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Path-1ntegral Approach to a Quantum Particlein Random
Potential with Long-Range Correlations

Cherdsak Kunsombat

ABSTRACT

The mean square displacement of a quantum particle in random potential with long-range
correlations is computed exactly using the path-integral method. The result agrees with the replica
method while the variation of the mean square displacement with the density of disorder isfound in our
approach.
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INTRODUCTION

There has been much interest in the problem of a quantum particle in random potential. Since
this problem isdirectly related to diversefields of disordered systems such as the behavior of polymers
in random media (Kunsombat and Sa-yakanit, 2004 and 2005), the behavior of flux lines in
superconductors in the presence of columnar defects (Nelson and Vinokur, 1993; Goldschmidt, 1997),
the problem of diffusioninarandom catalytic environment (Nattermann and Renz, 1989) and the behavior
of an electron in adirty metal. Despite the volume of work has been done on these problems, there are
still many unanswered questions. In general, the random system has very complicated structures. In
order to understand these complex problems, severa researchers usually modeled the disorder with
short-range or long-range correlations and then calculated the mean square displacement using the
replica method (Edwards and Muthukumar, 1988; Goldschmidt and Blum, 1993; Goldschmidt, 2000;
Shiferaw and Goldschmidt, 2000).

Recently, Shiferaw and Goldschmidt (2000) considered amodel of aquantum particlein random
potential with long-range quadratic correlations. They also used the replica method to calculate exactly
the mean square displacement of a quantum particle. The result was
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Where d isthe dimensions of the system, g isthe strength of disorder, & isthe correlation length, pisthe

strength of the harmonic potential, # is Planck’s constant, mis the mass of a particle and = L/KkgT,
where kg is Boltzmann's constant and T is the absolute temperature. The result shown above agreed
with an alternative numerical solution and was valid in case of very long-range correlations.
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Although the replica method is one of the most powerful theoretical tools, the calculation in
this method is very difficult. When the result of this calculation does not work, the symmetry of the
replica will be broken. The new calculation must be done. This always leads to more complicated
calculations. In this paper, we derive the exact analytical result, using only the path-integral method
without the replica.

MATERIALSAND METHODS

We first consider a particle moving in aset of N rigid scatterers, confined within avolume Q,
and having a density p = N/Q. The propagator of such a system can be expressed in the path-integral
representation as
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Eq. (2) denotes the path integral that goes from X (0) = X, to X (t) =X ,. Where X () is the d-
dimensional position vector of a particle at time T, v[)? )- f?,} represents the potential of a single
scatterer at ﬁi. The harmonic term is included to mimic the effects of finite volume, where  is the
strength of the harmonic potential and defines the system size, 1 approach zero in the infinite volume
limit.

Next, we assume that the obstacles are randomly distributed throughout the volume Q of the
medium with a random distribution
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The average over al configurations of the random obstacles of Eq. (2) can be performed exactly (Sa-
yakanit, 1974). Thisyieldsin the limit N—oo and Q—oo. The result may be obtained as
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Inthelimits of high density p—~ and weak scattering potential v—0, so that pv2 remainsfinite, Eq. (4)
can be simplified and rewritten in the form
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Here, the mean potential energy has been taken as zero. Then isaparameter, it isexplicitly writing here

in order to take carethe dimension of thesystemand W [f( (t)- X (o )} denotesthe correlation function,
defined as

W[X@E)-X()]= [v[X@)-Rp[X(c)-R]dR. (6)
In order to compare our result with the replica method, we use the model of Shiferaw and
Goldschmidt (2000). It is given by
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Where in this model, & is chosen to be larger than the medium size, so that the correlation function is
well defined (non-negative) over the entire medium. Substituting Eq. (7) into Eq. (5), the average
propagator becomes
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Where o = (lenﬁ gt K j and where we have dropped the constant part of the action, sinceit only
mh m

contributes an unimportant normalization factor. Eq. (8) can be evaluated by using Stratonovich’'s
transformation (Sa-yakanit et al., 1988) with respect to the Gaussian distribution of the constant force
F . We will call the result the effective system. The relation between the average propagator and the
effective propagator can be written in the form

G(X,, X50)=(G, (%, %50)) . (©)
The symbol (0)JE denotes the Gaussian average defined by
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The effective propagator (¥,.X%.:1) is corresponding to the system of a particle moving in the
A 2541
forced harmonic oscillator, which can be directly evaluated (Feynman and Hibbs, 1995), and given by
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By applying Eq. (9) to Eg. (11), we obtain
d/2
2 d/2 d/2
é()?z’)?l;t): = 2 ( mw j z
4mpn‘g 2mihisin ¢ ..ot
az itan — it
+ 2
apm’g  hmo’  2hmo’
(X, +)a(1)2 tan’ [Q;tj
xXexp| —
itanw—t
4w’ & + 2 ot
4pn’g  hmo’  2hmo’
imo o) s =\ Imo o) - S\
_Etan(TJ(XﬁXl) +Ecot(7](){2—){1) } (12)

The mean sguare displacement of a particle can be evaluated by the expression
[X°p (%, %)ax

(X)- [p (%, X)ax w

Where p ()?,)?) denotes the density matrix which can be got by replacing t with —i7# in Eq. (12).
Then applying Eg. (13), we obtain
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where

oo (m+&j _ (15)

RESULTSAND DISCUSSION

Figure 1, shows plot <)? 2> as afunction of B, where the solid line corresponds to the replica

method given in Eg. (1) and the dashed line corresponds to the path-integral method given in Eq. (14).
It is shown in the graphs that the result of the path-integral method and the result of the replica method
are in good agreement. Base on these results, we may conclude that the result of the path-integral
method and the result of the replicamethod are exactly identical. However, in path-integral method, the
mean square displacement isfound to depend on the density of disorder, whereas this behavior does not
occur in the replica method.

We now consider in case of the infinite-volume limit. As we discussed in the previous section
that in order to mimic the effects of finite volume, the harmonic term wasincluded in our model. Where
u is the strength of the harmonic potential and defines the system size (decreasing  will increase the
system size and when u —0 the system size goes to infinity). Thus, in case of the infinite volume limit,
the particle does not see the confining harmonic potential. The behavior of aparticleis determined only
by the disorder. By taking the limit w —0 in Eq. (1) and in Eq. (14), we find that Eq. (1) diverges,
whereas Eq. (14) is still finite. Thisindicates that the path-integral method still works in this case, but
the replica method does not.
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Figurel Aplotof <5(2> asafunction of B. The parametersarem =9.1x 1031, £=200,g=0.1,d=

1,u=0.01, p=10° /i =1.054x 103 andn = 0.1.
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CONCLUSION

We have shown that the propagator and the mean square displacement of aquantum particlein
random potential with long-range correlations can be exactly calculated using path-integral method
without the replica.
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