

High Biomass Production and Starch Accumulation in Native Green Algal Strains and Cyanobacterial Strains of Thailand

Somrak Rodjaroen¹, Niran Juntawong^{2*},
Aparat Mahakhan³ and Kazuhisa Miyamoto³

ABSTRACT

Microalgae (including blue-green algae or cyanobacteria) have been actively studied regarding their potential to use as a future alternative renewable energy source due to the accumulation of starch in their biomass. The starch accumulated in microalgae can be hydrolyzed to organic acids by lactic acid bacteria prior to converting to hydrogen by photosynthetic bacteria through various pathways. The aims of the current study are to investigate the biomass production and starch accumulation in native strains of microalgal strains in Thailand. A total of 25 strains of microalgae comprising 14 strains of green algae and 11 strains of cyanobacteria were determined. Among these, a cyanobacteria strain, *Nostoc* sp. TISTR 8872 showed the best results in respect to biomass production of 0.26 g (DW)/l, while the highest starch accumulation was obtained from a cyanobacteria strain, *N. muscurum* TISTR 8871 of up to 32.97% starch. It is recommended that the time course of starch, protein and fatty acid accumulation in *Nostoc* sp. TISTR 8872 and *N. muscurum* TISTR 8871 cultivated in various kinds of media and wastewater should be further investigated.

Key words: biomass production, starch accumulation and microalgae

INTRODUCTION

Biomass has been a traditional energy source in the rural world across the globe for decades. Modernization, instead of reducing biomass energy consumption, has continuously increased its utilization for both households and the production of modern energy (Prasertsan and Sajjakulnukit, 2006). A variety of biomass resources can be used to convert to energy such as microbes, plants, animals and their organic waste products (Levin *et al.*, 2007). Several alternatives

of algal biomass are potentially a reliable energy source for hydrogen production (Kim *et al.*, 2005). It is renewable, abundant and easy to use.

The previous research on biomass production and starch accumulation in microalgae, *Chlamydomonas reinhardtii* UTEX 90 accumulated 1.45 g (DW)/l and 0.77 g starch/l during photosynthetic growth using TAP media at 25 °C in presence of 2% CO₂ for 3 days (Kim *et al.*, 2006). Ike *et al.* (1997) reported in the green algae, *C. reinhardtii* and *Dunaliella tertiolecta* cultured in a modified Bristol medium and f/2

¹ Bioscience Program, Faculty of Sciences, Kasetsart University, Bangkok 10900, Thailand.

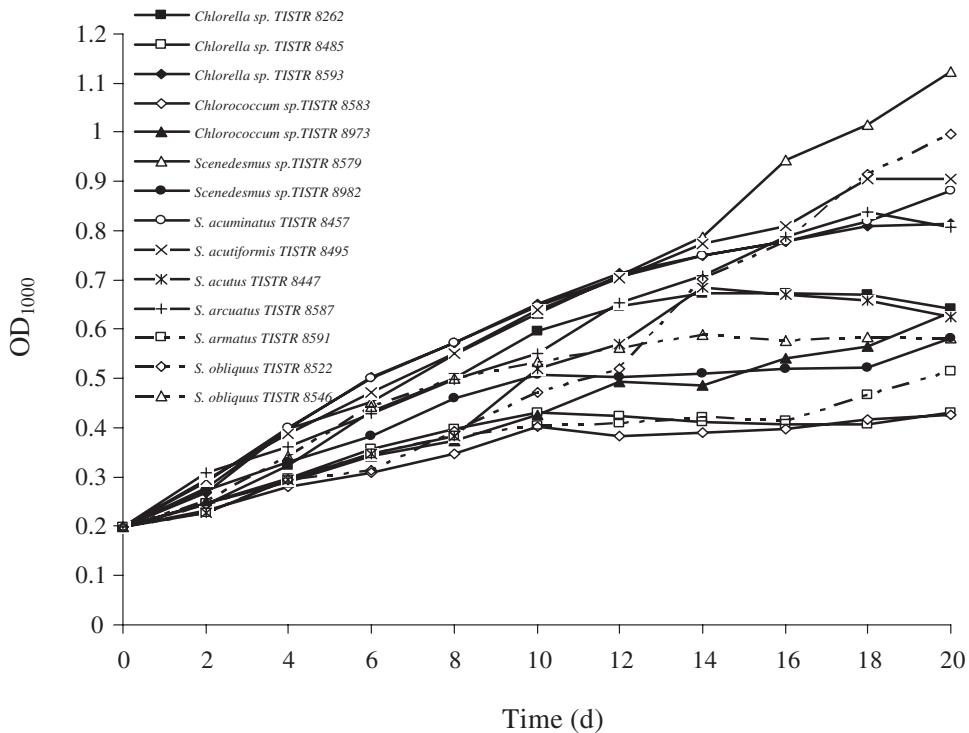
² Department of Botany, Faculty of Sciences, Kasetsart University, Bangkok 10900, Thailand.

³ Microbiological Resources Centre (MIRCEN), Thailand Institute of Scientific and Technological Research (TISTR) Pathumthani 12120, Thailand.

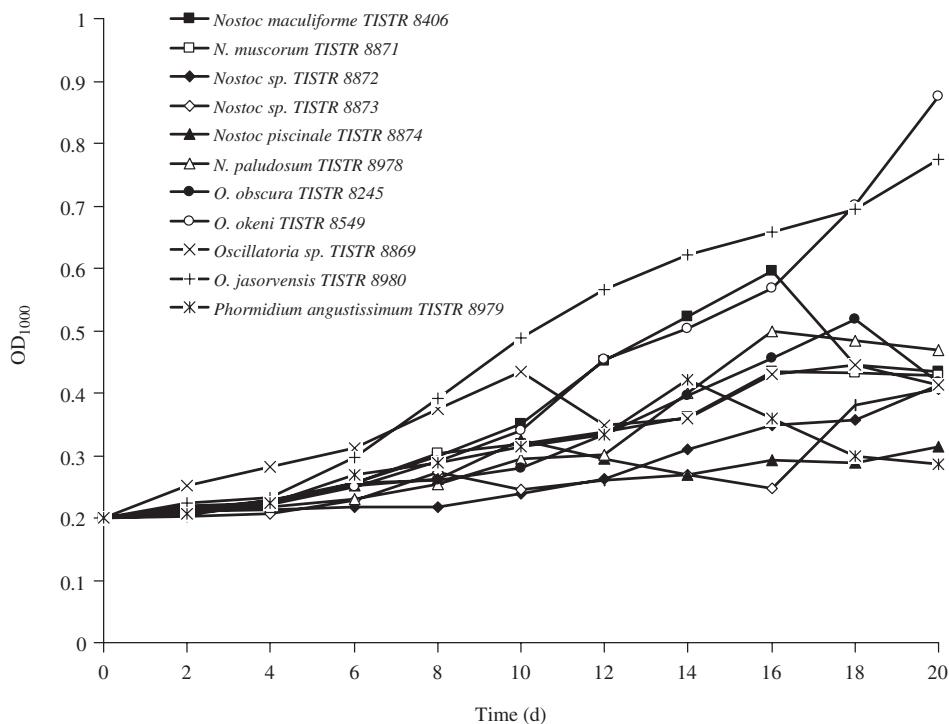
* Corresponding author, e-mail fscinrj@ku.ac.th

medium the dry weight of algal biomass were 7.62 and 7.27 g/l and starch content were 41.80 and 17.20 g/l, respectively. Starch in microalgae can be found in the form of carbohydrate, glucose, sugars and other polysaccharides. The starch content in green algae, *C. reinhardtii*, *Chlorella vulgaris*, *Dunaliella salina*, *Scenedesmus obliquus* and *Synechococcus* sp. were 17, 12-17, 32, 10-17 and 15% of dry weight, respectively, while in cyanobacteria, *Anabaena cylindrical* and *Spirulina maxima* were 25-30 and 13-16% of dry weight, respectively (Spolaore *et al.*, 2006).

The development of energy sources and devices will emerge more aggressively to address the world's energy and environmental situation. Molecular hydrogen is an optimal fuel for a future climate-constrained world (Wunschiers and Lindlad, 2002), since it can be generated from water by biophotolysis of algae and cyanobacteria, photobiological (Laurinavichene *et al.*, 2002) or fermented by anaerobic bacteria (Kapdan and Kargi, 2006). Algal biomass has been focused on as a future renewable energy source and alternative energy. Algae photobiological produced starch which can be used as a substrate for hydrogen production by various systems. At present an alternative method for hydrogen production by a three-step microbial hydrogen-producing system has been proposed. The first step is to use microalgae for starch production; the second is to convert the starch by hydrolyzing lactic bacterium in fermentation process to lactic acid, which is a suitable substrate used for hydrogen production by photosynthetic bacteria in the third step (Ike *et al.*, 1997; Kawaguchi *et al.*, 2001 and Kim *et al.*, 2006). It seems that this system is one of the most suitable systems for hydrogen production. Hence, this experiment was initiated to investigate the biomass production and the starch accumulation in microalgal strains deposited at MIRCEN, TISTR.


MATERIALS AND METHODS

Preserved microalgae at Microbiological Resources Centre (MIRCEN), Thailand Institute of Scientific and Technological Research (TISTR), comprising 14 green algal strains and 11 cyanobacterial strains, were investigated for their biomass production and starch accumulation. Each green algal and cyanobacterial strains at initial concentration of 0.20 at OD₁₀₀₀ was grown in 300 ml BG-11 medium under illumination at 60 μ mole photon m⁻²s⁻¹ by cool white fluorescence lamps with 12 h dark and 12 h light cycle and shaken at 150 rpm on an orbital shaker at 28±1°C. The strains were sampled every 2 days for determination of cell growth by spectrophotometer at OD₁₀₀₀. After 20 days of cultivation, algal biomass was determined as total dry weight. Starch accumulation was detected as glucose based on the method of Kochart (1978) after hydrolysis in 2M HClO₄ for 2 h at 100°C, using glucose (VWR International Ltd., England) as a standard. The mean of dry biomass and starch accumulation from triplicate tests of each strain were compared by a one-way ANOVA, separating the significantly different mean values with by means of Tukey's multiple comparison tests (Zar, 1996).


RESULTS AND DISCUSSIONS

After 20 days of cultivation the highest mean cells concentrations of green algal and cyanobacterial strains were obtained from *Scenedesmus* sp. TISTR 8597 and *O. okeni* TISTR 8549, respectively (Figure 1 and 2).

The mean of final dry biomass ranged between 0.05-0.25 and 0.13-0.26 g (DW)/l in green algae and cyanobacteria, respectively. The green algae, *S. obliquus* TISTR 8522 showed the best biomass production of 0.25 g (DW)/l with significant difference from other strains (Table 1). In the case of cyanobacteria, *Nostoc* sp. TISTR 8872 revealed the highest biomass production of

Figure 1 Time courses of growth of green algal strains cultivated in BG-11 medium.

Figure 2 Time courses of growth of cyanobacterial strains cultivated in BG-11 medium.

0.26 g (DW)/l with no significant difference from other strains except for *Nostoc piscinale* TISTR 8872 (Table 2). However, the biomass production between *S. obliquus* TISTR 8522 and *Nostoc* sp. TISTR 8872 were not significantly different. Kim *et al.* (2006) reported biomass in the green algae, *C.*

reinhardtii UTEX 90 accumulated 1.45 g (DW)/l during photosynthetic growth using TAP media at 25°C in presence of 2% CO₂ for 3 days and 7.62 and 7.27 g (DW)/l in *C. reinhardtii* and *Dunaliella tertiolecta* cultured in modified Bristol medium and f/2 medium, respectively (Ike *et al.*, 1997).

Table 1 Biomass production and starch accumulation of green algal strains cultivated in BG-11 medium for 20 days.

Strains of microalgae	Biomass (Mean±SE; g dry weight l ⁻¹)	% Strach (Mean±SE)
<i>Chlorella</i> sp. TISTR 8262	0.10±0.00 ^{abc}	21.47±0.72 ^{defg}
<i>Chlorella</i> sp. TISTR 8485	0.09±0.00 ^{abc}	27.00±1.10 ^g
<i>Chlorella</i> sp. TISTR 8593	0.08±0.01 ^{ab}	21.97±1.28 ^{defg}
<i>Chlorococcum</i> sp. TISTR 8583	0.11±0.01 ^{bcd}	25.98±1.12 ^{fg}
<i>Chlorococcum</i> sp. TISTR 8973	0.20±0.03 ^{ef}	16.80±1.71 ^{bcd}
<i>Scenedesmus</i> sp. TISTR 8579	0.13±0.00 ^{cd}	20.35±0.36 ^{cdef}
<i>Scenedesmus</i> sp. TISTR 8982	0.08±0.01 ^{abc}	13.34±2.29 ^b
<i>S. acuminatus</i> TISTR 8457	0.12±0.02 ^{bcd}	7.32±0.92 ^a
<i>S. acutiformis</i> TISTR 8495	0.17±0.00 ^{de}	16.38±1.08 ^{bcd}
<i>S. acutus</i> TISTR 8447	0.11±0.01 ^{bcd}	18.57±1.11 ^{bcede}
<i>S. arcuatus</i> TISTR 8587	0.10±0.00 ^{abc}	12.88±0.99 ^{ab}
<i>S. armatus</i> TISTR 8591	0.05±0.00 ^a	15.43±0.74 ^{bc}
<i>S. obliquus</i> TISTR 8522	0.25±0.01 ^f	23.66±0.56 ^{efg}
<i>S. obliquus</i> TISTR 8546	0.12±0.06 ^{cd}	23.37±0.49 ^{efg}

Means in the column followed by the same letters are not significantly different as determined by means of Tukey's multiple comparison tests ($\alpha=0.05$)

Table 2 Biomass production and starch accumulation of blue-green algal strains cultivated in BG-11 medium for 20 days.

Strains of microalgae	Biomass (Mean±SE; g dry weight l ⁻¹)	% Strach (Mean±SE)
<i>Nostoc</i> sp. TISTR 8872	0.30±0.00 ^b	30.66±0.58 ^d
<i>Nostoc</i> sp. TISTR 8873	0.20±0.04 ^{ab}	32.85±1.52 ^d
<i>N. maculiforme</i> TISTR 8406	0.17±0.03 ^{ab}	30.07±1.50 ^d
<i>N. muscorum</i> TISTR 8871	0.38±0.00 ^c	33.49±0.89 ^d
<i>N. paludosum</i> TISTR 8978	0.20±0.03 ^{ab}	32.14±0.15 ^d
<i>N. piscinale</i> TISTR 8874	0.13±0.02 ^a	17.37±1.15 ^{bc}
<i>Oscillatoria</i> sp. TISTR 8869	0.26±0.01 ^b	19.32±0.81 ^c
<i>O. jasorvensis</i> TISTR 8980	0.21±0.02 ^{ab}	9.74±0.40 ^a
<i>O. obscura</i> TISTR 8245	0.21±0.03 ^{ab}	12.61±1.59 ^b
<i>O. okeni</i> TISTR 8549	0.20±0.01 ^{ab}	8.08±0.27 ^a
<i>Phormidium angustissimum</i> TISTR 8979	0.15±0.02 ^{ab}	28.48±0.35 ^d

Means in the column followed by the same letters are not significantly different as determined by means of Tukey's multiple comparison tests ($\alpha=0.05$)

The starch accumulation was analyzed to determine the content of carbohydrate. Table 1 shows that starch accumulation of *Chlorella* sp. TISTR 8485 was $27.00\% \pm 1.10$, which significantly higher than any other strains of green algae, but not significantly different with *Chlorella* sp. TISTR 8262, *Chlorella* sp. TISTR 8593, *Chlorococcum* sp. TISTR 8583, *S. obliquus* TISTR 8522 and *S. obliquus* TISTR 8546. However, Ike *et al.* (1997) reported on green algae, *C. reinhardtii* cultured in modified Bristol medium, that the starch content was 4.18%. Other macroalgae stains, *Enteromorpha* sp., *Ulva rigida*, *Caulerpa geminate*, *Gigartina livida* contained $10.61\% \pm 0.19$, $3.52\% \pm 0.42$, $2.88\% \pm 0.03$ and $2.40\% \pm 0.20$ of starch content, respectively (Zemke-White and Clements, 1999). This difference may come from strains and the culture medium. In the cyanobacteria, the starch content in *N. muscurum* TISTR 8871 was the highest ($32.97\% \pm 1.07$), but not significantly different from *N. maculiform* TISTR 8406 ($30.07\% \pm 1.50$), *Nostoc* sp. TISTR 8872 ($28.97\% \pm 0.24$), *Nostoc* sp. TISTR 8873 ($32.85\% \pm 1.52$), *N. paludosum* TISTR 8978 ($32.14\% \pm 0.15$) and *P. angustissimum* TISTR 8979 ($28.48\% \pm 0.35$). Other investigators observed that with a cyanobacteria, *Spirulina fusiformis* growing on Zarouk medium with the salinity ranging from 0.00 to 16.00 ppt., the starch content varied from 37.30 to 56.10% (Rafiqul *et al.*, 2003), 44.00% in *Spirulina maxima*s and 16.00% in *Phormidium* sp. grown on pretreated and diluted swine wastewater (Canizares-Villanueva *et al.*, 1995).

CONCLUSION

In this study, the cyanobacterial strain, *Nostoc* sp. TISTR 8872 showed the best result for biomass production, while the highest starch accumulation was obtained from *N. muscurum* TISTR 8871. To obtain the highest level of starch, both biomass production and percentage of starch

content should be considered. Therefore, *Nostoc* sp. TISTR 8872 and *N. muscurum* TISTR 8871 were recommended for future study on optimization of biomass production and starch accumulation using defined medium, fertilization medium and wastewater.

ACKNOWLEDGEMENTS

This work was supported by Kasetsart University Research and Development Institute (KURDI) and the Graduate Program Development in the framework of collaboration between the Thailand Institute of Scientific and Technological Research (TISTR) and Kasetsart University.

LITERATURE CITED

- Canizares-Villanueva, R.O, A.R. Dominguez, M.S. Cruz and E. Rios-Leal. 1995. Chemical composition of cyanobacteria grown in diluted, aerated swine wastewater. **Bioresource Techno.** 51(2-3): 111-116.
- Ike, A., N. Toda, N. Tsuji, K. Hirata and K. Miyamoto. 1997. Hydrogen photoproduction from CO₂-fixing microalgal biomass: Application of halotolerant bacterial community. **J. Ferment. Bioeng.** (6): 606-609.
- Ike, A., N. Toda, T. Murakawa, K. Hirata and K. Miyamoto. 1998. Hydrogen photoproduction from starch in CO₂-fixing microalgal biomass by a halotolerant bacterial community, pp. 311-318. *In* Zaborsky *et al.* (eds.). **Biohydrogen**. Plenum Press, New York.
- Laurinavichene, T.V., I.V. Tolstygina, R.R. Galiulina, M.L. Ghirardi, M. Seibert and A.A. Tsygankov. 2002. Dilution methods to deprive *Chlamydomonas reinhardtii* cultures of sulfur for subsequent hydrogen photoproduction. **Int. J. Hydrogen Energy** 27: 1245-1249.
- Levin, D.B., H. Zhu, M. Beland, N. Cicek and B.E. Holbein. 2007. Potential for hydrogen and

- methane production from biomass residues in Canada. **Bioresource Techno.** 98: 654-660.
- Kawaguchi, H., K. Hashimoto, K. Hirata and K. Miyamoto. 2001. H₂ production from algal biomass by a mixed culture of *Rhodobium marinum* A-501 and *Lactobacillus amylovorus*. **J. Ferment. Bioeng.** 91(3): 277-282.
- Kapdan, I.K. and F. Kargi. 2006. Bio-hydrogen production from waste materials. **Enzyme and Microbial Technol.** 38(5): 569-582.
- Kim, M.S., J.S. Baek, Y.S. Yun, S.J. Sim, S. Park and S.C. Kim. 2006. Hydrogen production from *Chlamydomonas reinhardtii* using a two-step conversion process: Anaerobic conversion and photosynthetic fermentation. **Int. J. Hydrogen Energy** 31: 812-816.
- Kochart, A.G. 1978. Charbohydrate determination by the phenol-sulphuric acid method, pp. 95-97. In J.A. Hellebust and J.S. Craigie (eds.). **Handbook of phycological and biochemical methods**. Cambridge Univ. Press Publ.
- Prasertsan, S. and B. Sajjakulnukit. 2006. Biomass and biogas energy in Thailand: Potential, opportunity and barriers. **Renewable Energy** 31: 599-610.
- Rafiqul, I.M., A. Hassan, G. Sulebele, C.A. Orosco, P. Roustaian and K.C.A. Jalal. 2003. Salt stress culture of blue-green algae *Spirulina fusiformis*. **Pakistan J. Biol. Sci.** 6(7): 648-650.
- Spolaore, P., C. Joannis-Cassan, E. Duran and A. Isambert. 2006. Review: Commercial application of microalgae. **J. Biosci. Bioeng.** 101(2): 87-96.
- Vijaraghavan, K. and M. A. M. Soom. 2005. Trends in biological hydrogen production-a review. **Int. J. Hydrogen Energy**. (In press).
- Wunschiers, R. and P. Lindblad. 2002. Hydrogen in education – a biological approach. **Int. J. Hydrogen Energy** 27: 1131-1140.
- Zar, J.H. 1996. **Biostatistical Analysis**, 3rd ed. Prentice-Hall, Englewood Cliffs, NJ. 918 p.
- Zemke-White, W.L. and K.D. Clements. 1999. Chlorophyte and rhodophyte starches as factors in diet choice by marine herbivorous fish. **J. Exp. Mar. Biol. Ecol.** 240: 137-149.