Kasetsart J. (Nat. Sci.) 41 : 394 - 405 (2007)

Design and I mplementation of a Framework for .NET-based Utility
Computing Infrastructure

Thanapol Rojanapanpat™ and Putchong Uthayopas

ABSTRACT

Future organizations must handle a very large and complex IT infrastructure that consists of
very diverge and highly heterogeneous computing systems. Moreover, the future generation applications
must access services and resources regardless of the geographical location, access methods, and domain
of authorization. In order to meet these challenging requirements, a very high degree of virtualization
has to be implemented using a smart middieware. This is a very challenging problem for both theory
and practice.

Thispaper presentsanew framework called OpenUCI (Open Utility Computing Infrastructure).
The OpenUCI project aimsto exploretheinnovative design of scalableand flexible softwareinfrastructure
that manages large scale heterogeneous distributed system ranging from large Server, PC, and Mobile
Devices. OpenUCI exploitsawell established technology such as Grid, Web servicesand .NET technology
to build a virtualized and unify access to resources. Basic services that need to be presented will be
discussed. The prototype system has been implemented along with the prototype financial engineering
application. Theresultsare presented al ong with the discussion of the experienceslearned. With OpenUCI,

users can easily harness computing and storage of large distributed system.
Key words: utility computing, .NET technology, web services

INTRODUCTION

The competition in business causes
organizationsto be ready to handle alarge amount
of demand of users, which need more high
performance computing system. Itisarisk for the
small and medium organizations to invest in the
high performance computing system, because they
haveto pay for the system maintenance cost. There
are two solutions. Firstly they can outsource the
computing power. The other solution is to create
the supercomputing system by utilizing the already
existing personal computers (PC) in their

company. Building asupercomputing system from
personal computers or desktop PCs nhow isnot an
imagination, because the speed and performance
of PCs has been increasing as well as the speed
and bandwidth of network. From this advantage,
it emerges many new computing systems; one of
them is the utility computing system.

Utility computing (Eilam et al., 2004) is
acomputing model that involves the use of many
divergetechnol ogy such asgrid computing (Foster
et al., 2002) and autonomic computing (Ganek and
Corhi, 2003). Utility computing system focuses
on the creating of virtual computing environment

High Performance Computing and Networking Center, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand,
* Corresponding author, e-mail: thanapolr@hpcnc.cpe.ku.ac.th, pu@ku.ac.th

Received date : 03/10/06

Accepted date : 25/12/06

Kasetsart J. (Nat. Sci.) 41(2) 395

which dynamically and automatically virtualizes,
provisions and manages resources and serviceson
users demand. The major benefits of utility
computing are

* better utilization — the resources in
utility computing system can be shared and used
in efficient ways,

» more flexibility — utility computing
system provides flexibility in the creation of the
dynamic computing environment which can
automatically increase or decrease the computing
resources corresponding to users' demand, and

» lower total cost of ownership—utility
computing can provide IT and business process
outsourcing which help reducing cost of investing
in resources such as hardware assets, mai ntenance
cost, training cost, etc.

The design and building of utility
computing infrastructure is still a complex and
challenging task. Figure 1 shows the concept of
resourcesvirtualization and resources provisioning
in amodern IT infrastructure. Utility computing
system must consist of a way to provide both
features. Firstly, resources virtualization is a
feature of system that can make resources
transparent to application. Sincetheresourcesthat
we usefor build autility computing infrastructure
are PCs, these systems have ahigh dynamism e.g.
resources can be available and unavailable from
time to time. The utility computing system must
have mechanisms for collecting resources and
monitoring its status. Furthermore, resource
virtualization should have mechanisms for
discovering and accessing resources. Secondly,
resources provisioning is a feature of a system to
perform an on-demand resources allocation to
application. A good utility computing system must
have mechanism for creating the automatic
adjustablevirtual computing environmentswhich
consist of hardware resources and utility services
in order to keep responsiveness when users
demand increases. Moreover, the utility computing
system must provide friendly-used interfaces to

user, which may be business manager for
accessing and managing this virtual computing
environment. These interfaces can be Windows
applications, Web applications, command line, and
API.

Most utility computing systemsare based
on current distributed system technology. Thierry
(2006) provides a good survey of platform
technology that is available. There are three
commonly used distributed systems and
technologies. The first one is distributed
information system that focuses on sharing
knowledge such astheweb. Secondly, adistributed
storage system for sharing data such as peer-to-
peer files sharing. Finaly, distributed computing
or metacomputing (Smarr and Catlett, 1992)
frameworks for sharing computing power. The
systemsthat are classified in thisareaand related
to OpenUCI framework are the followings.

Business Business
Processes/ Processes/
Appications Appications

Virtual Virtual
Computing Computing
Environment Environment
(Resources Provisioning j

Virtualized Resource

{

Resources Virtualization

Resources/
Services

Resources/
Services

Resources/
Services

Figurel The
viortualization
provisioning.

relationship of

resource

and resource

396 Kasetsart J. (Nat. Sci.) 41(2)

Grid computing (Foster et al., 2002)
focuses on integrating geographically distributed
resources into a unified system. Grid computing
provides concept of Virtual Organization (VO)
which is an integrated resources shared by real
organizations, and it also has a well-defined
architecture, services and protocols such as
resource discovery, job submission, system
monitoring and accounting, which are good
patterns for designing and developing the utility
computing system. The most well-known project
in this area is Globus (The Globus Alliance,
20053).

Peer-to-Peer (P2P) computing isaclass
of applications that takes advantage of resources
such as storage, CPU cycles, and content that are
available on the Internet. There are two mgjor
categories of P2P system, P2P networking (file
sharing) and P2P computing (CPU sharing), The
P2P networking is a communication model in
which each node (peer) has the same capabilities
and either node can directly initiate a
communication session. The P2P computing is a
processing power sharing rather than a files
sharing.

\olunteer computing (Sarmenta, 2001)
focuses on making computers to be a part of
metacomputer dynamically when computing
power is available. The topology of volunteer
computingisusually similar to thethird generation
of peer-to-peer computing. The peer can be both
client, who submits jobs to server (super-peer),
and can be worker who dedicates itself to execute
jobs. This includes system such as SETI@home
(Anderson et al., 2002), Bayanihan (Sarmenta et
al., 2002), and Alchemi (Luther, 2005).

In this paper, we present a design and
implementation of aframework called OpenUCI
(Open Utility Computing Infrastructure) whichis
for constructing the utility computing
infrastructure from Windows-based personal
computers, because the most of computersin the
organization are Windows-based operating system

and the most of usersare familiar to Windows. To
solve the resource virtualization and resource
provisioning problems, OpenUCI framework
provides many services such as resource
collecting, resource monitoring, resource
discovering, resource invocation, and etc. In
addition, we use Microsoft’s .NET technology for
implementing the OpenUCI system because it
providesapowerful and comfortable devel opment
environment and it also provides ASPNET Web
service, a standard way for communication
between systems. So, we can ensure that all
OpenUCI’s components can work together and can
communicate to other systems seamlesgly.

MATERIALSAND METHODS

1. Hardware and software requirements

This paper develops and tests a
framework on Windows-based system. The
computers used in this devel opment comprise one
manager node, 32 worker nodes, and one user
node. All nodes are connected with Fast Ethernet
switch. The system configuration is shown in
Figure 2.

The software for developing and testing
the framework is as follows:

e Microsoft Windows Server 2003

e Microsoft Windows X PProfessional

e .NET framework redistributed 1.1
and 2.0

e Microsoft Visua Studio .NET 2003
and 2005

Figure 2 The windows cluster.

Kasetsart J. (Nat. Sci.) 41(2) 397

2. Framework architecture and components

In this paper, utility serviceisafunction
provided by any computers. The utility service
must depand on the Service Oriented Architecture
(SOA) technology such as.NET web services, and
Grid services. The example of utility service is
such web service for calculating risk of trading
stock (VaR) (Rojanapanpat et al., 2005). The
resourceisan entity shared by acomputer and can
be computing power (CPU), storage, files and
utility services.

According to the utility computing
system development problems mentioned before,
Resources Virtualization and Resources
Provisioning, the proposed framework, OpenUCI,
must be designed to solve these problems.

To deal with Resources Virtualization
problem, OpenUCI must have mechanism to
support the dynamism, heterogeneity, scalability,
interoperability of resources. The mechanismsare
such resource collecting for gathering resources
and track its status, resource discovery used tofind
and sel ect the resources, resource accessing which
defines a unite way to use and interoperate
resources and etc.

In the Resources Provisioning problem,
OpenUCI must provide mechanisms for creating
virtual computing environments that can be
automatically adjustable depending on demand of
users. Moreover, OpenUCI must provide user-
friendly interfaces and tools using OpenUCI
system and accessay resources to users.

The architecture of the OpenUCI
framework is shown in Figure 3. There are four
layers of the OpenUCI framework, i.e. resources,
.NET platform, core services, and applications.

2.1 Resourceslayer

Resources layer is the layer of shared
resources distributed on the network. The shared
resources consist of CPU, storage and utility
services.

2.2 .NET platform layer

.NET platform layer provides aruntime

environment, .NET framework, which OpenUCI
system relies on. This layer also provides
technologies for implementing OpenUCI system,
and sharing resources. These technologies are
.NET web services, .NET remoting and
WSRF.NET. Theresources can be shared viathese
technologies.

2.3 Corelayer

This layer provides a set of necessary
services for building the utility computing
infrastructure and supporting the basic functions
of the application running on the utility computing
infrastructure. The core servicesareclassified into
two groups according to our requirements.

The core servicesthat solvethe resources
virtualization problem consist of resource
management service, data management service
and execution management service.

1. Resources Management Service
(RMYS) is responsible for gathering resources
distributed on the network and tracking the
existence and status of resources. Moreover, RMS
al so provides mechanismsfor resource discovery,
resource reservation and etc.

2. DataManagement Service (DMS) is
responsible for transferring files and sharing files

APPLICATIONS & TOOLS ‘

JOB VIRTUAL USER

COMPUTER
MANAGEMENT MANAGEMENT MANAGEMENT

RESOURCES PROVISIONING

DATA
MANAGEMENT

EXECUTION
MANAGEMENT

RESOURCES
MANAGEMENT

RESOURCES VIRTUALIZATION

CORE SERVICES
NET WEB NET WEB
SERVICES REMOTING WSRF NET
NET PLATFORM
CPU ‘ ‘ STORAGE ‘ ‘ SERVICE
RESOURCES

Figure 3 The OpenUCI architecture.

398

among computers in the OpenUCI system.

3. Execution Management Service
(EMS) is used to start and controls processes.
Furthermore, EMS also supports the invocation
of web and grid service jobs.

The core services that address the
resources provisioning problem consist of user
management service, virtual computer
management service and job management service.

1. User Management service (UMYS)
handles authentication, authorization, accounting
and users profiles.

2. Virtual Computer Management
Service (VCMS) is used for managing and
controlling the virtual computing environment
created by users.

3. Job Management Service (IMYS) is
used for creating jobs and supporting job
submission from users. JMS also provides job
queuing and scheduling mechanisms.

2.4 Applications and tools layer

Applications and tools layer isthe layer
of user applications developed for using facilities
of OpenUCI system. OpenUCI system also
provides basic command-line tools and web
application interfaces for login, logout, virtual
computer creation, resources discovering, job
submission and etc.

There are three main components in
OpenUCI system as shown in Figure 4.

Kasetsart J. (Nat. Sci.) 41(2)

1. Manager isacomputer that provides
core services used for managing shared resources
and supporting incoming requests of users.

2. Workersare computersthat shareits
resources such as computing power, files, storage
and utility services. There aretwo worker typesin
the OpenUCI system, dedicated and non-dedicated
workers. Dedicated workersare alwaysonline and
cannot reject jobs assigned by managers. For non-
dedicated workers, they can be online or offline
al the time and they will request for a job and
execute it when they are not busy.

3. Users are the people who need to
access resources. They can discover resources,
create job, submit job, download and upload files
and any services provided by managers.

RESULTSAND DISCUSSION

1. Proof of concept application

Currently, the high performance
computing iswidely needed and not limited to the
computer research field anymore. The financial
engineering (FE) is afield that requires the high
computing power because it has to handle and
analyze alarge amount of datain order to reduce
or keep turn around time constantly as number of
usersincreased. We eval uated the performance of
OpenUCI system by applying the existing
financial engineering application named Val ue-at-

Manager

<
Core Services

Users

Applications

\
Workers
Agent

[CPU } [Storage} [Servicesj

Figure4 Theinteraction of manager, worker and user.

Kasetsart J. (Nat. Sci.) 41(2) 399

Risk (VaR) calculation which was implemented
in .NET web services. The VaR measures the
maximum |oss money which may be occurred in
portfolio at a given time horizon (time of holding
portfolio) and at agiven level of confidence. The
formulafor calculating VaR has high complexity.
Then, we will show the general form of formula.
VaR = -Vp* (up — Q* ap)

The V, isthe portfolio value, and the p
and the op are the expected return and the standard
deviation, respectively. The Qisthe quantilevalue
of %confidence level. For example, the 99%
confidence level gives ~2.326 quantile value and
the 95% confidence level gives ~1.645 quantile
value.

In thistest, we used the VaR calculation
web serviceasadtility service of OpenUCI system
which was installed to al worker machines and
then we developed VaR client program with
Microsoft Excel. The VaR Excel program usesthe
OpenUCI API to connect to manager, discover
VaR web services and then invoke them.

2. Test configuration

The topology of test system isshown in
Figure 2. The software that wasinstalled on each
machineis shown in Table 1.

3. Test assumptions

« Each worker executes only one job
at atime. Since the test application is a compute
intensive application, the execution of more than

one job on each worker will not give a better
performance dueto the overhead of task switching.

e The input data is already in the
workers. Thiscan bedoneby prel oading fixed data
and table to worker prior to the execution. Thus,
the communi cation can be minimized whichyield
a better performance for the system.

4. OpenUCI throughput test

We evaluated the throughput of
OpenUCI by submitting jobsto OpenUCI system
that has 1, 2, 4, 8, 16, and 32 workers, and therun
times used for testing are changed from 10, 30,
60, 90, 120, 180, 240, and 300 seconds. Figure 5
shows the procedure of thistesting.

1. Theclient application discover URLS
of web service located on the worker nodes from
the manager.

2. The manager runs the resource
selection algorithm and returns the URLs of the
chosen worker node to requested client
application.

3. The client application uses the
returned URLSs for connecting and invoking web
service on worker nodes. After that, the client
application will wait until there are someavailable
workers.

4. Theworker node executesthe service
and then it returns aresult to client application.

5. The client program invokes web
service on an available worker

Table1l Hardware and software configuration for testing OpenUCI system.

Machines Hardware Operating system Software
1 Manager AMD Athlon 2.0GHz, 512 Windows server 2003 OpenUCI Broker, MS
MB RAM SQL 2005 for
OpenUCI database
32 Workers Intel Celeron 2.53GHz, 512 Windows XP OpenUCI Worker,
MB RAM Professional MS SQL 2005
Expressfor VaR
database
1 User Intel Pentium M 1.5GHz, Windows server 2003 VaR client application

768 MB RAM

400

Kasetsart J. (Nat. Sci.) 41(2)

VaR Client

(OpenUCT User)

Wait for available
worker

1) Discovery for VaR web
service

.

2) Return the suitable
VaR web service URLs

OpenUCI Manager

OpenUCI

3) Invoke VaR web
service on all workers

5) Continue invoking

Figure5 The throughput test procedure.

Workerl

OpenUCI Worker n

Theresult of throughput test isshown in
Table 2 and Figure 6. Figure 7 shows average of
throughput of OpenUCI system based on the
different number of workers.

From these results, it shows that
OpenUCI system gave a good throughput when
the number of workers increased and the
increasing of throughput was nearby theincreasing
of number of workers. For example, the average
throughput of 32 workers system was ~6.4 jobs/
sec and the average throughput of 1 worker system
was ~0.214 jobs/sec. The throughput was
increased about 30 times.

Table2 The throughtput of OpenUCI.

5. OpenUCI speed up test

Inthistest, we observed therun time used
to finish jobs when the number of workers was
changed from 1, 2, 4, 8, 16, to 32 workers. The
procedure of the speed up testing was similar to
the throughput testing, but the speed up test
changed the number of jobs submitted to system
and observed the run time instead of fixing the
runtime and observed the number of finished jobs.

Table 3 and Figure 8 show the run time
of thistesting. Table4 and Figure 9 show the speed
up. Table 5 and Figure 10 show the efficiency.

Time 1 Worker 2 Workers 4 Workers 8Workers 16 Workers 32 Workers

10 0.20 0.30 0.70 1.40 3.10 6.00

30 0.23 0.43 0.73 1.63 3.17 6.27

60 0.22 0.42 0.82 157 3.18 6.33

90 0.21 0.41 0.79 1.64 3.24 6.44
120 0.22 0.43 0.84 167 331 6.47
180 0.21 0.42 0.83 1.63 3.30 6.59
240 0.21 0.42 0.84 1.67 3.31 6.56
300 0.21 0.42 0.84 1.65 331 6.60

Kasetsart J. (Nat. Sci.) 41(2) 401

Throughput
7
‘/‘_’_,/o——o—/—‘ 1 —
6 —@
5
— —&— 1 Worker
Q
S 4 —&— 2 Workers
=
g %—-—H’*/* % v % —&— 4 Workers
% 3 —%— 8 Workers
g —*— 16 Workers
=
=2 N —&— 32 Workers
1 A A - A A A
A—A— =% & el A& A A
0 T T T T T T T T T T

0 30 60 90 120 150 180 210 240 270 300 330

Time (second)

Figure6 The throughput of OpenUCI system.

Average Throughput

7.00

6.40

5.00 -

4.00 —
32

3.00 -

2.00

[
[«
i

Average Throughput (job/sec)

1.00 0.80]

0.00

1 2 4 8 16 32

Number of Workers

Figure7 The average throughput of OpenUCI system.

402

Kasetsart J. (Nat. Sci.) 41(2)

Table3 Theruntime of testing (second).

Worker 100 Jobs 500 Jobs 1000 Jobs 2000 Jobs 3000 Jobs
1 476.33 2359.17 4726.77 10083.33 14794.66
2 248.03 1191.59 2400.58 4734.84 7106.32
4 122.14 596.77 1185.05 2386.19 3566.53
8 61.82 303.70 609.31 1216.19 1825.01

16 33.30 157.66 308.28 619.43 923.29
32 19.88 76.25 151.92 301.97 451.55
Run time
100000
—e— 100 Jobs
—&— 500 Jobs
10000 13X —a— 1000 Jobs
—¢— 2000 Jobs
- —%— 3000 Jobs
% 1000 -
E 100

10

Figure8 The runtime plot.

6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

Number of workers

Table4 The speed up of testing.

Worker 100 Jobs 500 Jobs 1000 Jobs 2000 Jobs 3000 Jobs
1 1.00 1.00 1.00 1 1
2 1.92 1.98 197 213 2.08
4 3.70 3.95 3.99 4.23 4,15
8 7.71 7.77 7.76 8.29 8.11
16 14.31 14.96 15.33 16.28 16.02
32 23.97 30.94 31.11 33.39 32.76

Kasetsart J. (Nat. Sci.) 41(2) 403

Speed up
40
35
30 A
25
(=¥
g /
B 20
(=9
wn
15
—&— 100 Jobs
10 —&— 500 Jobs
—&— 1000 Jobs
5 —¢ 2000 Jobs
0 —¥— 3000 Jobs

0 2 4 6 8 10 12 14

16

18 20 22 24 26 28 30 32 34

Number of workers

Figure9 The speed up plot.

Table5 The efficiency of testing.

Worker 100 Jobs 500 Jobs 1000 Jobs 2000 Jobs 3000 Jobs
1 1.00 1.00 1.00 1.00 1.00
2 0.96 0.99 0.98 1.06 1.04
4 0.97 0.99 0.99 1.06 1.04
8 0.96 0.97 0.97 1.04 101
16 0.89 0.94 0.96 1.02 1.00
32 0.75 0.97 0.97 1.04 1.02

The speed up (S of n-workerssystemis
defined by the run time of 1-worker system
(sequential run time, Ts) divided by the run time
of n-workers system (paralel run time, Tp), and
the efficiency (E) is defined as the speed up (S
divided by number of workers (P). From Figure 9
and Figure 10, we found that there were three
interesting characteristic results.

1. The speed up and efficiency were
decreased when the number of workersincreased,
for example, 100 jobs testing. This characteristic
happened because al workers in system are not
fully utilized. For example, in 32-workers system,

it had to use 4 iterations to finish 100 jobs
(32+32+32+4=100). So, inthelast iteration, there
were 28 workers free. Assume that 1 job used 1
second for executeing. The speed up was 25 (T¢/
Tp =100/4 = 25), and the efficiency was 0.78 (S/
P = 25/32 = 0.78). If we submitted 128 jobs
(32+32+32+32) to this system, the speed up and
efficiency would be 32 (128/4) and 1, respectively.

2. The speed up and efficiency were
amost perfect. The perfect speed up wasthe speed
up that was equal to number of workersin system.
The perfect efficiency was the efficiency that is
equal to 1. Basically, the communication overhead

404

Kasetsart J. (Nat. Sci.) 41(2)

Effciency

1.2

>
5
=)
L
é 0.8
83|
—— 100 Jobs
0.6 —8— 500 Jobs
—A— 1000 Jobs
—%— 2000 Jobs
—¥— 3000 Jobs
04 T T T T T T T T T T T T T T T T
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

Number of workers

Figure10 The efficiency plot.

such as input data transfer time makes the speed
up and efficiency dropped. Inthistest, wereduced
the datatransfer time by replicating VaR database
todl workers. So, the efficiency and speed up were
nearly perfect.

3. The super speed up and the over
efficiency. This characteristic happened because
the overhead time before calling web services of
client application makes the run time of client
application increased. The high number of jobs
made the total overhead time grower. However,
the total overhead time was reduced by the
increasing of number of workers. So, at the large
amount of jobs such as 2000 and 3000 jobs, the
run times of 2, 4, 8, 16, and 32 workers system
were decreased more than the number of workers
in system.

CONCLUSION

The demand of using super computing
systemin organizations has beenincreasing. They

need the system that has more dynamicity and
flexibility in order to support the varioustypesand
large amount of demand of customers. Moreover,
this system must provide an easy and familiar
mechanism for customers to use the power of
system. This paper proposed the design and
implementation of framework used for building
the computing environment that can achievethese
requirements. Thisframework iscalled OpenUCI
(Open Utility Computing Infrastructure) which
workson Microsoft .NET platform. OpenUCI will
gather resources distributed on the network, and
automatically adjust and provisioning resources
to users. The prototype of OpenUCI has aready
been implemented and evaluated with afinancial
engineering application named VaR calculation.
Theresult of evaluation showed that OpenUCI can
giveagood performance and high utilization when
the number of computers and demand of users
increased

The prototype version of OpenUCI has
only a few modules such as resource collecting

Kasetsart J. (Nat. Sci.) 41(2) 405

and discovery, resource selection and broker
mechanism. There are still many necessary
modulesthat should beimplemented, for example,
web and grid servicesinvoker, job queue manager
and virtual computer management. Thefollowing
isthelist of future work. There are many possible
works in the future such as integrating the
executable file launcher implemented in another
related project to OpenUCI system, implementing
thejob queue management modul e, implementing
the web and grid services invoker module,
implementing the virtual computer management
service, implementing the user authentication and
accounting modules, implementing the data
transfer service, exploring the mechanisms for
handling fault of machines and jobs and
investigating a proper workload distribution
scheme and study using simulation.

All these works will make OpenUCI
more useful in the modern computing
environments.

LITERATURE SITED

Albaugh V. and H. Madduri. 2004. The utility
metering service of the Universal
Management Infrastructure. 1BM Systems
Journal 43(1): 159-178

Anderson D., J.Cobb, E. Korpela, M. Lebofsky
and D. Werthimer. 2002. SETI@home: An
Experiment in Public-Resource Computing.
Communications of the ACM 45(11): 56-
61

EilamT., K. Appleby, J. Breh, G. Breiter, H. Daur,
S.A. Fakhouri, G.D.H. Hunt, T. Lu, S.D.
Miller, L.B. Mummert, J.A. Pershing and H.
Wangner. 2004. Using a utility computing
framework to develop utility systems. |BM
System Journal 43(1): 97-120

Foster 1., C. Kesselman, J. Nick and S. Tuecke.
2002. The Physiology of the Grid: An Open
Grid Services Architecture for Distributed
Systems Integration. Open Grid Service
Infrastructure WG. Globus Grid Forum

Ganek G. and T. A. Corbi. 2003. The dawning of
the autonomic computing era. 1BM System
Journal 42(1): 5-18

Humphrey M. and G. Wasson. 2005. Architectural
Foundations of WSRFENET., International
Jour nal of Web Services Resear ch 2(3): 83-
97.

Luther A., R Buyya and S. Venugopal. 2005.
Alchemi: A .NET-Based Enterprise Grid
Computing System. Proceedings of the 6th
International Conference on Internet
Computing (ICOM P’ 05), June 27-30, 2005,
Las Vegas, USA

Rojanapanpat T., P. Uthayopas, S. Chaisiri, J.
Pichitlamken, S. Phakhawirotkul and T.
Vorakosit. 2005. Implementing aDistributed
High Volume Risk Analysis Software on PC
Farm using OpenUCI System. The 9th
National Computer Science and
Engineering Conference (NCSEC2005),
October 27-28, 2005, Bangkok, Thailand.

Sarmental. F. G. 2001. Volunteer Computing.
Ph.D. thesis, Massachusetts Institute of
Technology.

Sarmental. F. G., S. J. V Chua, P. Echevarria, J.
M. Mendoza, R. R. Santosand S. Tan. 2002.
Bayanihan Computing NET: Grid Computing
with XML Web Services. Workshop on
Global and Peer-to-Peer Computing at the
2nd |EEE International Symposium on
Cluster Computing and the Grid (CCGrid
'02), May 2002, Berlin, Germany.

Smarr L. and C. Catlett. 1992. Metacomputing,
pp. 44-52. Communication of theACM, 35.

The Globus Alliance. 2005. Welcome to The
Globus Toolkit Homepage. The Globus
Toolkit. Available source: http://
www.globus.org/toolkit/, March 14, 2006.

Thierry P. 2006. CoreGRID: European Research
Network on Foundations. Software
Infrastructuresand Applicationsfor large
scale distributed GRID and Peer-to-Peer
Technologies. Available source: http://
www.coregrid.net/, March 14, 2006.

