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Path-Integral Approach to a Quantum Particle in Random
Potential with Long-Range Correlations

Cherdsak Kunsombat

ABSTRACT

The mean square displacement of a quantum particle in random potential with long-range

correlations is computed exactly using the path-integral method. The result agrees with the replica

method while the variation of the mean square displacement with the density of disorder is found in our

approach.
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INTRODUCTION

There has been much interest in the problem of a quantum particle in random potential. Since

this problem is directly related to diverse fields of disordered systems such as the behavior of polymers

in random media (Kunsombat and Sa-yakanit, 2004 and 2005), the behavior of flux lines in

superconductors in the presence of columnar defects (Nelson and Vinokur, 1993; Goldschmidt, 1997),

the problem of diffusion in a random catalytic environment (Nattermann and Renz, 1989) and the behavior

of an electron in a dirty metal. Despite the volume of work has been done on these problems, there are

still many unanswered questions. In general, the random system has very complicated structures. In

order to understand these complex problems, several researchers usually modeled the disorder with

short-range or long-range correlations and then calculated the mean square displacement using the

replica method (Edwards and Muthukumar, 1988; Goldschmidt and Blum, 1993; Goldschmidt, 2000;

Shiferaw and Goldschmidt, 2000).

Recently, Shiferaw and Goldschmidt (2000) considered a model of a quantum particle in random

potential with long-range quadratic correlations. They also used the replica method to calculate exactly

the mean square displacement of a quantum particle. The result was
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Where d is the dimensions of the system, g is the strength of disorder, ξ is the correlation length, µ is the

strength of the harmonic potential, h  is Planck’s constant, m is the mass of a particle and β = 1/kBT,

where kB is Boltzmann’s constant and T is the absolute temperature. The result shown above agreed

with an alternative numerical solution and was valid in case of very long-range correlations.



Although the replica method is one of the most powerful theoretical tools, the calculation in

this method is very difficult. When the result of this calculation does not work, the symmetry of the

replica will be broken. The new calculation must be done. This always leads to more complicated

calculations. In this paper, we derive the exact analytical result, using only the path-integral method

without the replica.

MATERIALS AND METHODS

We first consider a particle moving in a set of N rigid scatterers, confined within a volume Ω,

and having a density ρ = N/Ω. The propagator of such a system can be expressed in the path-integral

representation as
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Eq. (2) denotes the path integral that goes from X
r

(0) = X
r

1 to X
r
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2. Where X
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(τ) is the d-

dimensional position vector of a particle at time τ, ( ) iv X Rτ − 
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 represents the potential of a single

scatterer at iR
r

. The harmonic term is included to mimic the effects of finite volume, where µ is the

strength of the harmonic potential and defines the system size, µ approach zero in the infinite volume

limit.

Next, we assume that the obstacles are randomly distributed throughout the volume Ω of the

medium with a random distribution
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The average over all configurations of the random obstacles of Eq. (2) can be performed exactly (Sa-

yakanit, 1974).  This yields in the limit N→∞ and Ω→∞. The result may be obtained as
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In the limits of high density ρ→∞ and weak scattering potential ν→0, so that ρν2 remains finite, Eq. (4)

can be simplified and rewritten in the form
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Here, the mean potential energy has been taken as zero. The η is a parameter, it is explicitly writing here

in order to take care the dimension of the system and ( ) ( )W X Xτ σ − 
r r

 denotes the correlation function,

defined as
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In order to compare our result with the replica method, we use the model of Shiferaw and

Goldschmidt (2000). It is given by

( ) ( )
( ) ( )( )2

2
1

X X
W X X g

τ σ
τ σ

ξ

 −  − = −    
 

r r
r r

. (7)

Where in this model, ξ is chosen to be larger than the medium size, so that the correlation function is

well defined (non-negative) over the entire medium. Substituting Eq. (7) into Eq. (5), the average

propagator becomes
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 and where we have dropped the constant part of the action, since it only

contributes an unimportant normalization factor. Eq. (8) can be evaluated by using Stratonovich’s

transformation (Sa-yakanit et al., 1988) with respect to the Gaussian distribution of the constant force

F
r

. We will call the result the effective system. The relation between the average propagator and the

effective propagator can be written in the form
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The effective propagator 
2 1, ;effG X X t

r r  is corresponding to the system of a particle moving in the

forced harmonic oscillator, which can be directly evaluated (Feynman and Hibbs, 1995), and given by
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By applying Eq. (9) to Eq. (11), we obtain
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The mean square displacement of a particle can be evaluated by the expression
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Then applying Eq. (13), we obtain
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RESULTS AND DISCUSSION

Figure 1, shows plot 2X
r

 as a function of β, where the solid line corresponds to the replica

method given in Eq. (1) and the dashed line corresponds to the path-integral method given in Eq. (14).

It is shown in the graphs that the result of the path-integral method and the result of the replica method

are in good agreement. Base on these results, we may conclude that the result of the path-integral

method and the result of the replica method are exactly identical. However, in path-integral method, the

mean square displacement is found to depend on the density of disorder, whereas this behavior does not

occur in the replica method.

We now consider in case of the infinite-volume limit. As we discussed in the previous section

that in order to mimic the effects of finite volume, the harmonic term was included in our model. Where

µ is the strength of the harmonic potential and defines the system size (decreasing µ will increase the

system size and when µ → 0 the system size goes to infinity). Thus, in case of the infinite volume limit,

the particle does not see the confining harmonic potential. The behavior of a particle is determined only

by the disorder. By taking the limit µ → 0 in Eq. (1) and in Eq. (14), we find that Eq. (1) diverges,

whereas Eq. (14) is still finite. This indicates that the path-integral method still works in this case, but

the replica method does not.

Figure 1 A plot of 2X
r

 as a function of β. The parameters are m = 9.1 × 10–31, ξ = 200, g = 0.1, d =

1, µ = 0.01, ρ = 105, h  = 1.054 × 10–34 and η = 0.1.
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CONCLUSION

We have shown that the propagator and the mean square displacement of a quantum particle in

random potential with long-range correlations can be exactly calculated using path-integral method

without the replica.
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