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ABSTRACT

	 The amount of food intake clearly affects swine body weight. The most suitable weight of 
swine on the day of sale is the weight that fetches the best price. The objective of this research was 
to minimize the amount of food fed to swine in the post weaning period so that the weight reaches a 
desirable final value on a fixed day of sale. Optimal control problems were derived by assuming that the 
weight increase follows either the logistic or the Gompertz equations with parameters estimated from 
actual growth data. Numerical solutions of the optimal control problem were obtained and discussed.
Keywords: swine farm, optimal control, logistic model, Gompertz equation

INTRODUCTION

	 Swine have traditionally been an 
important part of the integrated farming system in 
Thailand and in particular, pork has become the 
second most important meat in Thai consumption, 
with average consumption in the late 1990s 
of about 4.7 kg per person per year (Food and 
Agriculture Organization Corporate Document 
Repository, 2002). The amount of food fed daily to 
the animals is an important factor for consideration 
in order to increase the production and profitability 
of a swine farm (Thatchai, 2011).  
	 This research aimed to minimize the total 
amount of food that should be fed to swine in the 
post-weaning period from 30 to 170 d after birth so 
that the weight at the day of the sale was 100 kg, 
which was taken to be the most profitable weight. 
The growth rate of swine as a function of age 
and food intake has been modeled by the logistic 

equation (Frank et al., 2002) and by the Gompertz 
equation (Zeide, 1993) and a Michaelis-Menten 
relationship (Murray, 2007). For the current study, 
the parameters in the models were estimated by 
fitting the equations to the data shown in Table 1 
(Ministry of Agriculture and Cooperatives, 2014). 
The problem can then be formulated as an optimal 
control problem with the daily food intake as the 
control variable. The optimal system is derived 
and then solved numerically for specific parameter 
values.

OPTIMAL CONTROL PROBLEM

	 This research work aimed to minimize 
the amount of food that should be fed to swine in 
the 140 d of the post-weaning period, namely from 
30 to 170 d after birth, so that the weight on the 
day of the sale was 100 kg, which was taken to be 
the most profitable weight. If the swine are heavier, 
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they would have too much accumulated fat and if 
the weight is lower, then the price would also be 
lower. The objective function to be minimized is 
shown in Equation 1:

J u u t dt
t

t f

{ } = ∫ ( )
0

	 (1)

where u(t) is the daily food intake at time t, and 
where the weight x(t) is the solution of an ordinary 
differential equation (Equation 2):
 
dx
dt

f x t u t= ( )( ), ( )
	

(2)

where f(x(t),u(t)) is an increasing function of x and 
u that describes the growth rate of the swine.

Modeling growth rate of swine
	 The model of body weight was based 
on the data shown in Table 1 for measurements 
of weight and growth rate as a function of age 
and food for swine in Thailand. The data on age 
and weight in Table 1 was used to estimate the 
functions which relate the body weight to the age 
of the swine for four different functional forms: a) 
linear function, b) exponential function, c) logistic 
growth model and d) Gompertz growth model. 
Figure 1 shows the data (marked with *) and the 
best fit for the different functions. The solid line 

represents the linear function, x(t) = x0 + rt,
 
the 

dashed line represents the exponential function, 
x(t) = x0 + ert,

 
the dotted line represents the logistic 

growth model (Equation 3), 

x t
x K

x K x e rt( ) =
+ −( ) −

0

0 0
	 (3)

and the dash-dot line describes the Gompertz 
growth model (Equation 4), where

x t K e
x
K

e rt

( ) =








−ln 0

.	 (4)

	 As shown in Table 2, the Gompertz 
function gave the best fit to the age and weight data 
in Table 1 with the coefficient of determination 
R2 = 0.9986. The linear, exponential and logistic 
functions yielded R2 values of 0.9643, 0.8484 
and 0.9969, respectively. Table 2 also shows 
the parameter values of the growth rate factors 
r and the constants K in the above-mentioned 
functions.
	 In the optimal control problem, the food 
intake per day was the control variable ( )u t  in 
kilograms per day and it was assumed that the 
growth rate of the swine was a function of weight 
and daily food intake and could be modeled by the 
differential equation in Equation 2. It was assumed 
that the growth rate function f(x(t),u(t)) = F(x(t))

Table 1	 Data on swine body weight, age and food intake (Source: Ministry of Agriculture and 
Cooperatives, 2014).


Age Weight Growth rate Daily feed
(d) (kg) (kg.d-1) (kg)
30 6.5 0.15 0.3
42 9.0 0.33 0.5
60 15.0 0.50 1.0
70 22.0 0.60 1.4
82 30.0 0.65 1.5
94 40.0 0.70 2.0

106 50.0 0.72 2.2
120 60.0 0.75 2.4
133 70.0 0.78 2.6
145 80.0 0.80 2.8
158 90.0 0.80 3.0
170 100.0 0.80 3.0
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Table 2	 Parameter values of r, K and coefficient of determination (R2) for the best fits for the linear, 
exponential, logistic and Gompertz equations to the age-weight data.


Function
dx
dt

x(t) K r R2

Linear r x0 + rt - 0.6154 0.9643
Exponential rx0 ert x0 ert - 0.0207 0.8484

Logistic rx x
K

1−







x K
x K x e rt

0

0 0+ −( ) − 113.4 0.03275 0.9969

Gompertz rx K
x

ln 





 K e

x
K

e rtln 0







−
188.6 0.01191 0.9986

Figure 1	 Graphs of functions relating weight to age for linear, exponential, logistic and Gompertz 
functions.

G(u(t)), where F(x(t)) is either the Gompertz or 
logistic growth-rate function with the parameters 
given in Table 2, and G(u(t)) is given by the 
Michaelis-Menten (Holling type-II) function 
(Equation 5); 

G u t u t
u t

( ( )) ( )
( )

=
+
α
β1

,	 (5)

where α, β > 0 have been estimated from a least-
squares fit to the growth rate and daily feed data 
in Table 1 to be α = 0.8497 d.kg-1 and β = 0.7129 
d.kg-1 .

Solution of optimal control problem with 

unbounded control
	 Logistic growth function
	 The optimal control was determined 
assuming that the food intake control variable 
u(t) is unbounded and that the weight increase 
follows the modified logistic equation in the 140 d 
following the weaning period. The optimal control 
problem is shown in Equations 6 and 7:

Minimize	 J u u t dt{ } = ∫ ( )
0

140

	 (6)

subject to the ordinary differential equation:
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dx
dt

F x t G u t rx t x t
K

u t
u t

= = −





 +

( ( )) ( ( )) ( ) ( ) ( )
( )

1
1
α
β

	 (7)

with boundary conditions: x(0) = 6.5 kg and 
x(140) = 100 kg. Here, x(t) is the body weight in 
kilograms at time t, u(t) is the daily food intake in 
kilograms per day at time t, r > 0 is the specific 
rate of increase for the logistic function, K is the 
carrying capacity in the logistic function and α, β 
are positive constants for the Michaelis-Menten 
function.
	 In combining the fitted growth-rate 
functions F for the logistic equation with the 
Michaelis-Menten function G, it is necessary to 
combine the constants rα into one constant R so 
that the average value of R corresponds to a daily 
food intake control variable u within the interval 
range of 0.3 to 3.1 of Table 1.  From the numerical 
results, a suitable choice is R = 3rα.
	 The principal technique for solving the 
type of optimal control problem in Equations 6 
and 7 is to use the Pontryagin maximum principle 
(Pontryagin et al., 1962) and set up the state 
and adjoint equations which are the necessary 
conditions for the optimal value of u(t) (Clark, 
1990). This paper minimized the objective 
function and defined the Hamiltonian so that the 
Hamiltonian must be minimized with respect 
to the control u(t) (for example, Lenhart and 
Workman, 2007). For the optimal control problem 
in Equations 6 and 7, the Hamiltonian, H, is shown 
in Equation 8:

H x u u Ru
u

x x
K

( , , )λ λ
β

= +
+

−





1

1 ,	 (8)

and the differential equation for the state variable 
x(t) is given by Equation 7 and the differential 
equation for the adjoint variable λ(t) is given by 
Equation 9 (for example, Lenhart and Workman, 
2007).

d
dt

H
x

Ru x K
K u

λ
λ

β
= −

∂
∂

= −
− +( )

+( )
2

1
.	 (9)

	 Since the control is unbounded, the 

minimum value of the Hamiltonian with respect 
to u will be given by the optimality condition  
∂
∂

>
2

2 0H
u

 as in Equation 10:

∂
∂

= +
−( )
+( )

=
H
u

Rx K x

K u
1

1
02λ

β 	
(10)

whiich then gives the optimal control as shown 
in Equation 11:

	u t
K t K Rx t x t K

K
* ( ) ( ) ( )
( ) =

− + −( )λ

β
 .	 (11)

Since x ≤ K and all parameters are positive, u*(t) 
can be real and non-negative only if λ < 0. To check 
that Equation 11 gives a minimum, the second 
derivative was calculated (Equation 12):

∂
∂

= −
−( )

+( )

2

2 3

2

1
H

u
Rx K x

K u

λ

β
.	 (12)

The strict Legendre condition ∂
∂

>
2

2 0H
u

 is satisfied 

on t t f0 ,



, if λ(t) < 0 for t t t f∈ 



0 , . This is also 

a necessary condition for u*(t) to be real and non-
negative.
	 The solution of the optimal control 
problem then involves the solution of the 
differential equation in Equation 7, the adjoint 
equation in Equation 9, with u(t) = u*(t) from 
Equation 11, subject to the boundary conditions 
x(0) = 6.5 and x(140) = 100. This boundary value 
problem was solved numerically using the bvp5c 
function in Matlab.

Gompertz growth model
	 The method of solution was similar to 
that given for the logistic growth model except 
that the function F(x(t)) in Equation 7 was replaced 
by the growth rate for the Gompertz model. The 
growth-rate equation is shown in Equation 13:

dx
dt

F x t G u t r K
x t

x t u t
u t

= =








 +

( ( )( ( ( )) ln
( )

( ) ( )
( )

α
β1

	 (13)

with boundary conditions: x(0) = 6.5 kg and x(140) 
= 100 kg, where x(t) is the body weight in kg at 
time t, u(t) is the daily food intake in kg/day at 
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time t, r > 0 is the specific rate of increase in the 
Gompertz function, K is the carrying capacity 
in the Gompertz function and α, β are positive 
constants for the Michaelis-Menten function. As 
with the logistic growth model, it is necessary 
when combining the fitted growth-rate functions 
F for the Gompertz equation with the Michaelis-
Menten function G to combine the constants rα 
into one constant R so that the average value of R 
corresponds to a daily food intake control variable 
u within the interval range of 0.3 to 3.1 kg.d-1 of 
Table 1. From the numerical results, a suitable 
choice is R = 3rα.
	 Following the same method of solution 
as in the logistic growth model, the Hamiltonian, 
H is defined as shown in Equation 14:

H x u u Ru
u

x K
x

( , , ) lnλ λ
β

= +
+







1

.	 (14)

with the adjoint equation as shown in Equation 
15:

d
dt

H
x

Ru K
x

u
λ

λ
β

= −
∂
∂

= −







 −











+

ln 1

1
.	 (15)

	 For the unbounded control, the optimality 
condition for the Hamiltonian with respect to u is 
given by Equation 16:

	
∂
∂

= +









+( )
=

H
u
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x

u
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1
02
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ln
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	 Then solving Equation 16 for the optimal 
control u*(t) we obtain Equation 17:

u t
Rx K

x*
ln

( ) =
− + − 






1 λ

β
.	 (17)

	 Since x ≤ K , u*(t) can be real and non-
negative only if r > 0. To check that Equation 
17 gives a minimum, the second derivative was 
calculated as shown in Equation 18:

	∂
∂

= −









+( )

2

2 3

2

1
H

u

R K
x

u

λ β

β

ln
.	 (18)

	 The strict Legendre condition ∂
∂

>
2

2 0H
u

 

is satisfied on t t f0 ,



 , if λ(t) < 0 for t t t f∈ 



0 ,  

This is also a necessary condition that u*(t) is real 

and non-negative.
	 The solution of the optimal control 
problem then involves the solution of the 
differential equation in Equation 13, the adjoint 
equation in Equation 15, with u(t) = u*(t) from 
Equation 17, subject to the boundary conditions 
x(0) = 6.5 and x(140) = 100.  This boundary value 
problem was solved numerically using the bvp5c 
function in Matlab.

NUMERICAL RESULTS AND 
DISCUSSION

	 The two boundary value problems 
developed in the previous section for minimizing 
the total food intake were numerically solved 
using the bvp5c command in the Matlab software 
package.  
	 The results of the optimal daily food 
intake control variable u*(t) are shown in Figures 
2 and 3 for the unbounded logistic control and 
the unbounded Gompertz control, respectively. 
The food intake was 0.5824 kg.d-1 according to 
the logistic model, and 0.5454 kg.d-1 according 
to the Gompertz model. Both of these results 
are in the range of food intake shown in Table 
1. The coefficient of determination using the 
logistic equation was 0.9887 and for the Gompertz 
equation was 0.9986.
 

CONCLUSION

	 A generic approach was used to calculate 
the daily amount of fed food that achieved a 
desirable final weight of swine in the post weaning 
period while minimizing the total food intake. The 
Gompertz equation as the growth model produced 
a more reliable result and made the most sense 
from a physical consideration. 
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Figure 3	 Amount of fed food with unbounded control. The weight increase is modeled using the 
Gompertz equation with parameter values: R = 3rα = 0.03036 kg-1, K = 188.6 kg, β = 0.7129 
d.kg-1, x(0) = 6.5 kg, x(140) = 100 kg.

Figure 2	 Amount of fed food with unbounded control. The weight increase is modeled using the logistic 
equation with parameter values: R = 3rα = 0.08348 kg-1, K = 113.4 kg, β = 0.7129 d.kg-1, x(0) 
= 6.5 kg, x(140) = 100 kg.

	 The results of this paper should be 
regarded as a preliminary investigation into the 
application of optimal control to minimize the 
food intake of swine in Thailand. The method 
can provide useful results that could potentially 
increase the quality of livestock and result in  a 
better economic output for the food production 

industry in Thailand. However, it is clear that 
reliable results would require the analysis of 
considerably more data to obtain a better model 
for the growth rate of swine as a function of age 
and daily food intake. Optimal control could be 
a useful method for obtaining optimal feeding 
schedules for other animals in Thailand.
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