# In silico Promoter Analysis of Photoperiod-Responsive Genes Identified by DNA Microarray in Rice (Oryza sativa L.)

Chareerat Mongkolsiriwatana<sup>1,2</sup>, Pradit Pongtongkam<sup>1</sup> and Surin Peyachoknagul<sup>1\*</sup>

### ABSTRACT

The bioinformatics tools, in silico analysis, were used to analyze the promoter regions of photoperiod-responsive genes in rice obtained from microarray analysis. The results revealed that the common feature of a photoperiod-responsive promoter is the combination of various light-responsive elements, hormone-responsive elements and stress-responsive elements. This indicated that the photoperiod response is controlled by light in coordination with hormones and stresses. The coordinated motifs, integrating hormones and stresses to photoperiod responses were identified. The GARE motif and G-box are the coordinated motifs integrating gibberellins with photoperiod while MBS and G-box are the coordinated motifs integrating ethylene or abscisic acid and stresses with photoperiod. Moreover, the specific organization of cis-regulatory elements was used to identify phytochrome A (phyA)-regulated genes. The data showed that phyA is involved in the expression of flowering-time genes either by the activation of floral inducers or the suppression of floral repressors. In addition, two novel cis-regulatory elements which are specific to day-length were identified. The novel A-rich element is specific to long daylight and is involved in the regulation of phyA and circadian rhythm to inhibit flowering whereas the novel GC element is specific to short daylight and involved in the regulation of gibberellin signaling to promote flowering. In conclusion, photoperiodic flowering in rice is controlled, partially, by phyA in coordination with A-rich and GC elements.

**Key words:** *in silico* promoter, photoperiod responsive promoter, over-representative motif, *cis*-regulatory element, rice

### INTRODUCTION

In plants, a large number of transcription factors are known to control the expression of target genes in various signal transduction cascades (Venter and Botha, 2004). Transcription-factor binding sites (TFBs or *cis*-regulatory elements), on the other hand, determine the specific timing and location of transcriptional activity. They are

primarily located in the long non-coding sequence upstream of a gene (Chaboute *et al.*, 2002). These regulatory motifs organized into distinct *cis*-regulatory modules are required for a specific expression pattern (Babu *et al.*, 2004). Thus, the identification of regulatory motifs and their organization is an important step to improve understanding of gene expression and regulation.

Received date: 02/09/08 Accepted date: 29/10/08

Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.

Department of Genetics, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140. Thailand.

<sup>\*</sup> Corresponding author, e-mail: fscisrp@ku.ac.th

Many databases have been developed for the prediction of *cis*-regulatory sites in a noncoding DNA sequence such as PlantCARE (Lescot *et al.*, 2002) and PLACE (Higo *et al.*, 1999). The candidate *cis*-regulatory elements in the promoter regions can be identified by searching against the known elements in the databases. In addition, novel *cis*-regulatory elements could also be detected with no prior knowledge of transcription-factor binding sites using the over-representative sequence of the promoters of co-expressed genes (Helden, 2003). Therefore, the use of *in silico* promoter analysis through bioinformatics as a tool has become more attractive and feasible when combined with DNA microarray analysis.

In a previous experiment, the GeneChip DNA microarray technique was used to investigate the global expression of photoperiod-responsive genes and to identify the photoperiodic-flowering pathway in rice (Oryza sativa L.) cultivar KDML 105 (Mongkolsiriwatana, 2008). However, the regulatory mechanism of the transcriptional control remained to be characterized. In this study, therefore, the bioinformatics tools were used to analyze the promoter of these genes. All known cis-regulatory elements that occurred in the promoter regions were investigated and also the coordinated motifs integrating plant hormones and stresses with photoperiod responses were identified. Furthermore, the specific organization of cis-regulatory elements was used to detect phytochrome A (phy A)-regulated genes from the photoperiod-responsive pathway and two novel cis-regulatory elements specific to the day length in rice were elucidated.

### MATERIALS AND METHODS

### Promoter sequence data sets

The photoperiod-responsive genes in rice identified and used in this study were derived from the data of Mongkolsiriwatana (2008), and their orthologous genes in *Arabidopsis* were identified

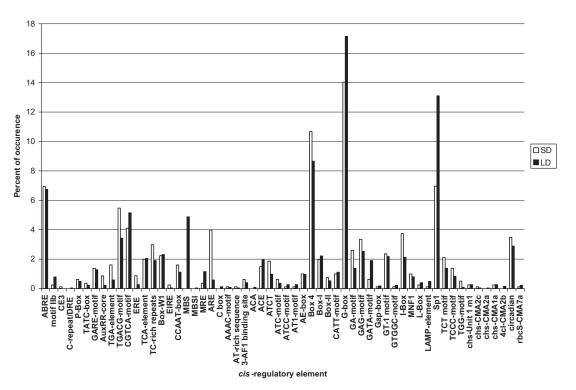
using rice-nucleotide sequences searched against *Arabidopsis* genes in the TAIR8 database (<a href="http://www.arabidopsis.org/wublast/index2.jsp">http://www.arabidopsis.org/wublast/index2.jsp</a>). Based on the gene location from the Rice TIGR release 5 or TAIR8 database, the 1.5 kb sequence upstream from the start site was extracted as a putative promoter region. The data sets consisted of the promoter sequences of rice from induced (61 sequences) and suppressed (81 sequences) genes under SD light, which were named as SD and LD promoters, respectively, as well as those of the SD and LD orthologous genes in *Arabidopsis*.

### Search for known cis-regulatory elements

The putative promoter sequences of photoperiod-responsive genes were compared against known *cis*-regulatory elements in the collection of the PlantCARE database using the Search for Care program (<a href="http://bioinformatics.psb.ugent.be/webtools/plantcare/html/">http://bioinformatics.psb.ugent.be/webtools/plantcare/html/</a>). The *cis*-regulatory elements were listed and the occurrence number on each promoter was recorded. The percentage of these specific elements relative to the total number in each data set was calculated.

## Analysis of over-representative motifs from coexpressed genes

Each promoter data set of co-expressed genes was used to detect the over-representative sequence using an oligo-analysis program (Helden *et al.*, 1998; Helden, 2003). The oligomer counting mode was set at 10 oligomer lengths, to prevent overlapping matches and counting on a single strand. The consensus sequence output from the oligo-analysis was converted to a logo picture by the Gibbs program (Helden, 2003). The over-representative sequences were analyzed for any positional bias using a position-analysis program (Helden, 2003). These programs are available in the Regulatory Sequence Analysis Tool (RSAT) package (http://rsat.scmbb.ulb.ac.be/rs at/).


### RESULTS AND DISCUSSION

# Common features of photoperiod-responsive promoters

To characterize the general features of the promoter regions of the photoperiodresponsive genes, the 1.5-kb sequences upstream from the start site of the induced and suppressed genes were used to search against known cisregulatory elements in the PlantCARE database using the Search for Care program (http:// bioinformatics.psb.ugent.be/webtools/plantcare/ html/). The specific elements presented in the promoter regions of the coding strands were counted and are listed in Table 1. The data revealed that these promoter regions contained several cisregulatory elements; 839 in SD promoters and 1,231 in LD promoters. These elements were classified into three groups according to their responsive functions: a hormone-responsive element (HRE); a light-responsive element (LRE);

and a stress-responsive element (SRE). The HREs were composed of five subgroups: abscisic acid (ABA)-responsive elements, gibberellins (GA)-responsive elements, auxin-responsive elements, jasmonic acid (JA)-responsive elements and ethylene-responsive elements as shown in Table 1. The data also indicated that the transcription of photoperiod-responsive genes was specifically influenced not only by light, but also by various hormones and stresses, which agreed with a previous report (Mongkolsiriwatana, 2008). This showed the response of photoperiod crosstalk with stresses and hormones.

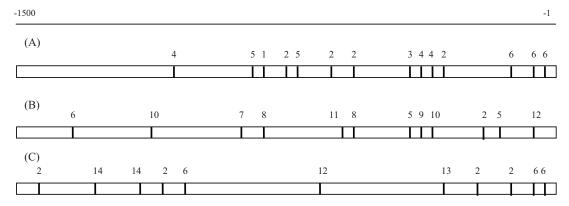
To compare the occurrence of elements in a subset of the genome, the percentage of individual elements in each set of promoters was calculated and is depicted in Figure 1. As expected, LREs which commonly occurred in light-regulatory promoters (Jiao *et al.*, 2007) were enriched in the promoters of photoperiod-responsive genes. Thus, these data showed that



**Figure 1** The distribution occurrence of *cis*-regulatory elements in the promoter of photoperiod responsive genes.

**Table 1** The collection of *cis*-regulatory elements in the promoter of photoperiod-responsive genes.

| Type of motif           | Sequence         | Function                                                                               | Total nun |     |
|-------------------------|------------------|----------------------------------------------------------------------------------------|-----------|-----|
|                         |                  |                                                                                        | SD        | LD  |
| Abscisic acid-respons   | sive element     |                                                                                        | 55        | LD  |
| ABRE                    | TACGTG           | cis-acting element involved in the abscisic acid responsiveness                        | 56        | 78  |
| motif IIb               | CCGCCGCGCT       | Abscisic acid responsive element                                                       | 2         | 8   |
| CE3                     |                  | ABA and VP1 responsive                                                                 | 1         | 0   |
| Gibberellins-respons    | ive element      |                                                                                        |           |     |
| P-Box                   | CCTTTTG          | Gibberellin-responsive element                                                         | 5         | 6   |
| ΓATC-box                | TATCCCA          | Cis-acting element involved in gibberellin responsiveness                              | 3         | 1   |
| GARE-motif              | AAACAGA          | Gibberellin-responsive element                                                         | 11        | 18  |
| Auxin-responsive ele    | ment             | ·                                                                                      |           |     |
| AuxRR-core              | GGTCCAT          | cis-acting regulatory element involved in auxin responsiveness                         | 7         | 1   |
| GA-element              | AACGAC           | Auxin-responsive element                                                               | 13        | 3   |
| Jasmonic acid-respoi    | nsive element    |                                                                                        |           |     |
| GACG-motif              | TGACG            | cis-acting regulatory element involved in the MeJA-responsiveness                      | 44        | 43  |
| CGTCA-motif             | CGTCA            | cis-acting regulatory element involved in the MeJA-responsiveness                      | 33        | 71  |
| Ethylene-responsive     | element          |                                                                                        |           |     |
| ERE                     | ATTTCAAA         | Ethylene-Responsive Element                                                            | 7         | 4   |
| CA-element              | CCATCTTTTT       | cis-acting element involved in salicylic acid responsiveness                           | 16        | 26  |
| C-rich repeats          | ATTCTCTAAC       | cis-acting element involved in defense and stress responsiveness                       | 24        | 22  |
| Box-W1                  | TTGACC           | fungal elicitor responsive element                                                     | 18        | 35  |
| EIRE                    | TTCGACC          | Elicitor-responsive element                                                            | 2         | 1   |
| tress-responsive ele    | ment             |                                                                                        |           |     |
| CCAAT-box               | CAACGG           | MYBHv1 binding site                                                                    | 13        | 14  |
| MBS                     | TAACTG           | MYB binding site involved in drought inducibility                                      | 34        | 62  |
| ARE                     | TGGTTT           | Cis-acting regulatory element essential for the anaerobic induction                    | 32        | 6   |
| ight-responsive eler    | nent             |                                                                                        |           |     |
| /IRE                    | AACCTAA          | MYB binding site involved in light responsiveness                                      | 3         | 11  |
| box                     | CTGACGTCAG       | Cis-acting regulatory element involved in light responsiveness                         | 0         | 3   |
| AAC-motif               | CAATCAAAACCT     | light responsive element                                                               | 1         | 1   |
| T-rich sequence         | ATTAATTTTACA     | part of a light responsive module                                                      | 1         | 1   |
| -AF1 binding site       | TAAGAGAGGAA      | light responsive element                                                               | 5         | 6   |
| ACE                     | CTAACGTATT       | Cis-acting element involved in light responsiveness                                    | 12        | 24  |
| ATCT                    | AATCTAATCT       | part of a conserved DNA module involved in light responsiveness                        | 15        | 14  |
| TC-motif                | AGCTATCCA        | part of a conserved DNA module involved in light responsiveness                        | 5         | 4   |
| ATCC-motif              | CAATCCTC         | part of a conserved DNA module involved in light responsiveness                        | 1         | 3   |
| AT1-motif               | AATTATTTTTTATT   | part of a light responsive module                                                      | 1         | 4   |
| AE-box                  | AGAAACAT         | part of a module for light response                                                    | 8         | 10  |
| Box 4                   | ATTAAT           | part of a conserved DNA module involved in light responsiveness                        | 86        | 11: |
| Box-I                   | TTTCAAA          | light responsive element                                                               | 16        | 23  |
| Box-II                  | TGGTAATAA        | part of a light responsive element                                                     | 6         | 9   |
| CATT-motif              | GCATTC           | part of a light responsive element                                                     | 8         | 11  |
| 3-box                   | CACGTA           | Cis-acting regulatory element involved in light responsiveness                         | 113       | 20  |
| GA-motif                | AAAGATGA         | part of a light responsive element                                                     | 21        | 14  |
| GAG-motif               | AGAGATG          | part of a light responsive element                                                     | 27        | 36  |
| GATA-motif              | GATAGGA          | part of a light responsive element                                                     | 5         | 19  |
| Sap-box                 | CAAATGAA(A/G)A   | part of a light responsive element                                                     | 1         | 1   |
| GT-1 motif              | GGTTAAT          | light responsive element                                                               | 19        | 24  |
| TGGC-motif              | GATTCTGTGGC      | part of a light responsive element                                                     | 1         | 2   |
| -Box                    | GATATGG          | part of a light responsive element                                                     | 30        | 22  |
| INF1                    | GTGCCC(A/T)(A/T) | light responsive element                                                               | 8         | 11  |
| -Box                    | TCTCACCAACC      | part of a light responsive element                                                     | 2         | 4   |
| AMP-element             | CCAAAACCA        | part of a light responsive element                                                     | 1         | 7   |
| ISp1                    | CC(G/A)CCC       | Light responsive element                                                               | 56        | 17  |
| CT motif                | TCTTAC           | part of a light responsive element                                                     | 36<br>17  | 13  |
| CCC-motif               | TCTCCCT          | part of a light responsive element                                                     | 11        | 13  |
| GG-motif                | GGTTGCCA         | part of a light responsive element                                                     | 4         | 2   |
|                         | ACCTAACCTCC      |                                                                                        | 2         | 1   |
| hs-Unit 1 m1            |                  | part of a light responsive element                                                     |           |     |
| hs-CMA2c                | ATATACGTGAAGG    | part of a light responsive element                                                     | 1         | 1   |
| hs-CMA2a                | TCACTTGA         | part of a light responsive element                                                     | 0         | 1   |
| hs-CMA1a                | TTACTTAA         | part of a light responsive element                                                     | 2         | 3   |
| -cl-CMA2b               | TCTCACCAACC      | Light responsive element                                                               | 0         | 1   |
| L C CNAA                |                  |                                                                                        |           | 1   |
|                         | GGCGATAAGG       | part of a light responsive element                                                     | 1         |     |
| bcS-CMA7a<br>⊐Circadian | CAANNNATC        | cis-acting regulatory element involved in circadian control  Total regulatory elements | 28        | 35  |


the expressions of photoperiod-responsive genes were mainly controlled by LREs in coordination with plant HREs and SREs. This agreed with the obtained microarray data (Mongkolsiriwatana, 2008), in which the expression of some hormonesignaling and stress-responsive genes was altered by SD light.

Among LREs themselves, G-box, Sp1 and Box-4 were predominantly found in both SD and LD promoters, suggesting that these three elements were the common cis-regulatory elements of photoperiod-responsive genes. Interestingly, G-box, a target site of phytochrome interacting factors (PIFs), which is required for phytochrome-regulated transcription in photoperiod response (Menkens et al., 1995), as well as for stress and defense responses (Aris et al., 1993) was the highest enriched one. Thus, this observation supported the hypothesis that the expression of photoperiod-responsive genes was mainly controlled by phytochromes. In addition, circadian elements were found in both SD and LD promoters. These data indicated that some photoperiod-responsive genes are controlled by the circadian clock as also reported by Young and Kay (2001).

Obviously, no single element of LREs was found in any photoperiod-regulated promoters, suggesting that a combination of the light-regulatory network is required for the photoperiod response. The specific combination of LREs for a photoperiod response could not be identified in this experiment, because of its complexity. However, this study is the first report to show the characteristics of the photoperiod-responsive promoter.

### Identification of coordinated motifs integrating hormones and stresses to photoperiod responses

To further understand the coordinated regulation between photoperiod and hormones, the promoters of hormone-signaling genes obtained from microarray data were analyzed. These genes were *SLEEPY 1* (*SLY 1*) in GA signaling with upregulation, *XRN 4* in ethylene signaling and *Viviparous 14* (*Vip 14*) in ABA signaling with down-regulations. All *cis*-regulatory elements that occurred on the promoter region of these genes were mapped as shown in Figure 2. Several LREs were identified in each of the three promoters but with different combinations. Interestingly, the GA-responsive element (GARE motif) was found in



**Figure 2** Feature map of *cis*-regulatory elements on the promoter region of *SLY 1* (A), *XRN 4* (B) and *Vip 14* (C). The Arabic numbers 1 to 14 indicate *cis*-regulatory elements; 1= ACE element, 2= G-box, 3 = GARE, 4 = LTR, 5 = MRE, 6= Sp1, 7 = AT1 motif, 8 = Box 4, 9 = CCGTCC-box, 10 = GAG motif, 11 = GT-1 motif, 12 = MBS, 13 = AE-box and 14 = GATA. The function of the *cis*-regulatory elements is shown in Table 1.

the promoter of the SLY 1 gene, supporting that view that the transcription of SLY 1 was induced by GA in coordination with light responses. The expressed product of the SLY 1 gene is the F-box subunit of SCF E3 ubiquitin ligase that activates GA signaling by promoting the proteolysis of a GA repressor (DELLA protein) (Lechner et al., 2006). The expression of SLY 1 is known to be controlled by the GA level (Hirano et al., 2008). Thus, this evidence suggested that the GA level was increased by SD light, leading to the activation of SLY 1 transcription via the GARE motif on its promoter. This hypothesis was supported by the work of Kulikowska-Gulewska et al. (2002), which demonstrated that the GA level was increased by SD light in *Pharbitis nil* (an SD plant). Furthermore, G-Box which is a recognition site for phytochrome-interacting factors (PIFs) was found in the SLY 1 promoter. This showed that phytochromes are also involved in the regulation of the SLY 1 expression in the GA-signaling response. It has also been reported that phytochromes were mainly involved in the regulation of the photoperiod response in rice (Izawa et al., 2007). Bringing all this information together, it could be concluded that the expression of SLY 1 is an integrator, linking the GA hormone to the photoperiod via the specific organization of G-box and GARE on its promoter. Thus, G-box and GARE are the coordinated motifs which integrate the GA hormone to photoperiod responses.

In addition, the MBS motif, which is the target site of the myb-transcription factor, responded to abiotic stresses and with G-box was found in the promoters of *XRN 4* and *Vip 14* (Figure 2). This showed that ethylene and ABA signaling are controlled by phytochrome in the photoperiod and stress responses, which was in agreement with previous reports, that demonstrated both ethylene and ABA-signaling were involved in abiotic stresses (Rabbani *et al.*, 2003; Achard *et al.*, 2006; Zhou *et al.*, 2007; Huang *et al.*, 2008) and in

photoperiod responses (Welling *et al.*, 1997; Kesy *et al.*, 2008). It suggested that the expression of *XRN 4* and *Vip 14* are integrators linking stressresponsive genes to photoperiodic regulation. Thus, MBS and G-box are coordinated motifs which integrate ethylene or ABA hormones and stresses to photoperiod responses.

# Identification of phytochrome A-regulated genes using specific motifs in their promoter regions

Phytochrome A (phyA)-signaling genes, i.e., PIF 3, FAR 1, COP 1 were found in photoperiod-responsive genes, showing that phyA must be involved in the photoperiod response in rice. Thus, it is interesting to further identify the phyA-regulated genes to elucidate the influence of phyA in photoperiod responsive pathway. The promoters of phyA-regulated genes are known to contain the G-box and GT-1 motifs and/or the GATA motif, while the G-box itself was found to be located upstream of the GT-1 motif and/or GATA motif (Hudson and Quail, 2003; Jiao et al., 2007). Thus, these criteria were used to select the phyA-regulated genes from the members of the SD induced and SD-suppressed genes. These genes are listed in Table 2 and Table 3 respectively. The data indicated that the function of phyA was not only to activate, but also to suppress the expression of genes as suggested by Tepperman et al. (2001). Interestingly, both the flowering timeregulated genes, i.e, floral inducers (Hd3a, MADS box transcription factor I and MADS box transcription factor 14) in the SD-induced genes and floral repressors (AP 2, FAR 1 and Vip 14) in the SD-suppressed genes were found. This result supported the hypothesis that phyA regulates flowering time in response to photoperiod either by the direct or indirect activation of floral inducers or the suppression of floral repressors in rice. This finding is consistent with the notion that phyA plays a promotional role in flowering as seen from the early flowering of over-expressed phyA, but

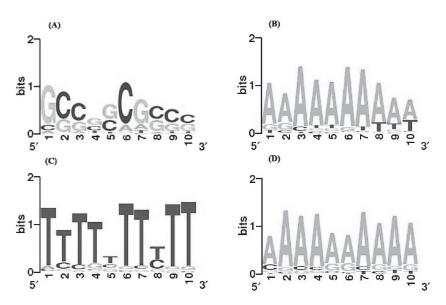
**Table 2** Putative phytochrome A–regulated genes induced by SD light.

| RepresentativeID | TIGR locus     | Description                                  |
|------------------|----------------|----------------------------------------------|
| AK101991         | LOC_Os12g09700 | Jasmonate-induced protein                    |
| AK069331         | LOC_Os03g54160 | MADS-box transcription factor 14             |
| AK067894         | LOC_Os10g33290 | NPGR2, putative, expressed                   |
| AK068816         | LOC_Os08g10310 | SHR5-receptor-like kinase                    |
| L34271           | LOC_Os03g11614 | MADS-box transcription factor 1              |
| AK099709         | LOC_Os03g61160 | Expressed protein                            |
| U30479           | LOC_Os05g19570 | Alpha-expansin 1 precursor                   |
| AK107926         | LOC_Os01g28450 | Pathogenesis-related protein PRB1-2          |
| AK102086         | LOC_Os10g40440 | Cortical cell-delineating protein precursor, |
| AK065631         | LOC_Os11g45990 | Protein binding protein, putative            |
| AB052943         | LOC_Os06g06320 | OsFTL2 - Rice FT-Like2 (Hd3a)                |
| AK107044         | LOC_Os04g11660 | F-box protein interaction domain             |
| AB017914         | LOC_Os11g42090 | Leucine Rich Repeat family protein           |
| BI798695         | LOC_Os03g55734 | Prolamin, putative, expressed                |
| AK100128         | LOC_Os04g03796 | peptidase/ subtilase, putative, expressed    |
| AK059202         | LOC_Os11g10590 | Expressed protein                            |
| 9629.m06682      | LOC_Os01g67280 | Hypothetical protein                         |
| 9630.m05489      | LOC_Os03g23040 | Hypothetical protein                         |
| 9639.m03143      | LOC_Os11g34990 | Hypothetical protein                         |
| 9640.m02992      | LOC_Os12g30940 | F-box domain containing protein              |
| AK067428         | LOC_Os02g48340 | RNA-binding region-containing protein        |
| NM_190345        | LOC_Os01g60510 | Hypothetical protein                         |
| 9631.m02338      | LOC_Os03g23940 | Expressed protein                            |
| 9631.m04608      | LOC_Os01g07180 | Hypothetical protein                         |
| 9640.m00101      | LOC_Os12g01990 | Expressed protein                            |

Note: Floral inducing genes are highlighted by **bold font.** 

the late flowering of mutated *phyA* in *Arabidopsis* (Johnson *et al.*, 1994; Bagnall *et al.*, 1995). Taken all together, this study proposed that phyA is involved in the regulation of photoperiodic flowering by promoting floral inducers while inhibiting floral repressors via the specific organization of *cis*-regulatory elements on the promoter of the target genes.

# Identification of novel *cis*-regulatory elements from the promoter of photoperiod responsive genes


To identify the novel *cis*-regulatory elements that are a specific response to day-length

in rice, the promoter region of co-expressed genes in each set was used to identify a common overrepresentative motif using oligo-analysis and subsequently converted to a logo picture by the Gibbs programs. The results showed that the GCCGGCGCCC and AAAAAAAA elements were over-represented in the promoter of SD and LD genes, respectively (Figure 3). The GCCGGCGCCC combination was assigned as the GC element while AAAAAAAAA was assigned as the A-rich element. Whether or not these overrepresented sequences were positionally biased in the promoter of the SD or LD genes, the distribution of each element in the promoter of

| Table 3 | Putative ph | ytochrome A-re | gulated genes | suppressed by | v SD light. |
|---------|-------------|----------------|---------------|---------------|-------------|
|---------|-------------|----------------|---------------|---------------|-------------|

| RepresentativeID | TIGR locus     | Description                               |
|------------------|----------------|-------------------------------------------|
| 9632.m04031      | LOC_Os04g42260 | Protein phosphatase 2C isoform gamma      |
| 9635.m03511      | LOC_Os07g35540 | Protein kinase, putative, expressed       |
| AK058773         | LOC_Os02g08440 | OsWRKY71 – Superfamily of rice TFs        |
| AK060639         | LOC_Os10g36500 | Pectinesterase inhibitor domain           |
| AK063042         | LOC_Os03g08520 | Expressed protein                         |
| AK064287         | LOC_Os02g54590 | Serine threonine kinase, putative         |
| AK067836         | LOC_Os09g31130 | Tonoplast dicarboxylate transporter       |
| AK069654         | LOC_Os02g18064 | expressed protein                         |
| AK101750         | LOC_Os01g43740 | cytochrome P450 72A1, putative,           |
| AK109161         | LOC_Os03g13740 | U-box domain containing protein,          |
| AK110739         | LOC_Os10g36520 | expressed protein                         |
| AK111335         | LOC_Os02g50110 | expressed protein                         |
| AK111571         | LOC_Os01g64360 | Myb-like DNA-binding domain               |
| AK119780         | LOC_Os07g05940 | viviparous-14, neoxanthin cleavage enzyme |
| AY345234         | LOC_Os01g73770 | Transcription factor RCBF2, AP 2 protein  |
| BP184627         | LOC_Os01g19050 | far-red impared                           |
| CB621890         | LOC_Os02g52390 | neoxanthin cleavage enzyme                |
| NM_188146        | LOC_Os01g17396 | expressed protein                         |
| AK108588         | LOC_Os06g49550 | far-red impaired responsive protein       |

Note: Floral repressing genes are highlighted by **bold font** 



**Figure 3** Over-representative *cis*-regulatory elements specific to day-length response. Over-representative *cis*-regulatory element of SD (A) and LD (B) promoters in rice. Over-representative *cis*-regulatory element of SD orthologous (C) and LD orthologous (D) in *Arabidopsis*. The overall height of each stack indicates the sequence conservation at that position (measured in bits), whereas the height of symbols within the stack reflects the relative frequencies of the corresponding nucleic acid at that position.

these genes was determined using a positionanalysis program from RSAT. The data revealed that the GC element was predominantly found in SD promoters while the A-rich element was only enriched in LD promoters (data not shown), indicating the specificity of each element in each subset genome.

To further investigate whether the novel cis-regulatory motifs specific to day-length in rice (an SD plant) are conserved in Arabidopsis thaliana motifs (an LD plant), over-representative motifs in the promoter regions of orthologous genes in Arabidopsis were analyzed. The data are shown in Figure 3. Interestingly, the consensus sequences of the over-representative sequences of rice LD promoters and Arabidopsis show high homology, suggesting that rice and Arabidopsis might have some conserved regulatory mechanisms in response to photoperiod. Thus, to examine the role of the A-rich element, the LDresponsive genes containing this element were identified and are listed in Table 4. Proteins encoded by these predicted genes appear to have diverse biological functions; transcription, metabolism, signal transduction, energy metabolism and protein processes (Table 4), suggesting that the A-rich element plays a role in coordination with various pathways during the LD light response in rice. Moreover, the A-rich element was found in the promoters of floral repressor genes both in rice and Arabidopsis, i.e., AP 2, Vip 14, FAR 1, COP 1 and ARR1-like (Mongkolsiriwatana, 2008). FAR 1, COP 1 and ARR1-like proteins are also involved in phyA signaling and circadian rhythm (the major mechanisms of photoperiod control) (Hoecker and Quail, 2001; Lin and Wang, 2004; Hazen et al., 2005). In addition, the A-rich element is similar to the CCA1 motif 2 binding site, AAAAAAATCTATGA (RiceCis-element Searcher, <a href="http://hpc.irri.cgiar.org/">http://hpc.irri.cgiar.org/</a> tool/nias/ces) which is required by circadian rhythm-controlled genes (McClung, 2006). This evidence supported the hypothesis that the A-rich element is involved

in the regulation of phyA and circadian rhythm to inhibit flowering during non-inductive light periods. Thus, this study proposed that the novel A-rich element is one of the key *cis*-regulatory elements in the specific day-length to control flowering in rice.

On the other hand, the overrepresentative motif (GC element), obtained from the SD promoters of rice is not homologous to the SD promoters of Arabidopsis, indicating that this element is unique to rice. It is interesting to further investigate whether the GC element has a specific role in the SD response. The SD-responsive genes containing the GC-elements were identified and are shown in Table 5. Among their known functions, these genes have diverse biological functions, including; stress and defense response, metabolism, protein processing, transcription and signaling. It is possible that the GC element plays a coordinating role in various biological processes during SD light response. The GC element was also found in the promoter of the pathogen resistant genes, mla1 and multidrug resistant protein 8. Although the correlation between plant pathogen and photoperiod has not been reported, pathogen infection is known to accelerate flowering time with more pronounced effects in resistant interaction (Korves and Bergelson, 2003). In addition to pathogen-resistant genes, the promoter of SLY 1 was found to contain the GC element, suggesting that this element plays a positive role in the regulation of GA signaling. GA is known as a growth regulator to promote flowering. Thus, this result implied that GC element was possibly involved in the regulation of photoperiodic flowering in rice.

It should be noted that most of the SD responsive genes that contain GC elements are unknown genes. These genes might have a specific role in response to SD light in rice. Their functions and regulatory mechanisms might clarify the mystery of different responses to day-length shown by SD and LD plants.

 Table 4
 List of SD-suppressed genes containing A-rich element in the promoter regions.

|                                  | 1 3D-suppressed genes containing A-rich element in the promoter i                   |                                           |
|----------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------|
| TIGR Gene Target                 | Rice annotation                                                                     | Functional categories *                   |
| LOC_Os01g58310                   | expressed protein                                                                   | Unknown                                   |
| AK106968                         | expressed protein                                                                   | Unknown<br>Unknown                        |
| LOC_Os01g68269                   | expressed protein expressed protein                                                 | Unknown                                   |
| LOC_Os08g45200<br>LOC_Os02g10030 | hypothetical protein                                                                | Unknown                                   |
| LOC_Os03g02110                   | expressed protein                                                                   | Unknown                                   |
| LOC_Os03g02110<br>LOC_Os03g08520 | expressed protein                                                                   | Unknown                                   |
| LOC_Os05g00520<br>LOC_Os05g49630 | expressed protein                                                                   | Unknown                                   |
| LOC_Os02g50110                   | expressed protein                                                                   | Unknown                                   |
| LOC_Os02g21269                   | hypothetical protein                                                                | Unknown                                   |
| LOC_Os05g36970                   | expressed protein                                                                   | Unknown                                   |
| LOC_Os05g41630                   | expressed protein                                                                   | Unknown                                   |
| LOC_Os06g11760                   | expressed protein                                                                   | Unknown                                   |
| LOC_Os06g32540                   | hypothetical protein                                                                | Unknown                                   |
| LOC_Os08g07860                   | hypothetical protein                                                                | Unknown                                   |
| LOC_Os01g72990                   | hypothetical protein                                                                | Unknown                                   |
| LOC_Os06g27860                   | expressed protein                                                                   | Unknown                                   |
| LOC_Os04g02880                   | expressed protein                                                                   | Unknown                                   |
| LOC_Os07g02624                   | expressed protein                                                                   | Unknown                                   |
| LOC_Os10g40280                   | expressed protein                                                                   | Unknown                                   |
| LOC_Os08g37660                   | expressed protein                                                                   | Unknown                                   |
| LOC_Os02g52210                   | RING/C3HC4/PHD zinc finger-like protein                                             | Transcription factor                      |
| LOC_Os02g08440                   | OsWRKY71                                                                            | Transcription factor                      |
| LOC_Os01g64470                   | Harpin-induced protein 1 containing protein                                         | Transcription factor                      |
| LOC_Os08g36920                   | ERF (ethylene response factor) subfamily B-1 of ERF/AP2 transcription factor family | Transcription factor                      |
| LOC_Os05g12640                   | BURP domain                                                                         | Transcription factor                      |
| LOC_Os01g03720                   | putative myb-related transcription factor                                           | Transcription factor                      |
| LOC_Os01g73770                   | Transcription factor RCBF2/dehydration and cold-relative                            | Transcription factor                      |
| LOC_Os10g25230                   | ZIM motif family protein                                                            | Transcription factor                      |
| LOC_Os03g28940                   | pnFL-2, putative, expressed, ZIM motif family protein                               | Transcription factor                      |
| LOC_Os01g74020                   | ARR1 protein-like, putative, expressed (LUX)**                                      | Transcription factor                      |
| LOC_Os06g44010                   | WRKY28 protein                                                                      | Transcription factor                      |
| LOC_Os02g36530                   | helix-loop-helix DNA-binding domain containing protein                              | Transcription factor                      |
| LOC_Os03g07440                   | putative eribonuclease P, putative, expressed                                       | Transcription factor                      |
| LOC_Os03g32220                   | Zinc finger Oryza sativa RERJ1 mRNA for Transcription Factor, PIF 3**               | Transcription factor                      |
| LOC_Os04g23550<br>LOC_Os03g53020 | Helix-loop-helix DNA-binding domain containing protein                              | Transcription factor Transcription factor |
| LOC_Os01g64310                   | putative NAC-domain protein                                                         | Transcription factor                      |
| LOC_Os02g39330                   | Endochitinase PR4 precursor                                                         | Metabolism                                |
| LOC_Os10g34840                   | ripening-related protein 3 precursor, putative, expressed                           | Metabolism                                |
| LOC_Os01g43740                   | cytochrome P450                                                                     | Metabolism                                |
| LOC_Os08g14190                   | Sulfotransferase domain containing protein                                          | Metabolism                                |
| LOC_Os05g43910                   | Cytochrome P450 family                                                              | Metabolism                                |
| LOC_Os06g15410                   | Aldose 1-epimerase family protein                                                   | Metabolism                                |
| LOC_04g37430                     | Lipoxygenase 5                                                                      | Metabolism                                |
| LOC_Os01g72530                   | EF hand family protein, calmodulin-like protein 41,                                 | Signaling                                 |
| LOC_Os07g44290                   | CBL-interacting serine/threonine-protein kinase 1                                   | Signaling                                 |
| LOC_Os05g07420                   | putative receptor-like protein kinase (Arabidopsis thaliana)                        | Signaling                                 |
| LOC_Os06g49550                   | far-red impaired responsive protein** (FAR 1)                                       | Signaling                                 |
| LOC_Os01g19050                   | far-red impared** (FAR1 )                                                           | Signaling                                 |
| LOC_Os02g54590                   | Kinase                                                                              | Signaling                                 |
| LOC_Os04g42260                   | Protein phosphatase 2C containing protein, expressed                                | Signaling                                 |
| LOC_Os07g35540                   | putative serine/threonine-specific protein kinase                                   | Signaling                                 |
| LOC_Os12g19470                   | Ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit                       | Energy                                    |
| LOC_Os07g41300                   | putative NADH dehydrogenase 49kDa protein                                           | Energy                                    |
| LOC_Os04g51160                   | AOX1b mRNA for alternative oxidase                                                  | Energy                                    |
| LOC_Os07g02970                   | COP 1 interacting protein                                                           | Processing                                |
| LOC_Os01g72160                   | Glutathione S-transferase, putative, expressed                                      | Processing                                |
| LOC_Os02g33590                   | Ubiquitin-protein ligase, putative, expressed                                       | Processing                                |
| LOC_Os03g10050                   | serine O-acetyltransferase, putative                                                | Processing                                |
| LOC_Os02g17000                   | Subtilisin N-terminal Region family protein                                         | Processing                                |
| LOC_Os01g51450                   | nucleosome assembly protein (NAP),                                                  | Processing                                |
| LOC_Os10g35090                   | putative membrane-associated protein                                                | Growth/structure                          |
| LOC_Os08g23870                   | Late embryogenesis abundant group 1 family protein                                  | Growth/structure                          |
| LOC_Os09g27940                   | Avr9 elicitor response protein, putative, expressed                                 | Stress/defense                            |
| LOC_Os01g03340                   | Bowman-Birk type bran trypsin inhibitor precursor                                   | Stress/defense                            |
| LOC_Os10~26500                   | Viviparous-14, neoxanthin cleavage enzyme                                           | Stress/defense                            |
| LOC_Os10g36500                   | Pectinesterase inhibitor domain                                                     | Stress/defense                            |

Note; The flowering time associated genes are highlighted by bold font.

\* Function categories were classified according to their putative function and consulted with MIPS MATDB database (http://mips.gsf.de/proj/thal/db/index.html).

 Table 5
 List of SD-induced genes containing a GC element in the promoter regions.

| Table 5 List of 51    | 5-induced genes containing a GC element in the promoter i                 | egions.                |
|-----------------------|---------------------------------------------------------------------------|------------------------|
| TIGR Gene Target      | Rice annotation                                                           | Functional categories* |
| LOC_Os01g34970        | multidrug resistance protein 8, putative, expressed                       | Stress and defense     |
| LOC_Os01g63010        | USP family protein, putative, expressed                                   | Stress and defense     |
| LOC_Os12g11990        | expressed protein                                                         | Unknown                |
| LOC_Os03g54150        | expressed protein                                                         | Unknown                |
| LOC_Os07g43604        | expressed protein                                                         | Unknown                |
| LOC_Os06g29730        | expressed protein                                                         | Unknown                |
| LOC_Os03g61160        | expressed protein                                                         | Unknown                |
| LOC_Os10g22510        | Mla1, putative, expressed                                                 | Stress and defense     |
| LOC_Os10g42040        | expressed protein                                                         | Unknown                |
| LOC_Os04g02640        | 3-ketoacyl-CoA synthase, putative, expressed                              | Metabolism             |
| LOC_Os11g20239        | expressed protein                                                         | Unknown                |
| LOC_Os11g35340        | S-adenosylmethionine-dependent methyltransferase                          | Metabolism             |
| LOC_Os12g04770        | Conserved hypothetical protein                                            | Unknown                |
| LOC_Os04g11660        | F-box protein interaction domain containing protein                       | Protein processing     |
| LOC_Os09g13440        | expressed protein                                                         | Unknown                |
| LOC_Os11g10590        | expressed protein                                                         | Unknown                |
| LOC_Os01g15910        | UTP—glucose-1-phosphateuridylyltransferase family protein                 | Metabolism             |
| LOC_Os01g39490        | hypothetical protein                                                      | Unknown                |
| LOC_Os02g54330        | F-box domain containing protein, SLEEPY 1                                 | Protein processing     |
| LOC_Os03g47430        | hypothetical protein                                                      | Unknown                |
| LOC_Os03g47430        | hypothetical protein                                                      | Unknown                |
| LOC_Os09g08410        | hypothetical protein                                                      | Unknown                |
| LOC_Os11g34990        | hypothetical protein                                                      | Unknown                |
| LOC_Os12g30940        | F-box domain containing protein                                           | Protein processing     |
| LOC_Os01g60510        | hypothetical protein                                                      | Unknown                |
| LOC_Os01g41960        | retrotransposon protein, putative, unclassified                           | Unknown                |
| LOC_Os01g72500        | retrotransposon protein, putative, unclassified                           | Unknown                |
| LOC_Os03g07460        | retrotransposon protein, putative, unclassified                           | Unknown                |
| LOC_Os05g40460        | retrotransposon protein, putative, unclassified                           | Unknown                |
| LOC_Os09g36410        | retrotransposon protein, putative, unclassified                           | Unknown                |
| LOC_Os10g28250        | retrotransposon protein, putative, LINE subclass                          | Unknown                |
| LOC_Os02g55250        | bHLH transcription factor, putative, expressed                            | Transcription factors  |
| LOC_Os01g07180        | hypothetical protein                                                      | Unknown                |
| LOC_Os06g42240        | conserved hypothetical protein                                            | Unknown                |
| LOC_Os08g19190        | conserved hypothetical protein                                            | Unknown                |
| LOC_Os11g04630        | hypothetical protein                                                      | Unknown                |
| LOC_Os12g01990        | expressed protein                                                         | Unknown                |
| LOC_Os08g44670        | Calreticulin precursor, putative                                          | signaling              |
| LOC_Os11g12540        | hypothetical protein                                                      | Unknown                |
| * Function categories | were classified according to their putative function and consulted with M | IPS MATDB database     |

<sup>\*</sup> Function categories were classified according to their putative function and consulted with MIPS MATDB database (http://mips.gsf.de/proj/thal/db/index.html).

### **CONCLUSION**

The common feature of a photoperiodresponsive promoter is the specific combination of LREs, HREs and SREs, showing that the regulatory mechanism in response to day-length is controlled by light in coordination with hormones and stresses. The GARE motif and Gbox are the coordinated motifs integrating the GA hormone with photoperiod responses while the MBS element and G-box are the coordinated motifs integrating the ethylene or ABA hormones and stresses with photoperiod. The specific organization of LREs, i.e., G-box, GT-1 motif and GATA motif could be used to identify the phyAregulated genes from the complexity of photoperiod-responsive pathway. This report showed that phyA is possibly involved in the regulation of the expression of photoperiodic flowering-time genes by the activation of floral inducers or the suppression of floral repressors under SD light via the specific organization of cisregulatory elements in the promoters of target genes. Two novel cis-regulatory motifs that are specific to day-length were identified. The novel A-rich element specific to LD light was highly homologous to the element obtained from orthologous genes in Arabidopsis. In contrast, the novel GC-element specific to SD light was unique to rice. The A-rich element was involved in the regulation of phyA and circadian rhythm to inhibit flowering while the GC element was involved in the regulation of pathogen resistance and GA signaling to promote flowering. This report has shown for the first time the characteristics of the photoperiod-responsive promoter and elucidated the cis-regulatory elements that are specific to the day-length regulation of an SD plant compared to an LD plant. It has provided a new insight into the regulatory mechanism of the photoperiod response at the whole-genome level.

### **AGKNOWLEDGEMENTS**

This work was financially supported by the Corporative Research Network (CRN) in Genetics, Bioinformatics and Bioactive compounds, the Commission on Higher Education. It was partially supported by the Graduate School, Kasetsart University. We wish to thank Associate Professor Dr. Amara Thongpan and Dr. Amorntip Muangprom for useful discussion and critical evaluation of this manuscript.

### LITERATURE CITED

Achard, P., H. Cheng, L.D. Grauwe, J. Decat, H. Schoutteten, T. Moritz, D.V.D. Straeten, J. Peng and N.P. Harberd. 2006. Integration of plant responses to environmentally activated phytohormonal signals. Science 311: 91-94.

Arias, J.A., R.A. Dixon and C.J. Lamb. 1993. Dissection of the functional architecture of a plant defense gene promoter using a homologous *in vitro* transcription initiation system. **Plant Cell** 5: 485–496.

Babu, M.M., N.M. Luscombe, L. Aravind, M. Gerstein and S.A. Teichmann. 2004. Structure and evolution of transcriptional regulatory network. Curr. Opin. Struct. Biol. 14: 283-291

Bagnall, D.J., R.W. King, G.C. Whitelam, M.T.
Boylan, D. Wagner and P.H. Quail. 1995.
Flowering responses to altered expression of phytochrome in mutants and transgenic lines of *Arabidopsis thaliana* (L) Heynh. Plant Physiol. 108: 1495-1503.

Chaboute M.E., B. Clement and G. Phillips. 2002. S phase and meristem-specific expression of tobacco *RNR1 b* gene is mediated by an E2F element located in the 5¢ leader sequence. **J. Biol. Chem.** 277: 17845-17851.

Hazen, S.P., T. F. Schultz, J. L. Pruneda-Paz, J.O. Borevitz, J. R. Ecker and S. A. Kay. 2005.

- LUX ARRHYTHMO encodes a Myb domain protein essential for circadian rhythms. **Proc.** Natl. Acad. Sci. USA 102: 10387-10392.
- Helden, J-v., B. Andre and J. Collado-Vides. 1998. Extracting regulatory site from the upstream region of yeast genes by computational analysis of oligonucleotide frequencies. J. Mol. Biol. 281: 827-842.
- Helden, J-v. 2003. Regulatory sequence analysis tools. **Nucl. Acids Res**. *31:*3593–3596.
- Higo, K., Y. Ugawa, M. Iwamoto and T. Korenaga. 1999. Plant *cis*-acting regulatory DNA elements (PLACE) database. **Nucl. Acids Res.** 27:297–300.
- Hirano, K., M. Ueguchi-Tanaka and M. Matsuoka. 2008. GID1-mediated gibberellin signaling in plants. **Trends Plant Sci.** 13: 192-199.
- Hoecker, U. and P. H. Quail. 2001. The phytochrome A-specific signaling intermediate SPA1 interacts directly with COP1, a constitutive repressor of light signaling in *Arabidopsis*. **J. Biol. Chem.** 276: 38173-38178.
- Huang, D., W. Wu, S. R. Abrams and A. J. Cutler. 2008. The relationship of drought-related gene expression in *Arabidopsis thaliana* to hormonal and environmental factors. J. Exp. Botany. Published online on June 13, 2008.
- Hudson, M. E. and P. H. Quail. 2003. Identification of promoter motifs involved in the network of phytochrome A-regulated gene expression by combined analysis of genomic sequence and microarray data. Plant Physiol. 133: 1605–1616.
- Izawa, T. 2007. Day length measurement by rice plants in photoperiodic short day flowering.Int. Rev. Cytol. 256: 191-222.
- Jiao, Y., O.S. Lau and X.W. Deng. 2007. Lightregulated transcriptional networks in higher plants. Nat. Rev. Genet. 8: 217–230.
- Johnson, E., M. Bradley, N.P. Harberd and G.C. Whitelam. 1994. Photoresponses of light-grown phya mutants of *Arabidopsis*-

- phytochrome-A is required for the perception of daylength extensions. **Plant Physiol**. 105: 141-149.
- Kęsy, J., B. Maciejewska, M. Sowa, M. Szumilak, K. Kawalowski, M. Borzuchowska and J. Kopcewicz. 2008. Ethylene and IAA interactions in the inhibition of photoperiodic flower induction of *Pharbitis nil*. **Plant Growth Regul.** 55: 43-50.
- Korves, T. M. and J. Bergelson. 2003. A developmental response to pathogen infection in *Arabidopsis*. Plant Physiol. 133: 339-347.
- Kulikowska-Gulewska, H., M. Majewska and J. Kopcewicz. 2000. Gibberellins in the control of photoperiodic flowering transition in *Pharbitis nil*. **Physiol. Plant**. 108: 202-207.
- Lenchner, E., P. Achard, A. Vansiri, T. Potuschak and P. Genschik. 2006. F-box protein everywhere. Curr. Opin. Plant Biol. 9: 631-638
- Lescot, M., P. Déhais, G. Thijs, K. Marchal, Y. Moreau, Y. V. Peer, P. Rouzé and S. Rombauts. 2002. PlantCARE, a database of plant *cis*-acting regulatory elements and a portal to tools for *in silico* analysis of promoter sequences. **Nucl. Acids Res.** 30: 325-327.
- Lin, R. and H. Wang. 2004. *Arabidopsis FHY3/FAR1* gene family and distinct roles of its members in light control of *Arabidopsis* development. **Plant Physiol.** 136: 4010-4022.
- McClung, C.R. 2006. Plant circadian clock. **Plant Cell** 18: 792-803.
- Menkens, A.E., U. Schindler and A.R. Cashmore. 1995. The G-box: a ubiquitous regulatory DNA element in plants bound by the GBF family of bZIP proteins. **Trends Biochem.** Sci. 20: 506–510.
- Mongkolsiriwatana, C. 2008. Expression Analysis of Photoperiod Responsive Genes in Rice (*Oryza sativa* L.) KDML 105. PhD thesis. Kasetsart University, Bangkok.
- Rabbani, M.A., K. Maruyama, H. Aba, M.A. Khan, K. Katsura, Y. Ito, K. Yoshwara, M.

- Seki, K. Shinozaki and K.Yamaguchi-Shinozaki. 2003. Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. **Plant Physiol.** 133: 1755–1767.
- Tepperman, J.M., T. Zhu, H-S. Chang, X. Wang and P.H. Quail. 2001. Multiple transcription-factor genes are early targets of phytochrome A signalling. **Proc. Natl. Acad. Sci. USA 98:** 9437–9442.
- Venter M. and F.C. Botha. 2004. Promoter analysis and transcription profiling: Integration of genetic data enhances understanding of gene expression. **Physiol. Plant.** 120: 74-83.

- Welling, A., P. Kaikuranta and P. Rinne. 1997.
  Photoperiodic induction of dormancy and freezing tolerance in *Betula pubescens*.
  Involvement of ABA and dehydrins. **Physiol. Plant.** 100: 119-125
- Young, M.W. and S.A. Kay. 2001. Time zones: a comparative genetics of circadian clocks. **Nat. Rev. Genet.** 2: 702-715.
- Zhou, J., X. Wang, Y. Jiao, Y. Qin, X. Liu, K. He, C. Chen, L. Ma, J. Wang, L. Xiong, Q. Zhang, L. Fan, and X. W. Deng. 2007. Global genome expression analysis of rice in response to drought and high-salinity stresses in shoot, flag leaf, and panicle. Plant Mol. Biol. 63: 591-608.