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Global Stability of an SIQ Epidemic Model
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ABSTRACT

In this paper, an SIQ epidemic model is studied and analyzed. In the model the susceptibles

and the infectious have constant immigration. The model exhibits an unique endemic state if p > 0, a

disease-free state and an endemic state if p = 0. A basic reproduction number R0 is derived. If R0 > 1,  the

global stability of the endemic equilibrium is proved when p ≥ 0.
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INTRODUCTION

One intervention procedure to control the

spread of infectious diseases is to isolate  some

infectives, in order to reduce transmissions of the

infection to susceptibles.  Isolation may have been

the first infection control method, since biblical

passages refer to the ostracism of lepers, and

plague suffers were often isolated (Hethcote et al.,

2002). Takeuchi et al. (2000) and Ma et al. (2002)

studied the SIR infectious disease model in which

an infectious disease is transmitted by a vector after

an incubation time. Their model assumes that the

birth rate and the death rate are all constant, so the

dynamics of the total population is very simple.

In order to investigate disease dynamics for the

model with more demographic effects, it would

be necessary to isolate the fraction of arriving

infectives. We would like to mention some relative

investigation in epidemic models. Beretta and

Takeuchi (1995) investigated SIR models with

constant and varying population size, respectively.

Cooke et al. (1999), Brauer and Diessche (2001)

investigated a model for disease transmission with

a general contact rate and references therein.

The aim of this paper is to study global

stability of a model for the transmission dynamics

of infectious diseases that include a new class Q

of quarantined individuals, who have been

removed and isolated either voluntarily or

coercively from the infectious class. The resulting

model is of SIQ type. This paper is organized as

follows: First, we formulate the model and discuss

the existence of equilibrium; then, we consider the

global stability of the endemic equilibrium when

p ≥ 0 and conclusion of this paper is given in the

final section.

MATERRIAL AND METHODS

The established model of infectious

diseases focuses on the transmitting features of

diseases with constant immigration into the

susceptibles and the infected. According to

different features of the transmitted diseases, the

host population is partitioned into three

compartments, the susceptible, infectious and

recovered, with sizes denoted by S, I, Q,

respectively. The host total population N = S + I +

Q. The  SIQ  model with constant immigration is
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described by the following system of differential

equations

S′ = (1 – p) A – µS – βSI,

I′ = pA + βSI – (µ + δ + α) I, (1)

Q′ = αI – (µ + δ) Q,

where µ is the rate of natural death, δ is non-

negative constant and denote the rate of disease

caused death. The constant α is the rate at which

the infections individuals leaving the infective

compartment for the quarantine compartment. The

parameter β is the rates of the efficient contract in

the infected period, (1 – p)A, pA are constant

recruitment of susceptibles, infectious, respectively.

Thus, the total population size N can be

determined by N(t) = S(t) + I(t) + Q(t) or from the

differential equation

dN

dt
 = A – µN – δI – δQ

It is convenient to use I, Q and N as

variables and replaced S by N – I – Q. This gives

the model

I′ = pA + βI (N – I – Q) – (µ + δ + α) I

Q′ = αI – (µ + δ) Q (2)

N′ = A – µN – δI – δQ

The system (2) is equivalent to the

system (1). This allows us to attack (1) by studying

the system (2). From biological considerations, we

study the system (2) in the closed set T =

( , , ) :I Q N R I Q N
A

∈ ≤ + ≤ ≤








+
3 0

µ
. It can be

verified that T is positively invariant with respect

to the system (2).

Equilibia of system (2) are given by

pA + βI (N – I – Q) – (µ + δ + α) I = 0,

αI – (µ + δ) Q = 0,

µN + δI + δQ = A.

We solve for N and Q in terms of I and then

substitute N and Q into the first equation of the

system (2). This gives the quadratic equation

β (µ + δ + α) I2 – [βA – µ (µ + δ + α)] I

– µpA = 0. (3)

If p = 0, one root is I = 0, and there is a second

root

I
A

=
− + +

+ +
β µ µ δ α

β µ δ α
( )

( )

which is positive if and only if

σ = βA – µ (µ + δ + α) > 0.

If p > 0, the quadratic equation (3) has one positive

and one negative root (Brauer and Diessche, 2001).

The disease-free equilibrium, I = 0, that occurs

when p = 0 now become negative (not biologically

feasible). The positive root is

I
A p

*
( )

( )
,=

+ + + +

+ +

σ σ β µ µ δ α

β µ δ α

2 4

2
(4)

with lim * I
p → 0

 = 

                     ( < 0),

   ( > 0).
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σ
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



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Thus σ = 0 is a threshold, there is a basic

reproduction number

R
A

0 =
+ +
β

µ µ δ α( )
.

Thus, for p > 0, there is an unique equilibrium

P* = (I*, Q*, N*) which is given by

Q I I Q* *, * *=
+

− +( )α
µ δ µ

δ
µ

 N* =
A

and I* as in (4).

RESULTS

Theorem 1  For the system (2) if R0 > 1, the

endemic equilibrium P* when p ≥ 0 is local

asymptotically stable.

Proof. The Jacobian matrix of the system (2) at a

point P* = (I*, Q*, N*) is

J P

I N I Q

( *)

* * * * ( )

=

− + − −( ) − + +




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






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δ δ µ
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                                                         – ( + )    0

                           –                               –      –
.

Its characteristic equation is det(J(P*) – λI) = 0,

where I is the unit matrix and

n N I Q
A
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So the characteristic equation become λ3 + a1λ2 +

a2λ + a3 = 0, where

a1 = α + 2δ + 3µ + βI* – βn,

a2 = (α + δ + 2µ)βI* + (δ + 2µ)(δ + α + µ)

+ µ(µ + δ) – βn(δ + 2µ),

a3 = µ(µ + δ)(µ + δ + α) + (δ(α + µ + δ) +

µ(µ + δ) – µα)βI* – βµ(µ + δ)n.

Thus by Routh-Hurwitz criterion, the endemic

equilibrium P* is local asymptotically stable as it

can be seen for a1 > 0, a2 > 0, a3 > 0 and a1a2 – a3

> 0.

To prove the global stability behavior of

this equilibrium, we defined the new variables

x
A

S I
A

Q=
µ µ µ

, , y =
A

 z =  and parameters τ =

µt, c
A

=
µ

β
β
µ

δ
δ
µ

α
α
µ

, ˜ , ˜ , ˜ . =  =  =  Using these

change of variables, the system (2) becomes
dx

d
x c xy

τ
β= 1 – p( ) – – ˜

dy

d
cxy y

τ
β δ α= p + + +( )˜ – ˜ ˜1 (5)

dz

d
y z

τ
α δ= ˜ – ˜1 +( )

with Ñ(τ) = x(τ) + y(τ) + z(τ). The equation for

the total population Ñ is

dN

d
N I Q

˜
– ˜ – ˜ – ˜ .

τ
δ δ= 1 (6)

Therefore, we study the stability of the model (5)

in the region

Γ = ∈ ≥ + + = ≤{ }+( , , ) : , , , ˜x y z R x y z x y z N3 0 1

Consider the subset Γ∗ of Γ given by

Γ* ( , , ) : , , , ( ˜ ) ( ˜ )= ∈ ≥ + + + + ={ }+x y z R x y z x y z3 0 1 1 1δ δ

From equation (6), it is obvious that dÑ/dτ = 0 in

Γ∗. If

Γ* ( , , ) : , , , ( ˜ ) ( ˜ )= ∈ ≥ + + + + >{ }+x y z R x y z x y z3 0 1 1 1δ δ

then dÑ/dτ < 0 and if

Γ* ( , , ) : , , , ( ˜ ) ( ˜ )= ∈ ≥ + + + + <{ }+x y z R x y z x y z3 0 1 1 1δ δ

then dÑ/dτ > 0. It follows that Γ∗ is a positively

invariant set in Γ. Thus the ω-limit set of each

solution of the system (5) is contained in Γ∗.

Theorem 2 The system (5) has no periodic orbits,

homoclinic orbits or polygons in Γ∗.
Proof.  Let f1, f2, f3 denote the right-hand side in

system (5), respectively. Let f = (f1, f2, f3), r = (x,

y, z), g(x, y, z) = r f×
xyz

.  We can get  g = (g1, g2, g3)

where

g
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p
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then g · f = 0. Using the normal vector n =
( , ˜ ˜ )1  1+ ,  1+δ δ  to Γ∗,  it can be shown that
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From Lemma 3 in  Moghadas and Gumel (2002),

we know the system (5) has no periodic orbits,

homoclinic orbits or polygons in Γ∗.

Since Γ∗ is a positively invariant set, it

follows from Theorem 1  that the ω-limit set of

each solution of the system (1) must be a single

point P∗ in Γ∗. Therefore, we have established the

following theorem.

Theorem 3 If R0 > 1, the endemic equilibrium P∗

of the system (1) is globally stable when p ≥ 0.

CONCLUSION

In this paper, we discuss the SIQ model

with constant immigration. We derive a basic

reproduction number R0 and that it determines the

global dynamics of (1); if R0 > 1, a unique endemic

equilibrium P∗ is globally asymptotically stable

in the interior of the feasible region so that the

disease persists at the endemic equilibrium level
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if it is initially present.
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