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Optimal Control Problem of Food Intake of Swine During

Post Weaning Period

Chanakarn Kiataramkul®%* and Puttida Matkhao!

ABSTRACT

The amount of food intake clearly affects swine body weight. The most suitable weight of

swine on the day of sale is the weight that fetches the best price. The objective of this research was

to minimize the amount of food fed to swine in the post weaning period so that the weight reaches a

desirable final value on a fixed day of sale. Optimal control problems were derived by assuming that the

weight increase follows either the logistic or the Gompertz equations with parameters estimated from

actual growth data. Numerical solutions of the optimal control problem were obtained and discussed.
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INTRODUCTION

Swine have traditionally been an
important part of the integrated farming system in
Thailand and in particular, pork has become the
second most important meat in Thai consumption,
with average consumption in the late 1990s
of about 4.7 kg per person per year (Food and
Agriculture Organization Corporate Document
Repository, 2002). The amount of food fed daily to
the animals is an important factor for consideration
in order to increase the production and profitability
of a swine farm (Thatchai, 2011).

This research aimed to minimize the total
amount of food that should be fed to swine in the
post-weaning period from 30 to 170 d after birth so
that the weight at the day of the sale was 100 kg,
which was taken to be the most profitable weight.
The growth rate of swine as a function of age
and food intake has been modeled by the logistic
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equation (Frank et al., 2002) and by the Gompertz
equation (Zeide, 1993) and a Michaelis-Menten
relationship (Murray, 2007). For the current study,
the parameters in the models were estimated by
fitting the equations to the data shown in Table 1
(Ministry of Agriculture and Cooperatives, 2014).
The problem can then be formulated as an optimal
control problem with the daily food intake as the
control variable. The optimal system is derived
and then solved numerically for specific parameter
values.

OPTIMAL CONTROL PROBLEM

This research work aimed to minimize
the amount of food that should be fed to swine in
the 140 d of the post-weaning period, namely from
30 to 170 d after birth, so that the weight on the
day of the sale was 100 kg, which was taken to be
the most profitable weight. If the swine are heavier,
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they would have too much accumulated fat and if
the weight is lower, then the price would also be
lower. The objective function to be minimized is
shown in Equation 1:
)
J{u}:ju(t) dt )
X
where u(?) is the daily food intake at time #, and
where the weight x(¢) is the solution of an ordinary
differential equation (Equation 2):

dx

— = f(x(2),u(t 2
=/ (x(0.u) @)
where f{x(f),u(f)) is an increasing function of x and
u that describes the growth rate of the swine.

Modeling growth rate of swine

The model of body weight was based
on the data shown in Table 1 for measurements
of weight and growth rate as a function of age
and food for swine in Thailand. The data on age
and weight in Table 1 was used to estimate the
functions which relate the body weight to the age
of the swine for four different functional forms: a)
linear function, b) exponential function, c) logistic
growth model and d) Gompertz growth model.
Figure 1 shows the data (marked with *) and the
best fit for the different functions. The solid line

represents the linear function, x(¢) = xq + 7, the
dashed line represents the exponential function,
x(f)=x,+ €', the dotted line represents the logistic
growth model (Equation 3),
x, K
f)=— (3)
x + (K —x, )e

and the dash-dot line describes the Gompertz
growth model (Equation 4), where

x(t) = Keh{%oj < . C))

As shown in Table 2, the Gompertz
function gave the best fit to the age and weight data
in Table 1 with the coefficient of determination
R? =0.9986. The linear, exponential and logistic
functions yielded R? values of 0.9643, 0.8484
and 0.9969, respectively. Table 2 also shows
the parameter values of the growth rate factors
r and the constants K in the above-mentioned
functions.

In the optimal control problem, the food
intake per day was the control variable u(?) in
kilograms per day and it was assumed that the
growth rate of the swine was a function of weight
and daily food intake and could be modeled by the
differential equation in Equation 2. It was assumed
that the growth rate function f{x(¢),u(f)) = F(x(f))

Table 1 Data on swine body weight, age and food intake (Source: Ministry of Agriculture and

Cooperatives, 2014).

Age Weight Growth rate Daily feed
(d) (kg) (kg.dh) (kg)
30 6.5 0.15 0.3
42 9.0 0.33 0.5
60 15.0 0.50 1.0
70 22.0 0.60 1.4
82 30.0 0.65 1.5
94 40.0 0.70 2.0

106 50.0 0.72 22

120 60.0 0.75 24

133 70.0 0.78 2.6

145 80.0 0.80 2.8

158 90.0 0.80 3.0

170 100.0 0.80 3.0
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G(u(t)), where F(x(¢)) is either the Gompertz or
logistic growth-rate function with the parameters
given in Table 2, and G(u(¢?)) is given by the
Michaelis-Menten (Holling type-II) function

(Equation 5);
_au(?)
Gu()) = T+ putt)’ (5)

where a, f > 0 have been estimated from a least-
squares fit to the growth rate and daily feed data
in Table 1 to be o = 0.8497 d.kg'! and S =0.7129
dkg!.

Solution of optimal control problem with

unbounded control
Logistic growth function
The optimal control was determined
assuming that the food intake control variable
u(f) is unbounded and that the weight increase
follows the modified logistic equation in the 140 d
following the weaning period. The optimal control
problem is shown in Equations 6 and 7:
140
Jup= |

0

Minimize

u(?) dt (6)

subject to the ordinary differential equation:
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Figure 1 Graphs of functions relating weight to age for linear, exponential, logistic and Gompertz

functions.

Table 2 Parameter values of 7, K and coefficient of determination (R2) for the best fits for the linear,
exponential, logistic and Gompertz equations to the age-weight data.

dx

Function o x(9) K r R?
Linear r Xo 1t - 0.6154 0.9643
Exponential rxg e’ Xg e - 0.0207 0.8484

. x xoK
Logistic rx| l-— — 113.4 0.03275 0.9969
K X +(K—xy)e™"
Gompertz rx 1n(£) % ‘“(*] " 188.6 0.01191 0.9986
x e
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ou(t)
1+ Bu(r)
with boundary conditions: x(0) = 6.5 kg and
x(140) = 100 kg. Here, x(f) is the body weight in
kilograms at time ¢, u(f) is the daily food intake in

d = F(x()G(u(n) = rx(t)(l - x(t)j )

kilograms per day at time ¢, » > 0 is the specific
rate of increase for the logistic function, X is the
carrying capacity in the logistic function and a, 8
are positive constants for the Michaelis-Menten
function.

In combining the fitted growth-rate
functions F for the logistic equation with the
Michaelis-Menten function G, it is necessary to
combine the constants ra into one constant R so
that the average value of R corresponds to a daily
food intake control variable # within the interval
range of 0.3 to 3.1 of Table 1. From the numerical
results, a suitable choice is R = 3ra.

The principal technique for solving the
type of optimal control problem in Equations 6
and 7 is to use the Pontryagin maximum principle
1962) and set up the state
and adjoint equations which are the necessary

(Pontryagin et al.,

conditions for the optimal value of u(¢) (Clark,
1990). This paper minimized the objective
function and defined the Hamiltonian so that the
Hamiltonian must be minimized with respect
to the control u(¢) (for example, Lenhart and
Workman, 2007). For the optimal control problem
in Equations 6 and 7, the Hamiltonian, A, is shown
in Equation 8:

Hrud) =u+ i—24 x(l—ij, (8)
1+ Bu K

and the differential equation for the state variable

x(?) is given by Equation 7 and the differential

equation for the adjoint variable A(?) is given by

Equation 9 (for example, Lenhart and Workman,

2007).

aL_ o R(2veK) o
dt Ox K(Bu+1)

Since the control is unbounded, the

minimum value of the Hamiltonian with respect

to u will be given by the optimality condition
2

>-> 0 as in Equation 10:

ou
a—H=1+,1&_x)2=0 (10)
Ou K(Bu+1)

whiich then gives the optimal control as shown
in Equation 11:

o K+ JAOK R0 (x() - K)
u ([)— Kﬂ .

Since x < K and all parameters are positive, u"(¢)

(11)

can be real and non-negative only if A <0. To check
that Equation 11 gives a minimum, the second
derivative was calculated (Equation 12):

o*H  2ARx(K-x)
ou® K(ﬁu+l)3

The strict Legendre condition

(12)

2
> 0 is satisfied

ou?
on[ .}1f/1(t)<0forte[ oy

a necessary condition for #*(¢) to be real and non-

} This is also

negative.

The solution of the optimal control
problem then involves the solution of the
differential equation in Equation 7, the adjoint
equation in Equation 9, with u(f) = u*(¢) from
Equation 11, subject to the boundary conditions
x(0) = 6.5 and x(140) = 100. This boundary value
problem was solved numerically using the bvp5c
function in Matlab.

Gompertz growth model

The method of solution was similar to
that given for the logistic growth model except
that the function F(x(¢)) in Equation 7 was replaced
by the growth rate for the Gompertz model. The
growth-rate equation is shown in Equation 13:

au(t)
1+ Bu(t)

with boundary conditions: x(0) = 6.5 kg and x(140)
=100 kg, where x(¢) is the body weight in kg at
time ¢, u(f) is the daily food intake in kg/day at

Z —F(x(r)(G(u(r))—rln( ()] x(1) (13)
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time ¢, » > 0 is the specific rate of increase in the
Gompertz function, K is the carrying capacity
in the Gompertz function and a, f are positive
constants for the Michaelis-Menten function. As
with the logistic growth model, it is necessary
when combining the fitted growth-rate functions
F for the Gompertz equation with the Michaelis-
Menten function G to combine the constants ra
into one constant R so that the average value of R
corresponds to a daily food intake control variable
u within the interval range of 0.3 to 3.1 kg.d"! of
Table 1. From the numerical results, a suitable
choice is R = 3ra.

Following the same method of solution
as in the logistic growth model, the Hamiltonian,
H is defined as shown in Equation 14:

Heu,A) =1+ A—22 xln(fj. (14)
1+ Bu X

with the adjoint equation as shown in Equation
15:

Ru ln(Kj—l
@——BH——), |: X .

dt ox Bu+1

(15)

For the unbounded control, the optimality
condition for the Hamiltonian with respect to u is
given by Equation 16:

leln(Kj
oH _ _ \XJ_p

16
Ou (Bu+1)’ (1o

Then solving Equation 16 for the optimal
control u*(f) we obtain Equation 17:

-1+ —leln(KJ
X
B

Since x < K , u*(f) can be real and non-

u' ()= (17)

negative only if » > 0. To check that Equation
17 gives a minimum, the second derivative was
calculated as shown in Equation 18:

2AR[BIn (KJ

62H__ X

ou’ (Bu+1y’

(18)

2
]Z>0
Ou

is satisfied on [to, tf] ,ifA(f)<O0for t e [to, tf}

The strict Legendre condition

This is also a necessary condition that u*(¥) is real
ry

and non-negative.

The solution of the optimal control
problem then involves the solution of the
differential equation in Equation 13, the adjoint
equation in Equation 15, with u(f) = u"(¢) from
Equation 17, subject to the boundary conditions
x(0)=6.5 and x(140) = 100. This boundary value
problem was solved numerically using the bvpSc
function in Matlab.

NUMERICAL RESULTS AND
DISCUSSION

The two boundary value problems
developed in the previous section for minimizing
the total food intake were numerically solved
using the bvp5c command in the Matlab software
package.

The results of the optimal daily food
intake control variable u*(¢) are shown in Figures
2 and 3 for the unbounded logistic control and
the unbounded Gompertz control, respectively.
The food intake was 0.5824 kg.d! according to
the logistic model, and 0.5454 kg.d"!' according
to the Gompertz model. Both of these results
are in the range of food intake shown in Table
1. The coefficient of determination using the
logistic equation was 0.9887 and for the Gompertz
equation was 0.9986.

CONCLUSION

A generic approach was used to calculate
the daily amount of fed food that achieved a
desirable final weight of swine in the post weaning
period while minimizing the total food intake. The
Gompertz equation as the growth model produced
a more reliable result and made the most sense
from a physical consideration.
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The results of this paper should be
regarded as a preliminary investigation into the
application of optimal control to minimize the
food intake of swine in Thailand. The method
can provide useful results that could potentially
increase the quality of livestock and result in a
better economic output for the food production

industry in Thailand. However, it is clear that
reliable results would require the analysis of
considerably more data to obtain a better model
for the growth rate of swine as a function of age
and daily food intake. Optimal control could be
a useful method for obtaining optimal feeding
schedules for other animals in Thailand.
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Figure 2 Amount of fed food with unbounded control. The weight increase is modeled using the logistic
equation with parameter values: R =3ra = 0.08348 kg'!, K=113.4 kg, =0.7129 d kg'!, x(0)

= 6.5 kg, x(140) = 100 kg.
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Figure 3 Amount of fed food with unbounded control. The weight increase is modeled using the
Gompertz equation with parameter values: R = 3ra=0.03036 kg'!, K = 188.6 kg, B =0.7129

dkg!, x(0) = 6.5 kg, x(140) = 100 kg.
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