detect the system state 
from already measured signal such as that of a 
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strain gauge or accelerometer. 2) In extremum 
seeking, all design parameters (natural frequencies 
and damping ratios of all vibratory modes) are 
adjusted to minimize one vibration signal in 
the time domain. It would be worth considering 
minimizing signals in the frequency domain, so the 
design parameters can be adjusted for each mode 
separately.
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