
Kasetsart J. (Nat. Sci.) 41 : 394 - 405 (2007)

Design and Implementation of a Framework for .NET-based Utility
Computing Infrastructure

Thanapol Rojanapanpat* and Putchong Uthayopas

ABSTRACT

Future organizations must handle a very large and complex IT infrastructure that consists of

very diverge and highly heterogeneous computing systems. Moreover, the future generation applications

must access services and resources regardless of the geographical location, access methods, and domain

of authorization. In order to meet these challenging requirements, a very high degree of virtualization

has to be implemented using a smart middleware. This is a very challenging problem for both theory

and practice.

This paper presents a new framework called OpenUCI (Open Utility Computing Infrastructure).

The OpenUCI project aims to explore the innovative design of scalable and flexible software infrastructure

that manages large scale heterogeneous distributed system ranging from large Server, PC, and Mobile

Devices. OpenUCI exploits a well established technology such as Grid, Web services and .NET technology

to build a virtualized and unify access to resources. Basic services that need to be presented will be

discussed. The prototype system has been implemented along with the prototype financial engineering

application. The results are presented along with the discussion of the experiences learned. With OpenUCI,

users can easily harness computing and storage of large distributed system.

Key words: utility computing, .NET technology, web services

High Performance Computing and Networking Center, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand,

* Corresponding author, e-mail: thanapolr@hpcnc.cpe.ku.ac.th, pu@ku.ac.th

INTRODUCTION

The competition in business causes

organizations to be ready to handle a large amount

of demand of users, which need more high

performance computing system. It is a risk for the

small and medium organizations to invest in the

high performance computing system, because they

have to pay for the system maintenance cost. There

are two solutions. Firstly they can outsource the

computing power. The other solution is to create

the supercomputing system by utilizing the already

existing personal computers (PC) in their

company. Building a supercomputing system from

personal computers or desktop PCs now is not an

imagination, because the speed and performance

of PCs has been increasing as well as the speed

and bandwidth of network. From this advantage,

it emerges many new computing systems; one of

them is the utility computing system.

Utility computing (Eilam et al., 2004) is

a computing model that involves the use of many

diverge technology such as grid computing (Foster

et al., 2002) and autonomic computing (Ganek and

Corbi, 2003). Utility computing system focuses

on the creating of virtual computing environment

Received date : 03/10/06 Accepted date : 25/12/06

which dynamically and automatically virtualizes,

provisions and manages resources and services on

users’ demand. The major benefits of utility

computing are

• better utilization – the resources in

utility computing system can be shared and used

in efficient ways,

• more flexibility – utility computing

system provides flexibility in the creation of the

dynamic computing environment which can

automatically increase or decrease the computing

resources corresponding to users’ demand, and

• lower total cost of ownership – utility

computing can provide IT and business process

outsourcing which help reducing cost of investing

in resources such as hardware assets, maintenance

cost, training cost, etc.

The design and building of utility

computing infrastructure is still a complex and

challenging task. Figure 1 shows the concept of

resources virtualization and resources provisioning

in a modern IT infrastructure. Utility computing

system must consist of a way to provide both

features. Firstly, resources virtualization is a

feature of system that can make resources

transparent to application. Since the resources that

we use for build a utility computing infrastructure

are PCs, these systems have a high dynamism e.g.

resources can be available and unavailable from

time to time. The utility computing system must

have mechanisms for collecting resources and

monitoring its status. Furthermore, resource

virtualization should have mechanisms for

discovering and accessing resources. Secondly,

resources provisioning is a feature of a system to

perform an on-demand resources allocation to

application. A good utility computing system must

have mechanism for creating the automatic

adjustable virtual computing environments which

consist of hardware resources and utility services

in order to keep responsiveness when users’

demand increases. Moreover, the utility computing

system must provide friendly-used interfaces to

user, which may be business manager for

accessing and managing this virtual computing

environment. These interfaces can be Windows

applications, Web applications, command line, and

API.

Most utility computing systems are based

on current distributed system technology. Thierry

(2006) provides a good survey of platform

technology that is available. There are three

commonly used distributed systems and

technologies. The first one is distributed

information system that focuses on sharing

knowledge such as the web. Secondly, a distributed

storage system for sharing data such as peer-to-

peer files sharing. Finally, distributed computing

or metacomputing (Smarr and Catlett, 1992)

frameworks for sharing computing power. The

systems that are classified in this area and related

to OpenUCI framework are the followings.

Resources Virtualization

Resources/

Services

Virtualized Resource

Resources Provisioning

Virtual

Computing

Environment

Virtual

Computing

Environment

Business

Processes/

Appications

Business

Processes/

Appications

Resources/

Services

Resources/

Services

Figure 1 The relationship of resource

viortualization and resource

provisioning.

Kasetsart J. (Nat. Sci.) 41(2) 395

396 Kasetsart J. (Nat. Sci.) 41(2)

Grid computing (Foster et al., 2002)

focuses on integrating geographically distributed

resources into a unified system. Grid computing

provides concept of Virtual Organization (VO)

which is an integrated resources shared by real

organizations, and it also has a well-defined

architecture, services and protocols such as

resource discovery, job submission, system

monitoring and accounting, which are good

patterns for designing and developing the utility

computing system. The most well-known project

in this area is Globus (The Globus Alliance,

2005a).

Peer-to-Peer (P2P) computing is a class

of applications that takes advantage of resources

such as storage, CPU cycles, and content that are

available on the Internet. There are two major

categories of P2P system, P2P networking (file

sharing) and P2P computing (CPU sharing), The

P2P networking is a communication model in

which each node (peer) has the same capabilities

and either node can directly initiate a

communication session. The P2P computing is a

processing power sharing rather than a files

sharing.

Volunteer computing (Sarmenta, 2001)

focuses on making computers to be a part of

metacomputer dynamically when computing

power is available. The topology of volunteer

computing is usually similar to the third generation

of peer-to-peer computing. The peer can be both

client, who submits jobs to server (super-peer),

and can be worker who dedicates itself to execute

jobs. This includes system such as SETI@home

(Anderson et al., 2002), Bayanihan (Sarmenta et

al., 2002), and Alchemi (Luther, 2005).

In this paper, we present a design and

implementation of a framework called OpenUCI

(Open Utility Computing Infrastructure) which is

for constructing the utility computing

infrastructure from Windows-based personal

computers, because the most of computers in the

organization are Windows-based operating system

and the most of users are familiar to Windows. To

solve the resource virtualization and resource

provisioning problems, OpenUCI framework

provides many services such as resource

collecting, resource monitoring, resource

discovering, resource invocation, and etc. In

addition, we use Microsoft’s .NET technology for

implementing the OpenUCI system because it

provides a powerful and comfortable development

environment and it also provides ASP.NET Web

service, a standard way for communication

between systems. So, we can ensure that all

OpenUCI’s components can work together and can

communicate to other systems seamlessly.

MATERIALS AND METHODS

1. Hardware and software requirements
This paper develops and tests a

framework on Windows-based system. The

computers used in this development comprise one

manager node, 32 worker nodes, and one user

node. All nodes are connected with Fast Ethernet

switch. The system configuration is shown in

Figure 2.

The software for developing and testing

the framework is as follows:

• Microsoft Windows Server 2003

• Microsoft Windows XP Professional

• .NET framework redistributed 1.1

and 2.0

• Microsoft Visual Studio .NET 2003

and 2005

Figure 2 The windows cluster.

Kasetsart J. (Nat. Sci.) 41(2) 397

2. Framework architecture and components
In this paper, utility service is a function

provided by any computers. The utility service

must depand on the Service Oriented Architecture

(SOA) technology such as .NET web services, and

Grid services. The example of utility service is

such web service for calculating risk of trading

stock (VaR) (Rojanapanpat et al., 2005). The

resource is an entity shared by a computer and can

be computing power (CPU), storage, files and

utility services.

According to the utility computing

system development problems mentioned before,

Resources Virtualization and Resources

Provisioning, the proposed framework, OpenUCI,

must be designed to solve these problems.

To deal with Resources Virtualization

problem, OpenUCI must have mechanism to

support the dynamism, heterogeneity, scalability,

interoperability of resources. The mechanisms are

such resource collecting for gathering resources

and track its status, resource discovery used to find

and select the resources, resource accessing which

defines a unite way to use and interoperate

resources and etc.

In the Resources Provisioning problem,

OpenUCI must provide mechanisms for creating

virtual computing environments that can be

automatically adjustable depending on demand of

users. Moreover, OpenUCI must provide user-

friendly interfaces and tools using OpenUCI

system and accessay resources to users.

The architecture of the OpenUCI

framework is shown in Figure 3. There are four

layers of the OpenUCI framework, i.e. resources,

.NET platform, core services, and applications.

2.1 Resources layer
Resources layer is the layer of shared

resources distributed on the network. The shared

resources consist of CPU, storage and utility

services.

2.2 .NET platform layer
.NET platform layer provides a runtime

environment, .NET framework, which OpenUCI

system relies on. This layer also provides

technologies for implementing OpenUCI system,

and sharing resources. These technologies are

.NET web services, .NET remoting and

WSRF.NET. The resources can be shared via these

technologies.

2.3 Core layer
This layer provides a set of necessary

services for building the utility computing

infrastructure and supporting the basic functions

of the application running on the utility computing

infrastructure. The core services are classified into

two groups according to our requirements.

The core services that solve the resources

virtualization problem consist of resource

management service, data management service

and execution management service.

1. Resources Management Service

(RMS) is responsible for gathering resources

distributed on the network and tracking the

existence and status of resources. Moreover, RMS

also provides mechanisms for resource discovery,

resource reservation and etc.

2. Data Management Service (DMS) is

responsible for transferring files and sharing files

APPLICATIONS & TOOLS

JOB

MANAGEMENT

VIRTUAL

COMPUTER

MANAGEMENT

USER

MANAGEMENT

RESOURCES PROVISIONING

RESOURCES

MANAGEMENT

EXECUTION

MANAGEMENT

DATA

MANAGEMENT

RESOURCES VIRTUALIZATION

CORE SERVICES

.NET WEB

SERVICES

.NET WEB

REMOTING
WSRF .NET

.NET PLATFORM

CPU STORAGE SERVICE

RESOURCES

Figure 3 The OpenUCI architecture.

398 Kasetsart J. (Nat. Sci.) 41(2)

among computers in the OpenUCI system.

3. Execution Management Service

(EMS) is used to start and controls processes.

Furthermore, EMS also supports the invocation

of web and grid service jobs.

The core services that address the

resources provisioning problem consist of user

management service, virtual computer

management service and job management service.

1. User Management service (UMS)

handles authentication, authorization, accounting

and users profiles.

2. Virtual Computer Management

Service (VCMS) is used for managing and

controlling the virtual computing environment

created by users.

3. Job Management Service (JMS) is

used for creating jobs and supporting job

submission from users. JMS also provides job

queuing and scheduling mechanisms.

2.4 Applications and tools layer
Applications and tools layer is the layer

of user applications developed for using facilities

of OpenUCI system. OpenUCI system also

provides basic command-line tools and web

application interfaces for login, logout, virtual

computer creation, resources discovering, job

submission and etc.

There are three main components in

OpenUCI system as shown in Figure 4.

1. Manager is a computer that provides

core services used for managing shared resources

and supporting incoming requests of users.

2. Workers are computers that share its’

resources such as computing power, files, storage

and utility services. There are two worker types in

the OpenUCI system, dedicated and non-dedicated

workers. Dedicated workers are always online and

cannot reject jobs assigned by managers. For non-

dedicated workers, they can be online or offline

all the time and they will request for a job and

execute it when they are not busy.

3. Users are the people who need to

access resources. They can discover resources,

create job, submit job, download and upload files

and any services provided by managers.

RESULTS AND DISCUSSION

1. Proof of concept application
Currently, the high performance

computing is widely needed and not limited to the

computer research field anymore. The financial

engineering (FE) is a field that requires the high

computing power because it has to handle and

analyze a large amount of data in order to reduce

or keep turn around time constantly as number of

users increased. We evaluated the performance of

OpenUCI system by applying the existing

financial engineering application named Value-at-

Manager

Core Services

Users

Applications

Workers

Agent

CPU Storage Services

Figure 4 The interaction of manager, worker and user.

Kasetsart J. (Nat. Sci.) 41(2) 399

Risk (VaR) calculation which was implemented

in .NET web services. The VaR measures the

maximum loss money which may be occurred in

portfolio at a given time horizon (time of holding

portfolio) and at a given level of confidence. The

formula for calculating VaR has high complexity.

Then, we will show the general form of formula.

VaR = –Vp* (µp – Q*σp)

The Vp is the portfolio value, and the µp

and the σp are the expected return and the standard

deviation, respectively. The Q is the quantile value

of %confidence level. For example, the 99%

confidence level gives ~2.326 quantile value and

the 95% confidence level gives ~1.645 quantile

value.

In this test, we used the VaR calculation

web service as a utility service of OpenUCI system

which was installed to all worker machines and

then we developed VaR client program with

Microsoft Excel. The VaR Excel program uses the

OpenUCI API to connect to manager, discover

VaR web services and then invoke them.

2. Test configuration
The topology of test system is shown in

Figure 2. The software that was installed on each

machine is shown in Table 1.

3. Test assumptions
• Each worker executes only one job

at a time. Since the test application is a compute

intensive application, the execution of more than

one job on each worker will not give a better

performance due to the overhead of task switching.

• The input data is already in the

workers. This can be done by preloading fixed data

and table to worker prior to the execution. Thus,

the communication can be minimized which yield

a better performance for the system.

4. OpenUCI throughput test
We evaluated the throughput of

OpenUCI by submitting jobs to OpenUCI system

that has 1, 2, 4, 8, 16, and 32 workers, and the run

times used for testing are changed from 10, 30,

60, 90, 120, 180, 240, and 300 seconds. Figure 5

shows the procedure of this testing.

1. The client application discover URLs

of web service located on the worker nodes from

the manager.

2. The manager runs the resource

selection algorithm and returns the URLs of the

chosen worker node to requested client

application.

3. The client application uses the

returned URLs for connecting and invoking web

service on worker nodes. After that, the client

application will wait until there are some available

workers.

4. The worker node executes the service

and then it returns a result to client application.

5. The client program invokes web

service on an available worker

Table 1 Hardware and software configuration for testing OpenUCI system.

 Machines Hardware Operating system Software

1 Manager AMD Athlon 2.0GHz, 512 Windows server 2003 OpenUCI Broker, MS

MB RAM SQL 2005 for

OpenUCI database

32 Workers Intel Celeron 2.53GHz, 512 Windows XP OpenUCI Worker,

MB RAM Professional MS SQL 2005

Express for VaR

database

1 User Intel Pentium M 1.5GHz, Windows server 2003 VaR client application

768 MB RAM

400 Kasetsart J. (Nat. Sci.) 41(2)

The result of throughput test is shown in

Table 2 and Figure 6. Figure 7 shows average of

throughput of OpenUCI system based on the

different number of workers.

From these results, it shows that

OpenUCI system gave a good throughput when

the number of workers increased and the

increasing of throughput was nearby the increasing

of number of workers. For example, the average

throughput of 32 workers system was ~6.4 jobs/

sec and the average throughput of 1 worker system

was ~0.214 jobs/sec. The throughput was

increased about 30 times.

5. OpenUCI speed up test
In this test, we observed the run time used

to finish jobs when the number of workers was

changed from 1, 2, 4, 8, 16, to 32 workers. The

procedure of the speed up testing was similar to

the throughput testing, but the speed up test

changed the number of jobs submitted to system

and observed the run time instead of fixing the

run time and observed the number of finished jobs.

Table 3 and Figure 8 show the run time

of this testing. Table 4 and Figure 9 show the speed

up. Table 5 and Figure 10 show the efficiency.

VaR Client

(OpenUCI User)

1) Discovery for VaR web

service

OpenUCI Manager OpenUCI Worker1 OpenUCI Worker n

2) Return the suitable

VaR web service URLs

3) Invoke VaR web

service on all workers

4) Return the result

5) Continue invoking

W
ai

t
fo

r
av

ai
la

b
le

w
o

rk
er

Table 2 The throughtput of OpenUCI.

Time 1 Worker 2 Workers 4 Workers 8 Workers 16 Workers 32 Workers

10 0.20 0.30 0.70 1.40 3.10 6.00

30 0.23 0.43 0.73 1.63 3.17 6.27

60 0.22 0.42 0.82 1.57 3.18 6.33

90 0.21 0.41 0.79 1.64 3.24 6.44

120 0.22 0.43 0.84 1.67 3.31 6.47

180 0.21 0.42 0.83 1.63 3.30 6.59

240 0.21 0.42 0.84 1.67 3.31 6.56

300 0.21 0.42 0.84 1.65 3.31 6.60

Figure 5 The throughput test procedure.

Kasetsart J. (Nat. Sci.) 41(2) 401

Throughput

0

1

2

3

4

5

6

7

0 30 60 90 120 150 180 210 240 270 300 330

Time (second)

T
h

ro
u

g
h

p
u

t
(j

o
b

/s
ec

) 1 Worker

2 Workers

4 Workers

8 Workers

16 Workers

32 Workers

Average Throughput

0.21
0.41

0.80

1.61

3.24

6.40

1 2 4 8 16 32

Number of Workers

A
v
er

ag
e

T
h
ro

u
g
h
p
u
t

(j
o
b
/s

ec
)

7.00

6.00

5.00

4.00

3.00

2.00

1.00

0.00

Figure 6 The throughput of OpenUCI system.

Figure 7 The average throughput of OpenUCI system.

402 Kasetsart J. (Nat. Sci.) 41(2)

Table 3 The run time of testing (second).

Worker 100 Jobs 500 Jobs 1000 Jobs 2000 Jobs 3000 Jobs

1 476.33 2359.17 4726.77 10083.33 14794.66

2 248.03 1191.59 2400.58 4734.84 7106.32

4 122.14 596.77 1185.05 2386.19 3566.53

8 61.82 303.70 609.31 1216.19 1825.01

16 33.30 157.66 308.28 619.43 923.29

32 19.88 76.25 151.92 301.97 451.55

Run time

1

10

100

1000

10000

100000

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

Number of workers

T
im

e
(s

ec
o
n
d
)

100 Jobs

500 Jobs

1000 Jobs

2000 Jobs

3000 Jobs

Figure 8 The run time plot.

Table 4 The speed up of testing.

Worker 100 Jobs 500 Jobs 1000 Jobs 2000 Jobs 3000 Jobs

1 1.00 1.00 1.00 1 1

2 1.92 1.98 1.97 2.13 2.08

4 3.70 3.95 3.99 4.23 4.15

8 7.71 7.77 7.76 8.29 8.11

16 14.31 14.96 15.33 16.28 16.02

32 23.97 30.94 31.11 33.39 32.76

Kasetsart J. (Nat. Sci.) 41(2) 403

Speed up

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

Number of workers

S
p
ee

d
 u

p

100 Jobs

500 Jobs

1000 Jobs

2000 Jobs

3000 Jobs

Table 5 The efficiency of testing.

Worker 100 Jobs 500 Jobs 1000 Jobs 2000 Jobs 3000 Jobs

1 1.00 1.00 1.00 1.00 1.00

2 0.96 0.99 0.98 1.06 1.04

4 0.97 0.99 0.99 1.06 1.04

8 0.96 0.97 0.97 1.04 1.01

16 0.89 0.94 0.96 1.02 1.00

32 0.75 0.97 0.97 1.04 1.02

Figure 9 The speed up plot.

The speed up (S) of n-workers system is

defined by the run time of 1-worker system

(sequential run time, Ts) divided by the run time

of n-workers system (parallel run time, Tp), and

the efficiency (E) is defined as the speed up (S)

divided by number of workers (P). From Figure 9

and Figure 10, we found that there were three

interesting characteristic results.

1. The speed up and efficiency were

decreased when the number of workers increased,

for example, 100 jobs testing. This characteristic

happened because all workers in system are not

fully utilized. For example, in 32-workers system,

it had to use 4 iterations to finish 100 jobs

(32+32+32+4 = 100). So, in the last iteration, there

were 28 workers free. Assume that 1 job used 1

second for executeing. The speed up was 25 (Ts/

Tp = 100/4 = 25), and the efficiency was 0.78 (S/

P = 25/32 = 0.78). If we submitted 128 jobs

(32+32+32+32) to this system, the speed up and

efficiency would be 32 (128/4) and 1, respectively.

2. The speed up and efficiency were

almost perfect. The perfect speed up was the speed

up that was equal to number of workers in system.

The perfect efficiency was the efficiency that is

equal to 1. Basically, the communication overhead

404 Kasetsart J. (Nat. Sci.) 41(2)

such as input data transfer time makes the speed

up and efficiency dropped. In this test, we reduced

the data transfer time by replicating VaR database

to all workers. So, the efficiency and speed up were

nearly perfect.

3. The super speed up and the over

efficiency. This characteristic happened because

the overhead time before calling web services of

client application makes the run time of client

application increased. The high number of jobs

made the total overhead time grower. However,

the total overhead time was reduced by the

increasing of number of workers. So, at the large

amount of jobs such as 2000 and 3000 jobs, the

run times of 2, 4, 8, 16, and 32 workers system

were decreased more than the number of workers

in system.

CONCLUSION

The demand of using super computing

system in organizations has been increasing. They

need the system that has more dynamicity and

flexibility in order to support the various types and

large amount of demand of customers. Moreover,

this system must provide an easy and familiar

mechanism for customers to use the power of

system. This paper proposed the design and

implementation of framework used for building

the computing environment that can achieve these

requirements. This framework is called OpenUCI

(Open Utility Computing Infrastructure) which

works on Microsoft .NET platform. OpenUCI will

gather resources distributed on the network, and

automatically adjust and provisioning resources

to users. The prototype of OpenUCI has already

been implemented and evaluated with a financial

engineering application named VaR calculation.

The result of evaluation showed that OpenUCI can

give a good performance and high utilization when

the number of computers and demand of users

increased

The prototype version of OpenUCI has

only a few modules such as resource collecting

Effciency

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

Number of workers

E
ff

ci
en

cy

100 Jobs

500 Jobs

1000 Jobs

2000 Jobs

3000 Jobs

Figure 10 The efficiency plot.

Kasetsart J. (Nat. Sci.) 41(2) 405

and discovery, resource selection and broker

mechanism. There are still many necessary

modules that should be implemented, for example,

web and grid services invoker, job queue manager

and virtual computer management. The following

is the list of future work. There are many possible

works in the future such as integrating the

executable file launcher implemented in another

related project to OpenUCI system, implementing

the job queue management module, implementing

the web and grid services invoker module,

implementing the virtual computer management

service, implementing the user authentication and

accounting modules, implementing the data

transfer service, exploring the mechanisms for

handling fault of machines and jobs and

investigating a proper workload distribution

scheme and study using simulation.

All these works will make OpenUCI

more useful in the modern computing

environments.

LITERATURE SITED

Albaugh V. and H. Madduri. 2004. The utility

metering service of the Universal

Management Infrastructure. IBM Systems
Journal 43(1): 159-178

Anderson D., J.Cobb, E. Korpela, M. Lebofsky

and D. Werthimer. 2002. SETI@home: An

Experiment in Public-Resource Computing.

Communications of the ACM 45(11): 56-

61

Eilam T., K. Appleby, J. Breh, G. Breiter, H. Daur,

S.A. Fakhouri, G.D.H. Hunt, T. Lu, S.D.

Miller, L.B. Mummert, J.A. Pershing and H.

Wangner. 2004. Using a utility computing

framework to develop utility systems. IBM
System Journal 43(1): 97-120

Foster I., C. Kesselman, J. Nick and S. Tuecke.

2002. The Physiology of the Grid: An Open

Grid Services Architecture for Distributed

Systems Integration. Open Grid Service

Infrastructure WG. Globus Grid Forum

Ganek G. and T. A. Corbi. 2003. The dawning of

the autonomic computing era. IBM System
Journal 42(1): 5-18

Humphrey M. and G. Wasson. 2005. Architectural

Foundations of WSRF.NET., International
Journal of Web Services Research 2(3): 83-

97.

Luther A., R Buyya and S. Venugopal. 2005.

Alchemi: A .NET-Based Enterprise Grid

Computing System. Proceedings of the 6th
International Conference on Internet
Computing (ICOMP’05), June 27-30, 2005,
Las Vegas, USA

Rojanapanpat T., P. Uthayopas, S. Chaisiri, J.

Pichitlamken, S. Phakhawirotkul and T.

Vorakosit. 2005. Implementing a Distributed

High Volume Risk Analysis Software on PC

Farm using OpenUCI System. The 9th
National Computer Science and
Engineering Conference (NCSEC2005),
October 27-28, 2005, Bangkok, Thailand.

Sarmenta L. F. G. 2001. Volunteer Computing.

Ph.D. thesis, Massachusetts Institute of

Technology.

Sarmenta L. F. G., S. J. V Chua, P. Echevarria, J.

M. Mendoza, R. R. Santos and S. Tan. 2002.

Bayanihan Computing NET: Grid Computing

with XML Web Services. Workshop on
Global and Peer-to-Peer Computing at the
2nd IEEE International Symposium on
Cluster Computing and the Grid (CCGrid
’02), May 2002, Berlin, Germany.

Smarr L. and C. Catlett. 1992. Metacomputing,

pp. 44-52. Communication of the ACM, 35.
The Globus Alliance. 2005. Welcome to The

Globus Toolkit Homepage. The Globus
Toolkit. Available source: http://

www.globus.org/toolkit/, March 14, 2006.

Thierry P. 2006. CoreGRID: European Research

Network on Foundations. Software
Infrastructures and Applications for large
scale distributed GRID and Peer-to-Peer
Technologies. Available source: http://

www.coregrid.net/, March 14, 2006.

