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Extremum-Seeking Gain-Scheduled Adaptive Input Shaping
Applied to Flexible-Link Robot

Withit Chatlatanagulchail*, Sermsak Chotana® and Chonlawit Prutthapong?

ABSTRACT

Input shaping was used to design a finite impulse response (FIR) prefilter. This filter, when
convoluted with a reference input, produces a shaped reference input that avoids resonance, resulting in
significantly less residual vibration. A flexible system that follows this shaped reference input is able to
move from point to point faster due to less settling time. The problem with traditional input shaping is
that the filter requires knowledge of the system’s natural frequencies and damping ratios and hence its
performance deteriorates when the system is time varying. This paper proposed a novel adaptive input
shaping algorithm. The system’s natural frequencies and damping ratios were gain-scheduled based on
system-measured states and were simultaneously adjusted by extremum seeking for minimum residual
vibration. The proposed algorithm was applied to the point-to-point movement of a one-link, flexible-link
robot manipulator whose payload varied with time. The experimental results confirmed the effectiveness

of the proposed algorithm, compared with the unadaptive case.
Keywords: adaptive input shaping, extremum seeking, gain scheduling, flexible link robot

INTRODUCTION

Input shaping was proposed by Singer
and Seering (1990), based on the posicast control
idea of Smith (1957), to reduce residual vibration
from point-to-point movement of lightly damped
systems. The technique uses the idea of having
two impulse responses cancel each other for
zero vibration. If the first impulse is applied at
time zero, the unknowns are then the time and
magnitude of the second impulse. With knowledge
of the natural frequency and damping ratio of the
system, the unknowns can be found in closed
form by setting the impulse responses to zero.
The train of two impulses can be put in a finite

impulse response (FIR) filter format. The filter will
then be placed after the reference input to create
a shaped reference input that will avoid exciting
the system’s vibratory modes. For system with n
modes, n FIR filters are required.

However knowledge of the natural
frequency and damping ratio of the system may be
inaccurate due to imperfect system identification,
a time-varying system and external disturbance
among other factors, causing performance
deterioration of the input shaper (Singer and
Seering, 1990).

One way to abate the problem is that,
instead of two, more impulses are added to the
impulse train to provide robustness against the
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natural frequency and damping ratio variations
(Vaughan et al., 2008). These additional impulses
are found from setting the higher-order derivatives
of the impulse responses to zero. The problem with
using more impulses is that the shaped reference
input is slower, resulting in slower point-to-point
movement (Singer and Seering, 1990).

Adaptive schemes are discussed below
and can be divided into two groups: 1) an indirect
adaptive scheme, where the natural frequencies
and damping ratios of the system are identified in
real time and used in input shaping filter design;
and 2) a direct adaptive scheme, where the input
shaping filter is designed directly from real-time
adaptive algorithms.

Reported studies on indirect adaptive
schemes include Pereira et al. (2012) who used a
modified algebraic identification method to identify,
in real time, the first-mode natural frequency of a
single-link, flexible robot manipulator. However,
the proposed method requires a simplified
plant mathematical model, only identifies a
parameter and has no obvious extension to a
more complicated system. Stergiopoulos and
Tzes (2007) investigated an adaptive input
shaping of a nonlinear system. In their work, a
simple pendulum’s nonlinear equation of motion
was used to compute the natural frequency and
damping ratio for the adaptive input shaper. The
effectiveness of the algorithm then depends on
the accuracy of the nonlinear model. In Bodson
(1998), the natural frequency and damping ratio
of the plant were found by assuming that the
plant was represented by a standard second-
order lightly damped transfer function. Then, the
adaptive inverse technique was used to identify the
parameters in real-time. However, the method is
restricted to a type of plant, and deviation from the
actual plant may disqualify using this method. Tzes
and Yurkovich (1993) applied a real-time version
of a frequency domain system identification
method—called empirical transfer function
estimation contained in Ljung (1987)—to estimate
plant natural frequencies. The method is based on

assumptions of the actual plant being linear and
a smooth function of frequencies. Only natural
frequencies, not damping ratios, can be adapted
with this method. Kozak et al. (2004) linearized
the nonlinear plant model around operating points.
Then, the natural frequencies and damping ratios
were obtained from the linearized plant models
and used by the input shaper. The effectiveness
of the algorithm again depends on the accuracy
of the nonlinear model.

Reported studies on direct adaptive
schemes include Cole and Wongratanaphisan
(2013) who designed a full-order FIR filter, whose
coefficients were obtained from a zero residual
vibration orthogonality condition. The FIR filter
is adapted in real time when new measurements
become available using a recursive least-square
algorithm. The measurements are those of the
shaped reference input and the vibratory state
such as a strain gauge signal. The proposed
method requires the persistent excitation of the
inputs and is computationally expensive. Park
et al. (2006) used two conventional numerical
optimization methods—the golden section search
and the secant methods—to directly adjust the
impulse magnitude and timing of the input shaper
to minimize a vibratory magnitude measure. In
order to perform the search, the method requires
iterative movement of the system and, therefore, is
suitable only for systems such as industrial robots
that have has repetitive maneuvers. Cutforth and
Pao (2004) used a similar technique to that of
Park et al. (2006) but instead used the percent
vibration, introduced by Rhim and Book (2001),
as the vibratory magnitude measure. The modified
algorithm does not require repetitive movement,
but the plant must be linear in order to compute the
percent vibration. Rhim and Book (2004) proposed
an adaptive scheme similar to that of Cole and
Wongratanaphisan (2013). The scheme is based
on the idea that the flexible system and the input
shaper can be commuted, which requires that the
system be linear.

In this paper, a novel adaptive input
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shaping algorithm—the so-called extremum-
seeking gain-scheduled input shaping (EGI)—is
presented. The system’s natural frequencies and
damping ratios are gain-scheduled based on
system-measured states and are simultaneously
adjusted by extremum seeking (Ariyur and
Krstic, 2003; Zhang and Ordonez, 2012) for
minimum residual vibration. The proposed
algorithm has several advantages: 1) EGI does
not require a mathematical model of the plant.
The system’s natural frequencies and damping
ratios are determined off-line and can be obtained
from experiments or human experience. The
extremum-seeking algorithm will further adjust the
system’s natural frequencies and damping ratios
for minimum residual vibration. Being a model-
independent method, EGI can then be naturally
applied to more complicated or nonlinear systems;
2) EGI adapts multiple parameters. The system’s
natural frequencies and damping ratios of all
vibratory modes can be simultaneously adapted
by the extremum-seeking algorithm for minimum-
possible residual vibration; 3) EGI does not require
persistent excitation of inputs. The convergence of
the method is provided by the extremum-seeking
algorithm; 4) EGI can be implemented as transfer
functions (for the extremum-seeking part) and
a look-up table (for the gain-scheduled part)
and; therefore, is low on computational effort;
5) EGI does not require repetitive maneuvers.
The extremum-seeking continues to adjust the
parameters for minimum vibration even when the
gain scheduling is not accurate.

MATERIALS AND METHODS

Input Shaping

Consider the two impulse responses
shown in Figure 1. For a one-degree-of-freedom,
unforced, under-damped, linear system, the
response to an impulse with magnitude lfl isgiven
by Equation 1:
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where y is the response, {is the damping ratio, w,
is the natural frequency, m is the mass, and t; is the
time the impulse is applied. Another impulse If2
can then be designed with appropriate magnitude
and timing to obtain perfect cancellation of the
two impulse responses (Chatlatanagulchai and
Saeheng, 2009; Chatlatanagulchai et al. 2009)
using the knowledge of w,, and { of the system.

The input shaping method (Singer and
Seering, 1990) in its simplest form is shown in
Figure 2, where: T is the reference input; F and F,
are two normalized impulses applied at time t; and
t,, which can be realized as an FIR filter; r is the
shaped reference input, which is the convolution
between T and the input shaping FIR filter; and
y is the output of a flexible open-loop or closed-
loop system with known natural frequency ,, and
damping ratio .
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Figure 1 Cancellation of two impulse responses
(If1 and Ifz) attimest; andt, : (a) System
responses of two impulses; (b) Addition
of two impulse responses. y (t) is the
response. lf1 and If2 are the magnitudes
of the first and second impulses. t; and
t, are the time locations of the first and

second impulses.
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Perturbation-Based extremum seeking

A diagram of the perturbation-based
extremum seeking method is shown in Figure 3.
The objective is to find x so that y = f (x) attains
its extremum value. As opposed to the gradient
method, in which the function f must be known
in closed form in order to find the gradient, the
extremum seeking method does not need the
knowledge of f. The method estimates the local
gradient of f by tracking the variation of the
function in response to small perturbations.

If X is the estimate and X” is an extremum
point of f, it is necessary to show next that the
estimation error X = X —X" will approach zero
asymptotically with the system in Figure 3. The
output value is given by Equation 2:
y=1(x)=f (%+asin(at))~ f(f()+gi asin(at) (2)

X X=X
where the last approximation is from the first-order
Taylor’s series of f around X The high-pass filter
removes the constant f (X), resulting in Equation
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Figure 2 Inputshaping for a flexible system, where T is the reference input; F; and F, are two normalized
impulses applied at time t; and t,, which can be realized as a finite impulse response (FIR)
filter; r is the shaped reference input, which is the convolution between I and the input shaping
FIR filter; and y is the output of a flexible open-loop or closed-loop system with known natural

frequency w, and damping ratio ¢.
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Figure 3 Perturbation-based extremum seeking, where X(t) is the independent signal, f(x) is the function
to be minimized, y(t) is the minimized signal, y,(t) is the signal from the high-pass filter, @
is the designed frequency, {{(t) is the signal to the low-pass filter, y,(t) is the signal from the
low-pass filter, y is the adaptation gain, X (t) is the signal after multiplying the adaptation gain,
X is the bias signal, X(t) is the signal after bias and a is the amplitude of the sine wave.
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After the low-pass filter, which removes the
cos(2wt) term, the estimated local gradient is given
by Equation 5:
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and the updating law shown in Equation 6:
X=X= 7Y (6)

where X is constant and could be an initial guess
of x" and y is a negative constant design parameter
used as adaptation gain.

Consider the second-order Taylor’s series of f
around x*, as shown in Equation 7:
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where f '(X*) =0 because X"is an extremum point
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of f. The local gradient is then given by Equation
8:
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&x:i
Because X = X, using equations, and results in
Equation 9:
ay f"(x"
fa ") ( )x ©)
2

which shows that X will approach zero
asymptotically, provided that a < 0 when in a
maximization problem ( f "(x*) < 0) ora>0when
in a minimization problem (f"(x*) > 0)

Flexible-Link robot system

The proposed flexible-link robot hardware
used in the experiments is shown in Figure 4. A
30 cm steel ruler is used as the flexible link.
An adjustable payload is placed at its tip. An

accelerometer is attached at the tip, a strain gauge
near the pivot and an optical encoder to measure
the DC motor’s angle.

Aschematic diagram is given in Figure 5,
where @ is the motor angle, 0; is additional angle of
the payload as obtained from the strain gauge, 0,
=0+ 0 is the payload angle, and &, is the payload
acceleration, measured from the accelerometer.

Figure 6 shows the real-time control
system setup. A National Instrument (National
Instruments; Austin, TX, USA) system was used.
Note that u is the control input sent to the motor
driver.

Because the input shaping needs the
natural frequencies and damping ratios of the

Figure 4 The flexible-link robot hardware used
in our experiments.

Figure 5 Schematic diagram of the flexible-link
robot.
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system, a closed-loop experiment was performed
where there is no payload by having the reference
motor angle 6, be a sweep square wave with 20°
amplitude and sweeping frequencies from 0.1 to

Host computer

Target computer
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0.5Hzin 60s. API controller with k, = 0.1 and k; =
0.05 was used. Figure 7 contains the periodogram
of a,, showing the first-mode natural frequency of
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Figure 6 Schematic diagram of real-time control system. u is the command input to the motor driver

board. € is the motor angular position.
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Figure 7 Periodogram of acceleration showing the first and second modes.
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3.2 Hz and the second-mode natural frequency of
24.5 Hz.

The first-mode damping ratio was
obtained by fixing one end of the flexible arm,
giving initial angular displacement, then releasing
and measuring 6, with the strain gauge. Figure 8
shows the time in seconds versus the angle 6 in
volts, which is the unit of the strain gauge signal.
From the logarithmic decrements formula, the
damping ratio ¢ was computed as

5_LinX _1,,000532  2n¢
, 5 0002891 f1-¢
{=0.0192

This damping ratio was used for both the first mode
and second mode.

Unadaptive input shaping

Figure 9 contains a diagram of the
unadaptive input shaping, where F is the input
shaper, C is the Pl controller, P is the flexible arm,
e_r is the motor reference angle, 6, is the motor
shaped reference angle, and e is the motor angle
tracking error. Other variables are as previously
defined.

The input shaper F uses the closed-loop
natural frequencies and damping ratios as design
parameters, which are unchanged in the unadaptive
case.

With the same PI controller as that of
the previous section, and P is defined by Equation
10:

Strain gauge signal Bs(v)
L=]

I / 0.06532

0.002891

Time (s)
Figure 8 Strain gauge signal to determine the damping ratio.

Closed-loop system

Figure 9 Diagram of the unadaptive input shaping, where 6, is the unshaped reference, 6, is the shaped
reference, e is the tracking error, u is the control effort, a, is the payload acceleration, 6, is
the payload angular position and 6 is the motor angular position. F is the pre-filter; C is the

feedback controller and P is the plant.
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P =( S — j{ S j (10)
$°+ 28,08+, )\ S°+28,0,,5+0,,

where @,,, @,,, £, and £, are those of the previous
section, the closed-loop natural frequencies and
damping ratios of the first and second modes can
then be computed as w,; = 21.105 rad.s%, wy, =
153.804 rad.s1, ¢; =0.017, and ¢, = 0.019.

The input shaper F can be written as an
FIR filter using Equation 11:

F(2)=R(2)R(2)

_b

(11)

where F, (Z):[Ifl+ Fz“+Fz ts] belongs to

the ith mode, with
F=1/(1+2K +K?)
F,=2K/(1+2K +K?)
F,=K*/(1+2K +K?)
e
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where t; is the sampling time, and z is the
z-transform operator.

The payload acceleration must be put
in a quantifiable form to be able to be reduced
which requires the design of a quantity as shown
by Equation 12:

8, = [la,|dt (12)
where the integration is taken over the preceding
movement of the flexible link.

Extremum-Seeking gain-scheduled input
shaping system

When the payload changes, the
performance degradation found in the unadaptive
case is because the actual system’s natural
frequencies and damping ratios change with the
payload but the unadaptive input shaping was
designed based on fixed natural frequencies
and damping ratios. Here, an adaptive system is

K =W’ presented to adjust these design parameters on-
t, S line. The system, shown in Figure 10, consists
o,y1-¢* of four parts: the input shaper, the closed-loop
t = 2r motor controller, the extremum seeking and the
3 w,\1-¢? gain scheduler. The outputs from the extremum
ST e s e ———————————————
a i, |
i 7 ze S—— i
' g 4+ e| Proportional |u s i
! Input integral |-} Flexible-Link :
! shaper 4 robot .
! controller H
i i
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Figure 10 Extremum-seeking, gain-scheduled input shaping system, where 6, is the unshaped reference,
6, is the shaped reference, e is the tracking error, u is the control effort, &, is the quantified
payload acceleration, &, is the reference signal for &, 6, is the payload angular position
and @ is the motor angular position, y is the signal to be minimized, X, is the output of the
extremum seeking algorithm, m, is the payload mass, x; is the output of the gain scheduler,
op1 and oy are the first and second natural frequencies and {3 and {; are the first and second
damping ratios and f (x) is the minimized function.
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seeking and the gain scheduler are added together
and are supplied to the input shaper in adapting its
parameters.

The input shaper receives an unshaped
motor reference trajectory and outputs the shaped
motor reference trajectory. The information used
by the input shaper is the first-mode and second-
mode natural frequencies and damping ratios of
the closed-loop motor controller system. The input
shaper here has the same structure as that of the
unadaptive input shaper.

The closed-loop motor controller system
comprises the PI controller and the flexible-link
robot manipulator. The motor angular position is
fed back to the PI controller, whose gains are the
same as those of the previous section.

The extremum seeking system tries to
minimizey =4 - 4, whered,, is the reference for
ép and is set to zero throughout the experiments.
The outputs from the extremum seeking are X; =
{Awp1, Aony, ALy, ALY, which are the changes
in the natural frequencies and damping ratios of
both modes. Recall that x; will be found by the
extremum seeking to minimize Y.

For the case when the gain-scheduler is
not used, the following design parameters are used
for the extremum seeking: » = 2 rad.s’; a high-
pass filter s / (s + h), where h = 0.5; a low-pass
filter I/ (s + 1), where | = 1; &, =1, a5 = 0.001,
a,,, = 1, 8, = 0.0015, are amplitudes of the sine
functions in the algorithm; v, =-100, v, =-0.07,
Yon, = -1,000, v, = -0.1, are the adaptation gains.
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For the case when the gain-scheduler is
used, the following design parameters are used for
the extremum seeking: a,,, =0.1, a;; =0.0001, a,,,
= 0.1, a,, = 0.00015, are amplitudes of the sine
functions in the algorithm; y,, =-10, v, =-0.007,
Yo, = -100, v, = -0.01, are the adaptation gains.
Other design parameters are the same as those
when the gain-scheduler is not used. Note that
because the gain scheduler supplies the nominal
values of the natural frequencies and damping
ratios, the extremum seeking is less involved and
its gains are reduced.

The gain scheduler receives the payload
mass m, as input. In an actual industrial system,
the payload mass can be measured by installing a
force sensor. In this case, there are four levels of
payload using small silver coins: 0 coins; 3 coins;
6 coins and 9 coins.

Table 1 contains the closed-loop
natural frequencies and damping ratios with
various payloads. These nominal values,
X, = {a_)nl, @, &y 472}, were obtained from
repeating the experiment in the previous section
with the altered amount of payload and were used
by the gain scheduler.

RESULTS

The experiments with the flexible-link
robot system shown in Figure 4 used as the
objective having the payload track a square-wave
reference, of 20° amplitude and 30 s period, as
closely as possible, with minimum settling time

Table 1 Closed-loop natural frequencies and damping ratios, obtained from experiments, with

different coin payloads.

0 coins 3 coins 6 coins 9 coins
py (racs™) 21 18 15 12
& 0.017 0.015 0.012 0.010
@y (rad.s™) 153 130 100 70
Z 0.019 0.016 0.013 0.010

@y and @,,, are the first and second natural frequencies. G1and &, are the first and second damping ratios.



460

and residual vibration while the small silver coin
payload changed from 0 to 9 to 3 to 6 then back
to 9 coins during maneuvering.

Four cases were compared experimentally:
1) without input shaping (WI); 2) with unadaptive
input shaping (UI); 3) extremum seeking together
with input shaping (EI) and 4) extremum seeking
with gain scheduling and input shaping (EGI).

Figure 11 contains the comparative
results between WI and EGI—the worst case
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versus the best case. The experiment had no coin
payload. Figure 11a and Figure 11b are motor
angular positions 6 and their references in the WI
and EGI cases, respectively. The dashed lines are
references, and the solid lines are actual positions.
Figure 11c and Figure 11d are payload angular
positions ¢, and their references in the Wl and EGI
cases, respectively. Figure 11e and Figure 11f are
payload accelerations a, in the Wl and EGI cases,
respectively. Figure 11g and Figure 11h are control
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Figure 11 Comparison between cases without input shaping and with extremum-seeking gain-scheduled

input shaping (EGI): (a) Motor angular position and its reference (without input shaping);

(b) Motor angular position and its reference (EGI); (c) Payload angular position (without

input shaping); (d) Payload angular position (EGI); (e) Payload acceleration (without input
shaping); (f) Payload acceleration (EGI); (g) Motor control input (without input shaping);

(h) Motor control input (EGI).
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inputs given to the motor in the W1 and EGI cases,
respectively. The control saturation is at + 2.5 V.

Figure 12 compares the accumulated
payload vibration &, given in Equation, for all
four cases (WI, Ul, El and EGI). Note that the
accumulated payload vibration is taken over one
movement cycle of the flexible link; therefore, it
appears as steps. The input shaper is started with
the 0-coin design parameters given in

Table 1. Then, in the UI case, the
input shaper keeps the same design parameters
throughout the experiment, whereas, in the EI
and EGI cases, the design parameters are changed
based on the algorithms.

Figure 13 concentrates on the accumulated
payload vibration &, of the EGI case, which shows
the merit of having the extremum seeking further
adjust the design parameters given by the gain
scheduler.
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Figure 14 contains a comparison of the
adaptations of the design parameters between the
El and EGI cases.

DISCUSSION

In Figure 11a and Figure 11b, with the PI
controller, the motor is able to follow its reference
quite well in both cases. Note that in EGI, the
reference is more tapered due to convolution
between the square wave and the train of impulses
in the input shaper.

In Figure 11c and Figure 11d, the 10%
settling time in the WI case is 10 s while in the
EGI case, it is 0.5 s. The outstanding transient
performance of the EGI is due mainly to nearly
zero payload vibration.

In Figure 11e and Figure 11f, it can
be seen that WI has a high-level of payload
acceleration, while EGI has almost none.
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Figure 12 Comparison of accumulated payload vibration among various cases.
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Figure 13 A closer look at the accumulated payload vibration of extremum-seeking gain-scheduled
input shaping.
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In Figure 11g and Figure 11h, the control
saturation is at £ 2.5 V. WI violates this control
saturation briefly at points where the reference
changes, while EGI has the control input well
within the saturation limit.

In Figure 12, in the WI case, when the
input shaper is not used, &, ranges from 0.48 to
0.68 V.s. The highest level of payload vibration is
with the 3-coin payload, followed by the 6- and
9-coin payloads, respectively, because the lighter
the payload, the higher the acceleration. In the Ul
case, when only the input shaper is used without
adaptation, &, ranges from 0.16 to 0.3 V.s. The
lowest payload vibration is during the 3-coin
payload, followed by the 6- and 9-coin payloads,
respectively, because the unadaptive input shaper
is designed with the 0-coin design parameters, and
so is more favorable to a lighter payload case. In
the EI case, when the input shaper is adapted by the
extremum seeking algorithm only, ép ranges from
0.1t0 0.2 V.s. At each payload change, it is evident
that the extremum seeking starts to adapt the input
shaper immediately without having to wait for
some repetitive cycles. The vibration continuously
lessens after each payload change; however, the
adaptation still takes some time before a minimum
vibration level is reached. In the EGI case, when
the input shaper is adapted by the extremum
seeking and gain scheduling algorithms, &, ranges
from 0.07 to 0.13 V.s. Although the steady-state
payload vibration of the EGI case is comparable to
that of the EI case, the transient payload vibration
(at each payload change) is much improved
because the initial design parameters of the input
shaper jump to new and appropriate values as
given by the gain scheduler. Note that ép of 0.07
is about the minimum value that can be attained
with almost no residual vibration at all.

Figure 13 shows the merit of having
the extremum seeking further adjust the design
parameters given by the gain scheduler. During
the 3- and 6-coin payloads, the payload vibration
is in decreasing trends due to the further adaptation
provided by the extremum seeking. Note that,

during the 9-coin payload, no improvement in
vibration is obvious because the payload vibration
is already around its minimum value.

In Figure 14, in the EI case, all design
parameters gradually adapt to new appropriate
values, whereas, in the EGI case, all design
parameters are started close to appropriate values
by the gain scheduler, resulting in less adaptation
required and less transient residual vibration.

CONCLUSION

Unadaptive input shaping uses fixed
design parameters, resulting in degrading vibration
reduction performance when applied with uncertain
and time-varying systems. A new adaptive
algorithm using extremum seeking and gain
scheduling was proposed. The extremum seeking
is a mathematical, model-free, optimization
algorithm that locally finds the optimum point by
using a perturbing sine-wave signal to approximate
the gradient of the cost function. Being a local
approximation method, the extremum seeking
takes more time and loses its effectiveness when
the system’s character jumps, as for example with
a sudden change in payload. The gain scheduling
can then be used to provide a look-up table of
initial design parameters suitable for each system
character.

The proposed adaptive algorithm proved
its effectiveness by being applied to the point-
to-point movement of a very flexible-link robot
manipulator. The residual vibration was reduced to
almost zero even when the payloads were changed
during maneuvering.

Future research may concentrate on
several aspects. 1) The gain scheduler needs to
know the system state (in this case, the payload
amount), in order to look up the appropriate design
parameters for the input shaper. Even though
a physical sensor can be put into the system to
measure such state, it might be preferable to
develop an algorithm to detect the system state
from already measured signal such as that of a
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strain gauge or accelerometer. 2) In extremum
seeking, all design parameters (natural frequencies
and damping ratios of all vibratory modes) are
adjusted to minimize one vibration signal in
the time domain. It would be worth considering
minimizing signals in the frequency domain, so the
design parameters can be adjusted for each mode
separately.
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