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A Nonlinear Optimization Problem for Determining Safety Stocks
in a Two-Stage Manufacturing System

Parthana Parthanadee

ABSTRACT

Safety stock is the inventory which is used to buffer against the uncertainties in business

operations. Managers must decide how much safety stock of each raw material and each finished product

should be maintained. Determining appropriate safety stock levels is an important decision. Too much

safety stock would incur extra inventory carrying costs, whereas too less safety stock would increase

the risk of having product stockouts and lost sales. In this paper, a nonlinear programming problem for

determining safety stock levels in a two-stage manufacturing system, was presented. Instead of using

the well-known search algorithms, simple decision rules for determining safety stock levels were derived

from an analysis of the derivatives of cost functions, with respect to the delivery performances of suppliers

and prior manufacturing process. Two algorithms based on those decision rules were proposed and

tested on seventy-five problem instances. The results showed that the proposed algorithms provided,

within 1 second, the solutions with less than 3% deviations, on average, from the known integer solutions

or the best lower bounds. The algorithms also performed better than the pattern search algorithm, which

was the method applied in the previous research.
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INTRODUCTION

Safety stock or buffer stock is the amount

of inventory held in a short run to protect against

demand and supply uncertainties and forecasting

errors in business operations. When demands are

underestimated, or supplies are insufficient or

backordered, product stockouts may occur and

cause the company some lost sales, especially

when the degree of product substitutability is high.

On the other hand, if too many safety stock

quantities are held, high inventory costs would be

charged to the company. The two types of costs:

opportunity costs and inventory costs must be

traded off to find the appropriate safety stock

levels.

The classical approach for determining

safety stock is to specify a desired service level or

a stockout probability and use it to identify a safety

factor, k. If the demand during lead time is assumed

normally distributed, the safety factor is usually

set to z and the safety stock is set to z⋅σL, where z

denotes the z-score to achieve the desired service

level and σL denotes the standard deviation of the

probability distribution of demand during lead time

(Vollmann et al., 1997). The other choices of safety

factor, demand deviation, and safety stock

calculations can be found in Krupp (1997); Silver



et al. (1998); Zeng (2000); and Talluri et al. (2004).

Maia and Qassim (1999) derived

optimum safety stocks for a one-stage

manufacturing system, in which a finished product

was produced from a number of raw materials.

The problem was formulated as a nonlinear

program (NLP), which minimized the total of

inventory and opportunity costs. From the analysis,

Maia and Qassim (1999) found that it was

economical to either hold every safety stock at its

maximum level or not hold it at all. A set of

decision rules for finding optimum safety stocks

was provided and illustrated through a small

numerical example.

Siribanluoewut (2006) extended the

work by Maia and Qassim (1999) to determine

safety stocks for a two-stage manufacturing

system. The problem was solved using three

optimization heuristics, which were genetic

algorithm, pattern search algorithm, and the hybrid

genetic algorithm with pattern search. All the

optimization heuristics performed efficiently on

the test problems and the qualities of solutions

reported were found not statistically different from

each other. However, the pattern search algorithm

provided good solutions in significantly shorter

time than other heuristics did.

Inderfurth and Minner (1998) formulated

an optimization problem of determining safety

stocks in multi-stage manufacturing systems with

normally distributed demands. The system was

assumed to be under a periodic review, base-stock

control policy, in which inventories were reviewed

every fixed period of time and replenished up to a

specified level. The safety factor in this study was

found to be depending on service level, type of

service level, and coverage time. The service level

and coverage time for different types of multi-stage

manufacturing systems were derived to establish

the optimal policy for determining safety stocks

in these multi-stage systems.

In this paper, the problem for determining

safety stocks in the two-stage manufacturing

system, as presented in Siribanluoewut (2006), was

considered. Instead of using the optimization

heuristics, which required the users to understand

their mechanisms, a set of simple decision rules

for finding optimum safety stocks was developed,

and tested on the number of test instances as shown

in the following sections.

MATERIALS AND METHODS

Problem description
A two-stage manufacturing system, as

presented in Siribanluoewut (2006), was

considered in this study. In such system, a

manufacturer ordered m raw materials (RMs) for

its stage-1 manufacturing process and n raw

materials for its stage-2 manufacturing process.

Each raw material was ordered from a single

supplier. The stage-1 process produced a work-

in-process (WIP) from those m raw materials. The

WIP and the n other raw materials were then fed

to stage 2 to produce a final product. Figure 1

illustrated this two-stage manufacturing system.

The model formulation of this system was

modified from that of the one-stage manufacturing

system by Maia and Qassim (1999). The notations

used in the formulation were as follows.

Stage 1

i index of raw materials in stage 1; i = {1,

2,…, m}

p1,i the on-time delivery performance of

supplier i

q i1,
* the quantity of stage-1 raw material i that

is delivered on time

q1,i the quantity of stage-1 raw material i that

is ordered

x1,i the safety stock of stage-1 raw material i

k1,i the delivery performance to manufacture

of stage-1 raw material i

c1,i the unit inventory cost of stage-1 raw

material i

ps1
the stage-1 manufacturing performance

qw the quantity of WIP that is required

xw the safety stock of WIP
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Figure 1 The two-stage manufacturing system.

kw the WIP delivery performance to stage-

2 manufacturing process

cw the unit inventory cost of WIP

Stage 2

j index of raw materials in stage 2; j = {1,

2,…, n}

p2,j the on-time delivery performance of

supplier j

q j2,
* the quantity of stage-2 raw material j that

is delivered on time

q2,j the quantity of stage-2 raw material j that

is ordered

x2,j the safety stock of stage-2 raw material j

k2,j the delivery performance to manufacture

of stage-2 raw material j

c2,j the unit inventory cost of stage-2 raw

material j

ps2
the stage-2 manufacturing performance

qp the quantity of finished product that is

required

xp the safety stock of finished product

kp The finished product delivery

performance to customer

cp the unit inventory cost of finished

product

co the unit opportunity cost of finished

product that is not delivered on time

As in Maia and Qassim (1999), the on-

time delivery performance  of supplier i and the

on-time delivery performance of supplier j could

be calculated from the past data records, using

Equations (1) and (2), respectively.
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If the manufacturer held safety stocks for every raw material, the delivery performances to

manufacture of stage-1 raw material i and stage-2 raw material j could be defined as in Equations (3)

and (4), respectively.
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The inventory cost of the safety stock of each raw material could be computed from Equations

(5) or (6) as follows.

C c x c q k pi i i i i i i1 1 1 1 1 1 1, , , , , , ,( )= = − ∀ =i m{ , , , }1 2 K (5)

C c x c q k pj j j j j j j2 2 2 2 2 2 2, , , , , , ,( )= = − ∀ =j n{ , , , }1 2 K (6)

The manufacturing performance of stage-1 process, ps1
, was defined as the ratio between on-

time and planned production, accounting for all delays that may occur, but excluding those caused by

material stockouts. The ps1
 could be found from Equation (7). The WIP delivery performance to stage-

2 manufacturing process, kw, was given in Equation (8).

p
q

qs
w

w
1

=
*

(7)

k p k
x

qw s i
i

m
w

w
= +

=
∏1 1

1
, (8)

The inventory cost of the WIP safety stock could be calculated from Equation (9).

C c x c q k p kw w w w w w s i
i

m
= = −

=
∏( ),1 1

1
(9)

Similarly, the manufacturing performance of stage-2 process, ps2
, the product delivery

performance, kp, and the product inventory cost could be calculated as follows.
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Finally, the opportunity cost, defined as the cost incurring whenever the finished product failed

to be delivered to the customers on time, was given in Equation (13).

C c q ko o p p= −( )1 (13)

Mathematical model
A nonlinear programming (NLP) model, for determining the delivery performances k1,i, kw,

k2,i, and kp was formulated in this section. The objective of this NLP model was to minimize the total of

the inventory costs charged for holding all the safety stocks and the opportunity costs, subject to the

bounds on the delivery performances. The model was formulated as follows.
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Solution analysis
It was known that the optimal solution of the NLP is necessarily on the border of the feasible

region, if the Hessian matrix of the objective function is indefinite, as in this problem (see Marsden and

Tromba (1981), for example). Therefore, the optimal delivery performances k1,i, kw, k2,j, and kp in the

presented NLP must be either on their lower bounds or upper bounds. In this paper, the analysis followed

the method in Maia and Qassim (1999) by defining reference costs, c i1,
*  for the stage-1 raw material

i, cw
*   for the WIP, and c j2,

*  for the stage-2 raw material j, as shown in Equations (19) - (21). The upper

bounds of these reference costs were found from the derivatives of the cost function with respect to the

delivery performances k1,i, kw, k2,j, and k2,j.
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The reference costs, c i1,
*  cw

*  and c j2,
*  were then analyzed against all the unit costs in the model

to identify when the corresponding delivery performances and safety stocks should be set to their lower

or upper bounds. If the opportunity cost was high, the manufacturer should hold safety stocks to prevent

the products shortages. In contrary, it would not be economical to stock the materials, when the inventory

costs (and hence the reference costs) were costly. The optimal solution of the presented optimization

model could be derived as follows:
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Proposed algorithms
Since the exact values of the reference

costs were not known, they could be initially set

to their upper bounds in which all other raw-

material delivery performances, besides the one

corresponding to the considered raw material, (k1,i

: ∀ i  ≠ i’ and k2,j : ∀ j  ≠ j’) were set at their lower

bounds. The estimated reference costs of the raw

materials in every stage were sorted in a non-

decreasing order and the values were recalculated

as in Equations (19) and (21). This solution finding

algorithm was specified as Algorithm 1.

From the preliminary testing, it was

found that when the estimated values of reference

costs were not much different from each other or

from the opportunity cost, Algorithm 1 may not

always provide the optimal solutions. Algorithm

2 was then proposed. Again, the reference costs

of the raw materials in every stage were sorted as

in Algorithm 1. At the initial step, the delivery

performances and safety stocks of all raw materials

were set to their lower bounds. The delivery

performances and safety stocks of WIP and

finished product were found from the decision

rules presented in the previous section,

accordingly. The total cost was calculated and

recorded. Then, the delivery performance and

safety stock of each raw material in each stage

were increased to their upper bounds, one by one,

corresponding to the non-decreasing order of the

raw-material reference costs. The delivery

performances and safety stocks of WIP and

finished product, including the total costs, were

recalculated and recorded at every step. Finally,

the minimum total cost and the best solution were

identified.

A numerical example
In this section, a small example,

consisting of three raw materials in stage 1 and

two raw materials in stage 2, was presented. The

data for this example was given in Table 1. The

opportunity cost was assumed to be 8.44 baht.

Algorithm 1:

The initial reference costs for stage-1 raw

materials 1, 2 and 3 were found to be 2.1778,

5.4652 and 9.2014 baht, respectively. Thus, the

stage-1 raw material order followed the natural

order. The reference costs for RM 1, RM 2 and

RM 3 were recalculated and their values became

2.1778, 5.1868 and 8.1043 baht, respectively.

Following the proposed decision rules, the safety

stocks of RM 1 and RM 2 should be set to their

upper bounds, which were 8 and 10 units,

respectively. The safety stock for RM 3 and WIP

were found unnecessary.

Next, the initial reference costs for stage-

2 raw materials 4 and 5 were found to be 7.5490

and 5.5337 baht, respectively. Hence, the

Table 1 Data for a small example with three raw materials in stage 1 and two raw materials in stage 2.

Materials q q* p c Initial ref. Ref. cost Algorithm 1 Algorithm 2

cost (baht) (baht) k x k x

RM 1 157 149 0.9490 2.86 2.1778 2.1778 1.0000 8 1.0000 8

RM 2 139 129 0.9281 8.29 5.4652 5.1868 1.0000 10 0.9281 0

RM 3 244 242 0.9918 7.44 9.2014 8.1043 0.9918 0 0.9918 0

WIP 232 224 0.9655 9.40 - 16.5918 0.9576 0 0.8887 0

RM 4 117 107 0.9145 8.88 7.5490 6.9549 1.0000 10 0.9145 0

RM 5 216 199 0.9213 3.50 5.5337 5.5337 1.0000 17 1.0000 17

Product 173 156 0.9017 7.20 - - 1.0000 23.61 1.0000 46.21

Total cost 424.1001 415.0962

(baht)
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Table 2 The twenty-four solutions evaluated by Algorithm 2.

No. Safety Stocks (units) Total cost

RM 1 RM 2 RM 3 WIP RM 4 RM 5 Product (baht)

1 0 0 0 0 0 0 62.14 447.42

2 8 0 0 0 0 0 56.19 427.44

3 8 10 0 0 0 0 47.13 445.15

4 8 10 2 0 0 0 46.09 452.54

5 0 0 0 0 0 17 52.67 438.73

6 8 0 0 0 0 17 46.21 415.10
7 8 10 0 0 0 17 36.38 427.23

8 8 10 2 0 0 17 35.25 433.98

9 0 0 0 0 10 17 41.43 446.56

10 8 0 0 0 10 17 34.36 418.58

11 8 10 0 0 10 17 23.61 424.10

12 8 10 2 0 10 17 22.38 430.09

13 0 0 0 36.33 0 0 41.56 640.70

14 8 0 0 25.82 0 0 41.56 564.82

15 8 10 0 9.84 0 0 41.56 497.48

16 8 10 2 8.00 0 0 41.56 495.10

17 0 0 0 36.33 0 17 30.33 619.36

18 8 0 0 25.82 0 17 30.33 543.48

19 8 10 0 9.84 0 17 30.33 476.14

20 8 10 2 8.00 0 17 30.33 473.76

21 0 0 0 36.33 10 17 17.00 612.16

22 8 0 0 25.82 10 17 17.00 536.28

23 8 10 0 9.84 10 17 17.00 468.94

24 8 10 2 8.00 10 17 17.00 466.56

algorithm would consider RM 5, prior to RM 4.

The reference costs of RM 4 and RM 5 were

recalculated and found to be 6.9549 and 5.5337

baht. Thus, the safety stocks of RM 4 and RM 5

were set to their upper bounds, which are 10 and

17 units, respectively. Finally, the product safety

stock was computed and set to 23.61 units. The

corresponding total cost is 424.10 baht.

Algorithm 2:

Following the initial reference costs

found in Algorithm 1, the priority for increasing

raw-material safety stock levels would be in the

orders of RM 1 – RM 2 – RM 3 and RM 5 – RM

4. Twenty-four solutions were evaluated and

shown in Table 2. From the Table, the sixth

solution provided the minimum total cost of 415.10

baht, with the safety stock levels set to 8 units for

RM 1, 17 units for RM 5, and 46.21 units for the

finished product. Algorithm 2 provided a superior

solution to Algorithm 1 for this test instance.

RESULTS

To facilitate the implementation,

Algorithms 1 and 2 were coded in MATLAB
6.5. Both algorithms were tested on 75 test

instances (from 5 test problem sets, each with 15

instances) in Siribanluoewut (2006). Table 3

presented structures of the test instances and the
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Table 3 Structures of the test instances and the average percentage of deviations from the true optimal

total costs of Algorithms 1 and 2.

Set No. of RMs No. of % Deviation from true optimum Average solution time (sec.)

Stage 1 Stage 2 instances Algorithm 1 Algorithm 2 Algorithm 1 Algorithm 2

1 3 1 15 0.00% 0.00% 0.0013 0.0047

2 3 2 15 0.47% 0.00% 0.0013 0.0033

3 7 2 15 0.24% 0.00% 0.0020 0.0047

4 12 2 15 0.98% 0.00% 0.0033 0.0073

5 15 2 15 2.79% 0.00% 0.0013 0.0087

Average 0.90% 0.00% 0.0019 0.0057

average percentage of deviations from the optimal

NLP total costs, including the solution times, by

Algorithms 1 and 2. The result showed that

Algorithm 2 did outperform Algorithm 1.

As aforementioned, the optimization

model presented in this paper was an NLP model.

Therefore, the levels of safety stocks in the final

solution may be reported as non-integers. This

safety stock determination problem could also be

modeled as a mixed integer nonlinear program

(MINLP) for minimizing the total of the

opportunity costs and the inventory costs charged

for holding all the safety stocks, subject to the

bounds on the safety stock levels. The safety stocks

x1,i, xw, x2,j, and xp, which were required to be

integers, would be sought from the MINLP, in lieu

of the delivery performances k1,i, kw, k2,j, and kp in

the NLP. However, the MINLP was a much more

complex problem. It may not be solved in

reasonable computation times with regular

optimization methods, even for small-size problem

instances. Thus, it was suggested that the safety

stock levels should be found by applying

Algorithm 2 and then rounding down the non-

integer safety stocks to their nearest integers. The

rounded solutions were compared with true

optimal integer solutions found from the

enumeration method, in which all possible integer

solutions were enumerated and evaluated.

However, the enumeration method could not be

implemented on the large problem instances, due

to their long computation times. Therefore, only

the true optimal integer solutions of test problem

sets 1 and 2 could be identified. The qualities of

these rounded solutions were presented in Tables

4 and 5. For test problem sets 3, 4 and 5, the

rounded solutions were compared with the

corresponding MINLP lower bounds (i.e. the

optimal NLP solutions) instead. The qualities of

these solutions were given in Tables 6-8.

Furthermore, the pattern search algorithm (using

a complete search, a mesh expansion factor of 1.0

and a mesh contraction factor of 0.5) was also

investigated. The details of this algorithm can be

found in Kolda et al. (2003). The qualities of the

integer solutions found from the pattern search

algorithm were also presented in Tables 4-8, for

comparison purpose.

From Tables 4 and 5, Algorithm 2 with

solution rounding provided high-quality results.

The rounded solutions were 2.10% deviating from

the known MINLP optimum on average (with a

maximum deviation of 10.20%) for problem set

1, and 3.86% deviating from the known MINLP

optimum on average (with a maximum deviation

of 20.23%) for problem set 2. Algorithm 2 with

solution rounding provided the good solutions in

much shorter times (i.e. less than 1 second) than

the enumeration method did (i.e. more than 7

minutes for problem set 1 and more than 35

minutes for problem set 2, on average). For larger

test problem sets, the average deviation of the

Algorithm-2 solutions from the corresponding

MINLP lower bounds were less than 2.5%, with
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Table 4 The quality of the rounded solutions for test problem set 1.

No. Enumeration Algorithm 2 Pattern search

Total Time Total Time % Dev. Total Time % Dev.

costs (seconds) costs (sec) from costs (sec) from

(baht) (baht) opt. (baht) opt.

1 226.2863 557.00 226.2863 0.03 0.00 226.2863 0.656 0.00

2 223.0773 454.98 245.4778 0.00 10.04 223.3209 0.547 0.11

3 188.9893 574.17 191.7372 0.00 1.45 190.3275 0.89 0.71

4 174.6790 233.69 179.7564 0.00 2.91 174.6790 0.453 0.00

5 422.4267 616.30 434.7873 0.00 2.93 442.0500 0.656 4.65

6 538.7574 805.59 538.7574 0.00 0.00 538.7574 0.343 0.00

7 85.4226 753.52 86.9119 0.00 1.74 89.8888 0.484 5.23

8 194.1343 40.50 196.3468 0.00 1.14 199.1684 0.578 2.59

9 53.3469 9.66 58.7888 0.00 10.20 58.6819 0.344 10.00

10 240.7639 16.64 240.7639 0.00 0.00 240.7639 0.391 0.00

11 396.7343 419.02 398.7735 0.00 0.51 453.2415 0.453 14.24

12 173.3962 692.55 173.4065 0.00 0.01 176.3493 0.61 1.70

13 359.3905 51.55 359.3905 0.00 0.00 359.3905 0.562 0.00

14 225.1412 171.69 226.3883 0.02 0.55 244.0558 0.422 8.40

15 399.7456 1182.19 399.7456 0.00 0.00 399.7456 0.484 0.00

Average 438.6033 0.0033 2.10 0.5249 3.18

Table 5 The quality of the rounded solutions for test problem set 2.

No. Enumeration Algorithm 2 Pattern search

Total Time Total Time % Dev. Total Time % Dev.

costs (seconds) costs (sec) from costs (sec) from

(baht) (baht) opt. (baht) opt.

1 231.96 388.13 231.96 0.05 0.00 231.96 0.70 0.00

2 231.15 310.00 267.04 0.00 15.52 232.33 0.58 0.51

3 195.83 843.94 196.89 0.00 0.54 198.17 0.55 1.20

4 286.68 1640.67 291.76 0.00 1.77 286.68 0.63 0.00

5 448.69 3548.72 461.05 0.00 2.75 468.31 0.84 4.37

6 623.79 3839.44 623.79 0.00 0.00 623.79 0.48 0.00

7 95.46 3736.39 99.51 0.00 4.24 97.66 0.61 2.30

8 233.65 252.59 235.87 0.00 0.95 245.51 0.53 5.08

9 63.30 22.25 76.10 0.00 20.23 73.49 0.42 16.11

10 353.81 161.06 353.81 0.00 0.00 353.81 0.59 0.00

11 415.36 1184.09 415.36 0.00 0.00 415.36 0.72 0.00

12 137.41 1197.42 150.03 0.00 9.18 142.33 0.64 3.58

13 110.35 9400.22 111.73 0.00 1.25 110.35 0.63 0.00

14 171.36 5738.92 173.87 0.00 1.47 238.33 0.69 39.08

15 210.21 930.83 210.21 0.02 0.00 210.21 0.64 0.00

Average 2212.98 0.00 3.86 0.62 4.82
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Table 7 The quality of the rounded solutions for test problem set 4.

No. LB of Algorithm 2 Pattern search

Total costs Total costs Time % Dev. Total costs Time % Dev.

(baht) (baht) (sec) from LB (baht) (sec) from LB

1 781.7861 781.7861 0.05 0.00 937.4422 0.875 19.91

2 116.0982 128.7529 0.00 10.90 118.4608 1.125 2.04

3 250.6759 253.0172 0.00 0.93 276.9489 1.281 10.48

4 863.7852 866.8405 0.02 0.35 932.2620 0.844 7.93

5 416.318 425.6585 0.00 2.24 434.4976 1.282 4.37

6 769.3648 784.0514 0.00 1.91 775.9314 0.906 0.85

7 831.0751 834.5863 0.00 0.42 861.3861 0.875 3.65

8 732.6523 737.9136 0.00 0.72 769.4482 1.157 5.02

9 171.9773 180.0650 0.02 4.70 175.0647 0.765 1.80

10 356.2244 366.1220 0.00 2.78 359.5120 1.062 0.92

11 883.9080 883.9080 0.02 0.00 883.9080 0.39 0.00

12 197.3155 217.3515 0.00 10.15 206.1805 0.672 4.49

13 532.1986 533.0392 0.00 0.16 632.9300 0.703 18.93

14 905.1188 910.7604 0.00 0.62 921.6216 1.125 1.82

15 805.6426 807.9736 0.00 0.29 845.8867 0.781 5.00

Average 0.0073 2.41 0.9229 5.81

Table 6 The quality of the rounded solutions for test problem set 3.

No. LB of Algorithm 2 Pattern search

Total costs Total costs Time % Dev. Total costs Time % Dev.

(baht) (baht) (sec) from LB (baht) (sec) from LB

1 341.4262 349.9014 0.05 2.48 381.6719 0.532 11.79

2 698.4675 699.5436 0.00 0.15 698.7817 0.641 0.04

3 306.6030 313.5858 0.00 2.28 327.0063 0.469 6.65

4 782.9640 789.0657 0.00 0.78 791.1078 0.516 1.04

5 141.2319 145.3478 0.00 2.91 147.0369 0.625 4.11

6 248.9744 252.0126 0.00 1.22 250.6189 0.5 0.6

7 418.7751 418.7751 0.00 0.00 418.7751 0.313 0.00

8 870.7950 871.3350 0.00 0.06 871.3350 0.516 0.06

9 188.2021 189.3901 0.00 0.63 189.3901 0.563 0.63

10 607.2085 611.1003 0.02 0.64 618.0523 0.766 1.79

11 310.3231 317.2456 0.00 2.23 313.7932 0.578 1.12

12 767.5441 779.7637 0.00 1.59 775.4064 0.687 1.02

13 796.4144 811.3657 0.00 1.88 872.1025 0.765 9.50

14 216.6816 220.6952 0.00 1.85 226.5848 0.563 4.57

15 329.8299 331.9408 0.00 0.64 348.9675 0.453 5.80

Average 0.0047 1.29 0.5658 3.25
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Table 9 The statistical results from the paired t-test and the signed rank test.

Problem set Average of Median of p-value

the difference the difference Paired t-test Signed rank test

in total costs in total costs

1 3.9592 0.0000 0.3578 0.7109

2 1.9540 0.0000 0.7095 < 1.0000

3 8.6375 1.6891 0.3865 0.1180

4 27.9770 10.8612 0.0372* 0.0438*

5 79.2191 12.5932 0.0999 0.0287*
* indicates a significant difference in total costs found from both methods

Table 8 The quality of the rounded solutions for test problem set 5.

No. LB of Algorithm 2 Pattern search

Total costs Total costs Time % Dev. Total costs Time % Dev.

(baht) (baht) (sec) from LB (baht) (sec) from LB

1 335.2583 341.7339 0.05 1.93 338.9744 1.204 1.11

2 448.8165 457.5385 0.02 1.94 468.6784 1.078 4.43

3 241.1376 243.6205 0.00 1.03 243.0759 1.313 0.80

4 689.6022 692.9453 0.00 0.48 708.7569 1.641 2.78

5 977.388 980.5293 0.02 0.32 1010.1633 1.391 3.35

6 326.5053 328.5352 0.00 0.62 328.1805 1.078 0.51

7 750.4167 751.3261 0.00 0.12 751.2409 1.000 0.11

8 810.929 813.4720 0.00 0.31 858.0251 1.766 5.81

9 763.4033 764.7848 0.00 0.18 777.3780 1.250 1.83

10 1047.4942 1047.4942 0.02 0.00 1047.4942 1.734 0.00

11 964.0926 972.7866 0.00 0.90 1626.5400 1.532 68.71

12 600.9621 612.3057 0.00 1.89 685.6725 0.656 14.10

13 819.0913 820.9975 0.00 0.23 1098.4323 1.265 34.10

14 966.8934 968.9883 0.00 0.22 1042.7315 1.360 7.84

15 730.5132 730.5132 0.02 0.00 730.5132 1.172 0.00

Average 0.0087 0.68 1.2960 9.70

the maximum deviation of about 10%. The solving

times were still less than 1 second for all test

instances.

The qualities of solutions and the

computation times from Algorithm 2 and from

pattern search seemed to be competitive, especially

for the small-size test problems. The differences

between the total costs found from Algorithm 2

and from pattern search were compared using the

paired t-test and the signed rank test (Montgomery

and Runger, 2004). The former was tested whether

or not  the average of the differences in total costs

equaled zero. The latter was a non-parametric

hypothesis test on the median of the differences

in total costs. Under the normality assumption of

data, the paired t-test was more powerful than the

signed rank test. However, the signed rank test was

less sensitive to the outliers. Herein, the signed

rank test was applied because the distributions of

the total costs showed significant departures from

normal distributions. The summary of the

statistical tests was presented in Table 9.
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From the statistical tests, the qualities of

solutions found from both methods were not

significantly different for test problem sets 1, 2

and 3. However, Algorithm 2 became superior to

the pattern search for larger problem sets. Notice

on the test results, the total cost obtained from the

pattern search could be as poor as 68% deviating

from the MINLP lower bounds in large problem

instances, while those from Algorithm 2 would not

be worse than 20% from the lower bounds.

Algorithm 2 was hence the most efficient method

for solving this safety stock determination

problem, in terms of both solution quality and

computation time.

DISCUSSION

It had been shown in the previous section

that Algorithm 2, which was based on a basic NLP

theorem, could provide high quality solutions in

short computation times for the safety stock level

determination problem in the considered two-stage

manufacturing system. The algorithm utilized only

a set of simple decision rules, in contrast to the

pattern search heuristic, which required the users

to comprehend its mechanisms. The decision rules

for finding optimum safety stocks also matched

the common managerial logics that when the

opportunity cost was high, the safety stocks should

be held to prevent the product deficiency, but they

should not be stocked when the inventory costs

were high. Moreover, the search heuristic such as

pattern search would terminate the search after

some stopping criteria had been satisfied.

Therefore, in some cases, it might not thoroughly

search the solution space for the solutions.

CONCLUSION

In this research, two algorithms for

determining safety stocks in a two-stage

manufacturing system were proposed by analyzing

the derivatives of cost function and the cost

comparisons. The algorithms were found to work

very efficiently on the test problems. They could

provide high-quality solutions for every test

instance in less than 1 second. The deviations from

the known integer solutions or the lower bounds

were less than 3% on average. The algorithms also

outperformed the pattern search algorithm, which

was presented in the previous research.
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