Kasetsart J. (Nat. Sci.) 41 : 225 - 228 (2007)

Global Stability of an SIQ Epidemic Model

Settapat Chinviriyasit* and Wirawan Chinviriyasit

ABSTRACT

In this paper, an SIQ epidemic model is studied and analyzed. In the model the susceptibles

and the infectious have constant immigration. The model exhibits an unique endemic state if p >0, a

disease-free state and an endemic state if p = 0. A basic reproduction number Ry is derived. If Ry > 1, the

global stability of the endemic equilibrium is proved when p = 0.
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INTRODUCTION

One intervention procedure to control the
spread of infectious diseases is to isolate some
infectives, in order to reduce transmissions of the
infection to susceptibles. Isolation may have been
the first infection control method, since biblical
passages refer to the ostracism of lepers, and
plague suffers were often isolated (Hethcote et al.,
2002). Takeuchi et al. (2000) and Ma et al. (2002)
studied the SIR infectious disease model in which
an infectious disease is transmitted by a vector after
an incubation time. Their model assumes that the
birth rate and the death rate are all constant, so the
dynamics of the total population is very simple.
In order to investigate disease dynamics for the
model with more demographic effects, it would
be necessary to isolate the fraction of arriving
infectives. We would like to mention some relative
investigation in epidemic models. Beretta and
Takeuchi (1995) investigated SIR models with
constant and varying population size, respectively.
Cooke et al. (1999), Brauer and Diessche (2001)
investigated a model for disease transmission with
a general contact rate and references therein.

The aim of this paper is to study global
stability of a model for the transmission dynamics
of infectious diseases that include a new class Q
of quarantined individuals, who have been
removed and isolated either voluntarily or
coercively from the infectious class. The resulting
model is of SIQ type. This paper is organized as
follows: First, we formulate the model and discuss
the existence of equilibrium; then, we consider the
global stability of the endemic equilibrium when
p = 0 and conclusion of this paper is given in the
final section.

MATERRIAL AND METHODS

The established model of infectious
diseases focuses on the transmitting features of
diseases with constant immigration into the
susceptibles and the infected. According to
different features of the transmitted diseases, the
host population is partitioned into three
compartments, the susceptible, infectious and
recovered, with sizes denoted by S, I, Q,
respectively. The host total population N=S + 1+
Q. The SIQ model with constant immigration is
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described by the following system of differential

equations
S'=(1-p)A-uS—pSL
I'=pA+pSI-(u+d+a) 1, (1)
Q=al-(u+9)Q,

where w is the rate of natural death, d is non-
negative constant and denote the rate of disease
caused death. The constant a is the rate at which
the infections individuals leaving the infective
compartment for the quarantine compartment. The
parameter {3 is the rates of the efficient contract in
the infected period, (1 — p)A, pA are constant
recruitment of susceptibles, infectious, respectively.

Thus, the total population size N can be
determined by N(t) = S(t) + I(t) + Q(t) or from the
differential equation

N AN 5Q
de O THRETONT

It is convenient to use I, Q and N as
variables and replaced S by N — I — Q. This gives
the model

I'=pA+PBIN-1-Q -(u+d+a)l

Q=al-u+9Q 2)

N' =A-uN-08I-0Q

The system (2) is equivalent to the
system (1). This allows us to attack (1) by studying
the system (2). From biological considerations, we
study the system (2) in the closed set T =

A

LQN)ER}:0=1+Q=N= —}. It can be
w

verified that T is positively invariant with respect

to the system (2).
Equilibia of system (2) are given by
PA+PI(N-T-Q) - (u+d+a)I=0,
al - (u+8)Q =0,
uN + 0l + 8Q = A.
We solve for N and Q in terms of I and then
substitute N and Q into the first equation of the
system (2). This gives the quadratic equation
Bu+d+a) P-[BA-u(u+d+a)]l
—upA=0. (3)
If p =0, one root is I = 0, and there is a second
root

[ BA-uu+d+)
Plu+0 +a)
which is positive if and only if
o=PA-u+9d+a)>0.
If p >0, the quadratic equation (3) has one positive

and one negative root (Brauer and Diessche, 2001).
The disease-free equilibrium, I = 0, that occurs
when p =0 now become negative (not biologically
feasible). The positive root is

_ 0+\/02 +4BAup(u+9d +a)

I* » 4
2B(u+d+a)
0 (0<0),
with lim I* = o
= [ 0).
p—0 B(w+d+a) (©>0)

Thus o = 0 is a threshold, there is a basic
reproduction number

u(u+0 +a)
Thus, for p > 0, there is an unique equilibrium
P* = (I*, Q*, N*) which is given by

a I*, N*:é—§(1*+Q*)
w o u

* =

w+d
and I* as in (4).

RESULTS

Theorem 1 For the system (2) if Ry > 1, the
endemic equilibrium P* when p = 0 is local
asymptotically stable.

Proof. The Jacobian matrix of the system (2) at a
point P* = (I*, Q*, N*) is

—BI*+B(N*-I*-Q*)-(u+d+a) —pI* PI*
J(P¥) = o -(u+d) 0|
-9 -0 -

Its characteristic equation is det(J(P*) — AI) = 0,
where I is the unit matrix and

neN#_[x Qi A |2, ¢ W+d) b

woln u+d o
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So the characteristic equation become A3 + a;A? +
A + a3 =0, where

a;=a+ 20+ 3u + pI* — fn,

a=(a+0+2WPR* + (0 +2wW(0 + o + W)
+u(u+6) - Bn(d + 2u),

az=uwu+d)(u+d+a)+ (O(a+u+d)+
u(u + ) — uo)Br* — Pu(u + d)n.
Thus by Routh-Hurwitz criterion, the endemic
equilibrium P* is local asymptotically stable as it
can be seen for a; >0, a, >0, a3 >0 and a;a, — a3
>0.

To prove the global stability behavior of

this equilibrium, we defined the new variables

X =%S, y=%l, Z=%Q and parameters T =
A = 0 -
ut, c=—, B:E, 0=—, a=2. Using these
w w w w
change of variables, the system (2) becomes
dx =
—=(1-p)-x—-cPfx
. =(1-p) pxy
ﬂ:p+[§cxy—(1+5+d)y (3)
drt
dz . ( <
—=qay- 1+6)z
dt Y

with N(t) = x(t) + y(t) + z(t). The equation for
the total population N is

N _R-d1-50. (6)
dt

Therefore, we study the stability of the model (5)
in the region

I'= {(x,y,z) ERi:x,y,Z z0,x+y+z= N = 1}
Consider the subset I'* of I" given by
I*= {(x,y,z)ERi:x,y,zzo,H(l +8)y +(1+8)z = 1}

From equation (6), it is obvious that dN/dt =0 in
r* If

I*= {(x,y,z) ERi:X,y,z 20,x+(1+5)y+(1+8)z >1}
then dN/dt < 0 and if
I'*= {(X,y,z) ERi:x,y,z20,x+(1+8)y+(1+5)z < 1}

then dN/dt > 0. It follows that I'* is a positively

invariant set in I'. Thus the w-limit set of each
solution of the system (5) is contained in I'*.

Theorem 2 The system (5) has no periodic orbits,
homoclinic orbits or polygons in I'*.

Proof. Let f}, f,, f5 denote the right-hand side in
system (5), respectively. Let f = (f}, f5, f3), r = (x,

£
¥,2),g(x,y,2) = LX2 . We can get g= (g, 2, 25)
Xyz
where
g - _1+d _p 5 (+0+a)
Xz X Xy X
a (1+8) 1-p 1 =
g =-= P~ _cp

z y Xy 'y
g3=2+@_(1+6+a)_(1—p)+1+ﬂ
yz  z z XZ z  z

b}

then g - f = 0. Using the normal vector n =
(1, 1+9, 1+90) to I'*, it can be shown that

(Curlg)-(1, 148, 148) = - —— - "=~ —
y z Z VA

—(1+S) 1—_2P(l+l) +l(@+é+1”<0_
X

2Ty Lz 2

X\z V4 y
From Lemma 3 in Moghadas and Gumel (2002),
we know the system (5) has no periodic orbits,

homoclinic orbits or polygons in I'*.

Since I'* is a positively invariant set, it
follows from Theorem 1 that the w-limit set of
each solution of the system (1) must be a single
point P* in I'*. Therefore, we have established the
following theorem.

Theorem 3 If Ry> 1, the endemic equilibrium P*
of the system (1) is globally stable when p = 0.

CONCLUSION

In this paper, we discuss the SIQ model
with constant immigration. We derive a basic
reproduction number R and that it determines the
global dynamics of (1); if Ry > 1, a unique endemic
equilibrium P* is globally asymptotically stable
in the interior of the feasible region so that the
disease persists at the endemic equilibrium level
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if it is initially present.
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