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A Nonlinear Optimization Problem for Deter mining Safety Stocks
in a Two-Stage M anufacturing System

Parthana Parthanadee

ABSTRACT

Safety stock is the inventory which is used to buffer against the uncertainties in business
operations. Managers must deci de how much safety stock of each raw material and each finished product
should be maintained. Determining appropriate safety stock levelsis an important decision. Too much
safety stock would incur extra inventory carrying costs, whereas too less safety stock would increase
the risk of having product stockouts and lost sales. In this paper, a nonlinear programming problem for
determining safety stock levels in a two-stage manufacturing system, was presented. Instead of using
thewell-known search algorithms, simple decision rulesfor determining safety stock levelswere derived
froman anaysisof thederivativesof cost functions, with respect to the delivery performances of suppliers
and prior manufacturing process. Two algorithms based on those decision rules were proposed and
tested on seventy-five problem instances. The results showed that the proposed agorithms provided,
within 1 second, the solutions with lessthan 3% deviations, on average, from the known integer solutions
or the best lower bounds. The algorithms al so performed better than the pattern search algorithm, which
was the method applied in the previous research.
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INTRODUCTION

Safety stock or buffer stock istheamount
of inventory held in a short run to protect against
demand and supply uncertainties and forecasting
errors in business operations. When demands are
underestimated, or supplies are insufficient or
backordered, product stockouts may occur and
cause the company some lost sales, especially
when the degree of product substitutability ishigh.
On the other hand, if too many safety stock
quantities are held, high inventory costswould be
charged to the company. The two types of costs:
opportunity costs and inventory costs must be

traded off to find the appropriate safety stock
levels.

The classical approach for determining
safety stock isto specify adesired servicelevel or
astockout probability and useit to identify asafety
factor, k. If thedemand during lead timeisassumed
normally distributed, the safety factor is usually
set to z and the safety stock is set to z[0, where z
denotes the z-score to achieve the desired service
level and o, denotes the standard deviation of the
probability distribution of demand during lead time
(Vollmann et al., 1997). The other choicesof safety
factor, demand deviation, and safety stock
calculations can be found in Krupp (1997); Silver

Program of Agro-Industry Technology Management, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand.

e-mail: fagiptp@ku.ac.th
Received date : 22/06/06

Accepted date : 22/01/07



Kasetsart J. (Nat. Sci.) 41(2) 381

etal. (1998); Zeng (2000); and Talluri et al. (2004).

Maia and Qassim (1999) derived
optimum safety stocks for a one-stage
manufacturing system, in which afinished product
was produced from a number of raw materials.
The problem was formulated as a nonlinear
program (NLP), which minimized the total of
inventory and opportunity costs. Fromthe analysis,
Maia and Qassim (1999) found that it was
economical to either hold every safety stock at its
maximum level or not hold it at all. A set of
decision rules for finding optimum safety stocks
was provided and illustrated through a small
numerical example.

Siribanluoewut (2006) extended the
work by Maia and Qassim (1999) to determine
safety stocks for a two-stage manufacturing
system. The problem was solved using three
optimization heuristics, which were genetic
algorithm, pattern search algorithm, and the hybrid
genetic algorithm with pattern search. All the
optimization heuristics performed efficiently on
the test problems and the qualities of solutions
reported werefound not statistically different from
each other. However, the pattern search algorithm
provided good solutions in significantly shorter
time than other heuristics did.

Inderfurth and Minner (1998) formulated
an optimization problem of determining safety
stocksin multi-stage manufacturing systemswith
normally distributed demands. The system was
assumed to be under a periodic review, base-stock
control policy, inwhichinventorieswerereviewed
every fixed period of time and replenished up to a
specified level. The safety factor in this study was
found to be depending on service level, type of
servicelevel, and coveragetime. Theservicelevel
and coveragetimefor different types of multi-stage
manufacturing systems were derived to establish
the optimal policy for determining safety stocks
in these multi-stage systems.

In thispaper, the problem for determining
safety stocks in the two-stage manufacturing
system, aspresented in Siribanluoewut (2006), was

considered. Instead of using the optimization
heuristics, which required the usersto understand
their mechanisms, a set of simple decision rules
for finding optimum safety stockswas devel oped,
and tested on the number of test instancesas shown
in the following sections.

MATERIALSAND METHODS

Problem description
A two-stage manufacturing system, as
presented in Siribanluoewut (2006), was
considered in this study. In such system, a
manufacturer ordered m raw materials (RMs) for
its stage-1 manufacturing process and n raw
materials for its stage-2 manufacturing process.
Each raw material was ordered from a single
supplier. The stage-1 process produced a work-
in-process (WIP) from those mraw materials. The
WIP and the n other raw materials were then fed
to stage 2 to produce a final product. Figure 1
illustrated this two-stage manufacturing system.
The model formulation of this system was
modified from that of the one-stage manufacturing
system by Maiaand Qassim (1999). The notations
used in the formulation were as follows.
Stage 1
i index of raw materialsinstage 1; i = {1,
2,...,m}
Pij the on-time delivery performance of
supplier i

*

Oy the quantity of stage-1 raw material i that
is delivered on time

O the quantity of stage-1 raw material i that
isordered

X1 the safety stock of stage-1 raw material i

Ky thedelivery performance to manufacture
of stage-1 raw material i

Cyj the unit inventory cost of stage-1 raw
material i

Ps, the stage-1 manufacturing performance

Ow the quantity of WIP that is required

Xw the safety stock of WIP
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Figure1l The two-stage manufacturing system.
Ky the WIP delivery performance to stage- ¢ the unit inventory cost of stage-2 raw
2 manufacturing process material |
Cw the unit inventory cost of WIP P,  thestage-2 manufacturing performance
Op the quantity of finished product that is
Stage 2 ired
j index of raw materialsinstage 2; j ={1 reaur
J '2” ex0 WESI=0 the safety stock of finished product
h n} e dell . . Ko The finished product delivery
P2, the (I).n-tl.me elivery performance o performance to customer
suppiter ) C the unit inventory cost of finished
a2, the quantity of stage-2 raw material j that product
is ddlivered on time Co the unit opportunity cost of finished

bj the quantity of stage-2 raw material j that product that is not delivered on time

Is ordered o Asin Maia and Qassim (1999), the on-
Xoi the safety stock of stage-2 raw material j , . Ll
] ) time delivery performance of supplier i and the
Kaj thedelivery performance to manufacture

on-time delivery performance of supplier j could
be calculated from the past data records, using
Equations (1) and (2), respectively.

of stage-2 raw material
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If the manufacturer held safety stocks for every raw material, the delivery performances to
manufacture of stage-1 raw material i and stage-2 raw material j could be defined as in Equations (3)
and (4), respectively.

_ q;,i X _ Xq,i
ki = =p; +—— : 3
4, & P N OF {12,...,n} ©)
Qi+ _ X2,i
Ko, j =pgjt OF {12,... 4
2,j o, 1, F {12,....n} (4)

Theinventory cost of the safety stock of each raw material could be computed from Equations
(5) or (6) asfollows.

Cpi =C1iXyi =Ci0i(kei = Puj) OF {12,...,n} (5

Coj =C2j%2j =C2j%,j (K2 ~P2) OF {L2....r} (6)

The manufacturing performance of stage-1 process, Pg , was defined as the ratio between on-

time and planned production, accounting for all delays that may occur, but excluding those caused by

material stockouts. The ps, could be found from Equation (7). The WIP delivery performance to stage-
2 manufacturing process, k,,, was given in Equation (8).

_ Gy
P = (7)
m XW
Kw = Psy [Tkai +% (8)
=1 qW

Theinventory cost of the WIP safety stock could be calculated from Equation (9).
m
Cw = CwXw = CwOw(Ky = Ps; [ ki) 9)
i=1

Similarly, the manufacturing performance of stage-2 process, ps,, the product delivery
performance, k,, and the product inventory cost could be calculated as follows.

q
ps, = (10)
Ap
n Xp
Kp = P,k [ k2, +q_ (11)
j=1 p

n
Cp =CpXp =Cpap(kp — psQ"W_ﬂlkZYj) (12)
J:
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Finally, the opportunity cost, defined asthe cost incurring whenever the finished product failed
to be delivered to the customers on time, was given in Equation (13).

Co = Con(l - kp) (13)

M athematical model

A nonlinear programming (NLP) model, for determining the delivery performances ki ;, K,
ks, and k, was formulated in this section. The objective of this NLPmodel was to minimize the total of
the inventory costs charged for holding all the safety stocks and the opportunity costs, subject to the
bounds on the delivery performances. The model was formulated as follows.

. m d m O
Min C = cop(L~ kp) +_Zlcj,ichi(k],i - Pui) + Py ~ Py Mg

n O n O
+3 16k, (K = P2+ ol = Py [T k2, 0 (14)
j:]_ D j:1 D
Subject to
prj Skpj<1 OF {12,...,n (15)
P Skyjsi OF {12....r} (16)
m
Ps [ ki <kw <1 )
i=1
n
Ps, K []k2,j skp=1 (18)
j=1

Solution analysis

It was known that the optimal solution of the NLP is necessarily on the border of the feasible
region, if the Hessian matrix of the objective function isindefinite, asin this problem (see Marsden and
Tromba (1981), for example). Therefore, the optimal delivery performances ky j, ky, Koj, and k; in the
presented NL P must be either on their lower bounds or upper bounds. In this paper, the analysisfollowed
the method in Maia and Qassim (1999) by defining reference costs, Ci,i for the stage-1 raw material
i, c;\, for the WIP, and c;, j for the stage-2 raw material j, as shown in Equations (19) - (21). The upper
bounds of these reference costs were found from the derivatives of the cost function with respect to the
delivery performancesk j, Ky, kpj, and K.

oy s —— i OF {12,....n (19)
Ow Ps |_| Pui,
i2=i+1
CCVS chrl]w (20

UpPs, [] P2,j
j=1
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C2,i%,j

n
dpPs,kw [ P2,
j2=1+1

Coj < O {12,...,1 (21)

Thereference costs, OI,i c;\, and c;, j werethen analyzed against al the unit costsin the model
to identify when the corresponding delivery performances and safety stocks should be set to their lower
or upper bounds. If the opportunity cost was high, the manufacturer should hold safety stocksto prevent
the products shortages. In contrary, it would not be economical to stock the materials, when theinventory
costs (and hence the reference costs) were costly. The optimal solution of the presented optimization
model could be derived asfollows:

Stage-1raw materials:

* < *_thenk.: 'andX-ZO
(i) If ¢j < min(cy,cp) and O ° Civ' 1i = Pui 1
(i) Ifcy; >min(cy,cp) thenky; = pyj andxq; =0

Work-in-process.

o . m
[T, < Gy thenk,, = pslﬂ kyj and x,, =0
(i) ey <cpand] =t .

* D m
%;O>cwthenkW =1and Xy :qwﬁl—pslﬂkl,ia
0 i=1

m
(iv) Ifc;,>cpthenkw:psl|_|k1,i and x,, =0
i=1

Stage-2 raw materials:
OSC;,j then k2,j = p2,j andxzyj =0

(v) Ifcyy<cpoandg
gﬁo >(\Q,j thenkz,j :1andx2’j :q2’j(1—p2’j)

(vi) If ¢, >Cpthenky | = pyj and Xy =0
Finished product:

n
(Vi) co>Cpthenky = ps, Ky [] ko j andxp =0
171

0 n 0
(viii) ¢y >cpthenk, =1and x, :qu_pszkwnlkz%
J:
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Proposed algorithms

Since the exact values of the reference
costs were not known, they could be initially set
to their upper bounds in which all other raw-
material delivery performances, besides the one
corresponding to the considered raw material, (ky ;
:Oi 20" andky;j: Oj #)") were set at their lower
bounds. The estimated reference costs of the raw
materials in every stage were sorted in a non-
decreasing order and the values were recal culated
asin Equations (19) and (21). Thissolutionfinding
algorithm was specified as Algorithm 1.

From the preliminary testing, it was
found that when the estimated values of reference
costs were not much different from each other or
from the opportunity cost, Algorithm 1 may not
always provide the optimal solutions. Algorithm
2 was then proposed. Again, the reference costs
of the raw materialsin every stage were sorted as
in Algorithm 1. At the initial step, the delivery
performances and safety stocksof all raw materials
were set to their lower bounds. The delivery
performances and safety stocks of WIP and
finished product were found from the decision
rules presented in the previous section,
accordingly. The total cost was calculated and
recorded. Then, the delivery performance and
safety stock of each raw material in each stage
were increased to their upper bounds, one by one,
corresponding to the non-decreasing order of the

Kasetsart J. (Nat. Sci.) 41(2)

raw-material reference costs. The delivery
performances and safety stocks of WIP and
finished product, including the total costs, were
recalculated and recorded at every step. Finaly,
the minimum total cost and the best solution were
identified.

A numerical example

In this section, a small example,
consisting of three raw materials in stage 1 and
two raw materials in stage 2, was presented. The
data for this example was given in Table 1. The
opportunity cost was assumed to be 8.44 baht.

Algorithm 1:

Theinitial reference costsfor stage-1 raw
materials 1, 2 and 3 were found to be 2.1778,
5.4652 and 9.2014 baht, respectively. Thus, the
stage-1 raw material order followed the natural
order. The reference costs for RM 1, RM 2 and
RM 3 were recalculated and their values became
2.1778, 5.1868 and 8.1043 baht, respectively.
Following the proposed decision rules, the safety
stocks of RM 1 and RM 2 should be set to their
upper bounds, which were 8 and 10 units,
respectively. The safety stock for RM 3 and WIP
were found unnecessary.

Next, theinitia reference costsfor stage-
2 raw materials 4 and 5 were found to be 7.5490
and 5.5337 baht, respectively. Hence, the

Table1l Datafor asmall examplewith threeraw materialsin stage 1 and two raw materialsin stage 2.

Materials o} a* p c Initiad ref. Ref. cost Algorithm 1 Algorithm 2
cost (baht)  (baht) k X k X
RM 1 157 149 09490 286 21778 2.1778 1.0000 8 1.0000 8
RM 2 139 129 0.9281 829 54652 5.1868 1.0000 10 0.9281 0
RM 3 244 242 09918 7.44  9.2014 8.1043 0.9918 0 0.9918 0
WIP 232 224 0.9655 9.40 - 16.5918 0.9576 0 0.8887 0
RM 4 117 107 009145 8.88  7.5490 6.9549 1.0000 10 0.9145 0
RM 5 216 199 09213 350 5.5337 5.5337 1.0000 17 1.0000 17
Product 173 156 09017 7.20 - - 1.0000 23.61 1.0000 46.21
Total cost 424.1001 415.0962

(baht)
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algorithm would consider RM 5, prior to RM 4.
The reference costs of RM 4 and RM 5 were
recalculated and found to be 6.9549 and 5.5337
baht. Thus, the safety stocks of RM 4 and RM 5
were set to their upper bounds, which are 10 and
17 units, respectively. Finally, the product safety
stock was computed and set to 23.61 units. The
corresponding total cost is 424.10 baht.

Algorithm 2:

Following the initial reference costs
found in Algorithm 1, the priority for increasing
raw-material safety stock levels would be in the
ordersof RM 1—-RM 2—-RM 3and RM 5—-RM
4. Twenty-four solutions were evaluated and

387

shown in Table 2. From the Table, the sixth
solution provided the minimum total cost of 415.10
baht, with the safety stock levels set to 8 unitsfor
RM 1, 17 unitsfor RM 5, and 46.21 units for the
finished product. Algorithm 2 provided a superior
solution to Algorithm 1 for this test instance.

RESULTS

To facilitate the implementation,
Algorithms 1 and 2 were coded in MATLABO
6.5. Both algorithms were tested on 75 test
instances (from 5 test problem sets, each with 15
instances) in Siribanluoewut (2006). Table 3
presented structures of the test instances and the

Table2 The twenty-four solutions evaluated by Algorithm 2.

No. Safety Stocks (units) Total cost
RM 1 RM 2 RM 3 WIP RM 4 RM 5 Product (baht)
1 0 0 0 0 0 0 62.14 447.42
2 8 0 0 0 0 0 56.19 427.44
3 8 10 0 0 0 0 47.13 445.15
4 8 10 2 0 0 0 46.09 452.54
5 0 0 0 0 0 17 52.67 438.73
6 8 0 0 0 0 17 46.21 415.10
7 8 10 0 0 0 17 36.38 427.23
8 8 10 2 0 0 17 35.25 433.98
9 0 0 0 0 10 17 41.43 446.56
10 8 0 0 0 10 17 34.36 418.58
11 8 10 0 0 10 17 23.61 424.10
12 8 10 2 0 10 17 22.38 430.09
13 0 0 0 36.33 0 0 41.56 640.70
14 8 0 0 25.82 0 0 41.56 564.82
15 8 10 0 9.84 0 0 41.56 497.48
16 8 10 2 8.00 0 0 41.56 495.10
17 0 0 0 36.33 0 17 30.33 619.36
18 8 0 0 25.82 0 17 30.33 543.48
19 8 10 0 9.84 0 17 30.33 476.14
20 8 10 2 8.00 0 17 30.33 473.76
21 0 0 0 36.33 10 17 17.00 612.16
22 8 0 0 25.82 10 17 17.00 536.28
23 8 10 0 9.84 10 17 17.00 468.94
24 8 10 2 8.00 10 17 17.00 466.56
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average percentage of deviationsfrom the optimal
NLP total costs, including the solution times, by
Algorithms 1 and 2. The result showed that
Algorithm 2 did outperform Algorithm 1.

As aforementioned, the optimization
model presented in this paper was an NLP model.
Therefore, the levels of safety stocks in the final
solution may be reported as non-integers. This
safety stock determination problem could also be
modeled as a mixed integer nonlinear program
(MINLP) for minimizing the total of the
opportunity costs and theinventory costs charged
for holding all the safety stocks, subject to the
boundson the safety stock levels. The safety stocks
X1i» Xw» X2j, @nd X,, which were required to be
integers, would be sought fromthe MINLP, inlieu
of the delivery performancesk ;, ky, koj, and k, in
the NLP. However, the MINL P was a much more
complex problem. It may not be solved in
reasonable computation times with regular
optimization methods, even for small-size problem
instances. Thus, it was suggested that the safety
stock levels should be found by applying
Algorithm 2 and then rounding down the non-
integer safety stocksto their nearest integers. The
rounded solutions were compared with true
optimal integer solutions found from the
enumeration method, in which all possibleinteger
solutions were enumerated and evaluated.
However, the enumeration method could not be
implemented on the large problem instances, due
to their long computation times. Therefore, only

the true optimal integer solutions of test problem
sets 1 and 2 could be identified. The qualities of
these rounded solutions were presented in Tables
4 and 5. For test problem sets 3, 4 and 5, the
rounded solutions were compared with the
corresponding MINLP lower bounds (i.e. the
optimal NLP solutions) instead. The qualities of
these solutions were given in Tables 6-8.
Furthermore, the pattern search algorithm (using
acomplete search, amesh expansion factor of 1.0
and a mesh contraction factor of 0.5) was also
investigated. The details of this algorithm can be
found in Kolda et al. (2003). The qualities of the
integer solutions found from the pattern search
algorithm were also presented in Tables 4-8, for
comparison purpose.

From Tables 4 and 5, Algorithm 2 with
solution rounding provided high-quality results.
Therounded solutionswere 2.10% deviating from
the known MINLP optimum on average (with a
maximum deviation of 10.20%) for problem set
1, and 3.86% deviating from the known MINLP
optimum on average (with a maximum deviation
of 20.23%) for problem set 2. Algorithm 2 with
solution rounding provided the good solutionsin
much shorter times (i.e. less than 1 second) than
the enumeration method did (i.e. more than 7
minutes for problem set 1 and more than 35
minutes for problem set 2, on average). For larger
test problem sets, the average deviation of the
Algorithm-2 solutions from the corresponding
MINLP lower bounds were less than 2.5%, with

Table3 Structuresof thetest instances and the average percentage of deviationsfrom the true optimal

total costs of Algorithms 1 and 2.

Set No. of RMs No. of % Deviation from true optimum  Average solution time (sec.)

Stagel Stage2 instances  Algorithm1  Algorithm 2 Algorithm 1 Algorithm 2
1 3 1 15 0.00% 0.00% 0.0013 0.0047
2 3 2 15 0.47% 0.00% 0.0013 0.0033
3 7 2 15 0.24% 0.00% 0.0020 0.0047
4 12 2 15 0.98% 0.00% 0.0033 0.0073
5 15 2 15 2.79% 0.00% 0.0013 0.0087
Average 0.90% 0.00% 0.0019 0.0057
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Table4 The quality of the rounded solutions for test problem set 1.
No. Enumeration Algorithm 2 Pattern search
Total Time Total Time % Dev. Total Time % Dev.
costs (seconds) costs (sec) from costs (sec) from
(baht) (baht) opt. (baht) opt.
1 226.2863  557.00  226.2863 0.03 0.00 226.2863 0.656  0.00
2 223.0773 45498  245.4778 0.00 10.04 223.3209 0547 011
3 188.9893  574.17  191.7372 0.00 145  190.3275 0.89 0.71
4 1746790  233.69  179.7564 0.00 291  174.6790 0.453  0.00
5 422.4267 616.30  434.7873 0.00 293  442.0500 0.656  4.65
6 538.7574 80559  538.7574 0.00 0.00 538.7574 0.343  0.00
7 85.4226  753.52 86.9119 0.00 1.74 89.8888 0484 523
8 194.1343 40.50  196.3468 0.00 114  199.1684 0578 259
9 53.3469 9.66 58.7888 0.00 10.20 58.6819 0.344 10.00
10 240.7639 16.64  240.7639 0.00 0.00 240.7639 0391  0.00
1 396.7343  419.02  398.7735 0.00 051  453.2415 0.453 14.24
12 173.3962 692.55  173.4065 0.00 001 176.3493 0.61 1.70
13 359.3905 51.55  359.3905 0.00 0.00  359.3905 0562  0.00
14 225.1412 171.69  226.3883 0.02 055  244.0558 0422 840
15 399.7456 1182.19  399.7456 0.00 0.00  399.7456 0.484  0.00
Average 438.6033 0.0033 2.10 0.5249 318
Table5 The quality of the rounded solutions for test problem set 2.
No. Enumeration Algorithm 2 Pattern search
Tota Time Total Time % Dev. Total Time % Dev.
costs (seconds) costs (sec) from costs (sec) from
(baht) (baht) opt. (baht) opt.
1 231.96 388.13 231.96 0.05 0.00 231.96 0.70 0.00
2 231.15 310.00 267.04 0.00 1552 232.33 0.58 0.51
3 195.83 843.94 196.89 0.00 0.54 198.17 0.55 1.20
4 286.68  1640.67 291.76 0.00 177 286.68 0.63 0.00
5 448.69  3548.72  461.05 0.00 2.75 468.31 0.84 4.37
6 623.79  3839.44  623.79 0.00 0.00 623.79 0.48 0.00
7 9546  3736.39 99.51 0.00 4.24 97.66 0.61 2.30
8 233.65 252.59 235.87 0.00 0.95 24551 0.53 5.08
9 63.30 22.25 76.10 0.00 2023 73.49 042 1611
10 353.81 161.06 353.81 0.00 0.00 353.81 0.59 0.00
1 41536  1184.09  415.36 0.00 0.00 415.36 0.72 0.00
12 137.41 1197.42 150.03 0.00 9.18 142.33 0.64 3.58
13 110.35  9400.22 111.73 0.00 1.25 110.35 0.63 0.00
14 17136  5738.92 173.87 0.00 147 238.33 0.69 39.08
15 210.21 930.83 210.21 0.02 0.00 210.21 0.64 0.00
Average  2212.98 0.00 3.86 0.62 4.82
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Table6 The quality of the rounded solutions for test problem set 3.

No. LB of Algorithm 2 Pattern search

Total costs Total costs  Time % Dev.  Total costs Time % Dev.

(baht) (baht) (sec) fromLB (baht) (sec) fromLB
1 341.4262  349.9014 0.05 2.48 381.6719 0.532 11.79
2 698.4675  699.5436 0.00 0.15 698.7817 0.641 0.04
3 306.6030  313.5858 0.00 2.28 327.0063 0.469 6.65
4 782.9640  789.0657 0.00 0.78 791.1078 0.516 1.04
5 141.2319  145.3478 0.00 291 147.0369 0.625 411

6 2489744  252.0126 0.00 1.22 250.6189 0.5 0.6
7 418.7751  418.7751 0.00 0.00 418.7751 0.313 0.00
8 870.7950  871.3350 0.00 0.06 871.3350 0.516 0.06
9 188.2021  189.3901 0.00 0.63 189.3901 0.563 0.63
10 607.2085  611.1003 0.02 0.64 618.0523 0.766 1.79
11 310.3231  317.2456 0.00 2.23 313.7932 0.578 112
12 767.5441  779.7637 0.00 1.59 775.4064 0.687 1.02
13 796.4144  811.3657 0.00 1.88 872.1025 0.765 9.50
14 216.6816  220.6952 0.00 1.85 226.5848 0.563 4,57
15 329.8299  331.9408 0.00 0.64 348.9675 0.453 5.80
Average 0.0047 1.29 0.5658 3.25
Table7 Thequality of the rounded solutions for test problem set 4.
No. LB of Algorithm 2 Pattern search

Total costs Total costs  Time % Dev.  Total costs Time % Dev.

(baht) (baht) (sec) fromLB (baht) (sec) from LB
1 781.7861  781.7861 0.05 0.00 937.4422 0.875 19.91
2 116.0982  128.7529 0.00 10.90 118.4608 1.125 2.04
3 250.6759  253.0172 0.00 0.93 276.9489 1.281 10.48
4 863.7852  866.8405 0.02 0.35 932.2620 0.844 7.93
5 416.318 425.6585 0.00 2.24 434.4976 1.282 4.37
6 769.3648  784.0514 0.00 191 775.9314 0.906 0.85
7 831.0751  834.5863 0.00 0.42 861.3861 0.875 3.65
8 732.6523  737.9136 0.00 0.72 769.4482 1.157 5.02
9 171.9773  180.0650 0.02 4,70 175.0647 0.765 1.80
10 356.2244  366.1220 0.00 2.78 359.5120 1.062 0.92
11 883.9080  883.9080 0.02 0.00 883.9080 0.39 0.00
12 197.3155 217.3515 0.00 10.15 206.1805 0.672 4.49
13 532.1986  533.0392 0.00 0.16 632.9300 0.703 18.93
14 905.1188  910.7604 0.00 0.62 921.6216 1.125 1.82
15 805.6426  807.9736 0.00 0.29 845.8867 0.781 5.00
Average 0.0073 241 0.9229 5.81
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the maximum deviation of about 10%. The solving
times were still less than 1 second for al test
instances.

The qualities of solutions and the
computation times from Algorithm 2 and from
pattern search seemed to be competitive, especialy
for the small-size test problems. The differences
between the total costs found from Algorithm 2
and from pattern search were compared using the
paired t-test and the signed rank test (M ontgomery
and Runger, 2004). Theformer wastested whether
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or not the average of the differencesin total costs
equaled zero. The latter was a non-parametric
hypothesis test on the median of the differences
in total costs. Under the normality assumption of
data, the paired t-test was more powerful than the
signed rank test. However, the signed rank test was
less sensitive to the outliers. Herein, the signed
rank test was applied because the distributions of
thetotal costs showed significant departuresfrom
normal distributions. The summary of the
statistical tests was presented in Table 9.

Table8 The quality of the rounded solutions for test problem set 5.

No. LB of Algorithm 2 Pattern search
Total costs Total costs  Time % Dev.  Total costs Time % Dev.
(baht) (baht) (sec) from LB (baht) (sec) fromLB
1 335.2583  341.7339 0.05 1.93 338.9744 1.204 111
2 4488165  457.5385 0.02 1.94 468.6784 1.078 4.43
3 2411376  243.6205 0.00 1.03 243.0759 1.313 0.80
4 689.6022  692.9453 0.00 0.48 708.7569 1.641 2.78
5 977.388 980.5293 0.02 0.32 1010.1633 1.391 3.35
6 326.5053  328.5352 0.00 0.62 328.1805 1.078 0.51
7 750.4167  751.3261 0.00 0.12 751.2409 1.000 0.11
8 810.929 813.4720 0.00 0.31 858.0251 1.766 5.81
9 763.4033  764.7848 0.00 0.18 777.3780 1.250 1.83
10 1047.4942  1047.4942 0.02 0.00 1047.4942 1.734 0.00
1 964.0926  972.7866 0.00 0.90 1626.5400 1.532 68.71
12 600.9621  612.3057 0.00 1.89 685.6725 0.656 14.10
13 819.0913  820.9975 0.00 0.23 1098.4323 1.265 34.10
14 966.8934  968.9883 0.00 0.22 1042.7315 1.360 7.84
15 730.5132  730.5132 0.02 0.00 730.5132 1.172 0.00
Average 0.0087 0.68 1.2960 9.70
Table9 The statistical results from the paired t-test and the signed rank test.
Problem set Average of Median of p-value
the difference the difference Paired t-test Signed rank test
in total costs in total costs
1 3.9592 0.0000 0.3578 0.7109
2 1.9540 0.0000 0.7095 < 1.0000
3 8.6375 1.6891 0.3865 0.1180
4 27.9770 10.8612 0.0372* 0.0438*
5 79.2191 12.5932 0.0999 0.0287*

* indicates asignificant differencein total costs found from both methods
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From the statistical tests, the qualities of
solutions found from both methods were not
significantly different for test problem sets 1, 2
and 3. However, Algorithm 2 became superior to
the pattern search for larger problem sets. Notice
on the test results, the total cost obtained from the
pattern search could be as poor as 68% deviating
from the MINLP lower bounds in large problem
instances, whilethose from Algorithm 2 would not
be worse than 20% from the lower bounds.
Algorithm 2 was hence the most efficient method
for solving this safety stock determination
problem, in terms of both solution quality and
computation time.

DISCUSSION

It had been shownin the previous section
that Algorithm 2, which was based on abasic NLP
theorem, could provide high quality solutionsin
short computation times for the safety stock level
determination problem in the considered two-stage
manufacturing system. Thealgorithm utilized only
a set of simple decision rules, in contrast to the
pattern search heuristic, which required the users
to comprehend its mechanisms. Thedecision rules
for finding optimum safety stocks also matched
the common managerial logics that when the
opportunity cost was high, the safety stocks should
be held to prevent the product deficiency, but they
should not be stocked when the inventory costs
were high. Moreover, the search heuristic such as
pattern search would terminate the search after
some stopping criteria had been satisfied.
Therefore, in some cases, it might not thoroughly
search the solution space for the solutions.

CONCLUSION

In this research, two algorithms for
determining safety stocks in a two-stage
manufacturing system were proposed by analyzing
the derivatives of cost function and the cost

comparisons. The agorithmswere found to work
very efficiently on the test problems. They could
provide high-quality solutions for every test
instancein lessthan 1 second. The deviationsfrom
the known integer solutions or the lower bounds
werelessthan 3% on average. Thealgorithmsalso
outperformed the pattern search algorithm, which
was presented in the previous research.
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