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Some Statistical Aspects of Measuring Agreement Based
on a Modified Kappa

Pornpis Yimprayoon1* and Sittipong Ruktamatakul2

ABSTRACT

The focus of this paper is the statistical inference of the problem of assessing agreement or

disagreement between two raters who employ measurements on a two-level nominal scale. The purpose

of this study was to derive the approximate asymptotic variance of the modified kappa statistic. Further,

a comparison of the proposed estimate and an estimated large sample variance of Cohen’s kappa is

provided for all proportions expected to get a rating of 1 from each rater. When the value of the modified

kappa is greater than or equal to 0.5 (or less than or equal to –0.5), the result of this study demonstrated

that the sample estimate of the modified kappa is more efficient than the estimate of Cohen’s kappa for

each probability of being classified by both raters as category 1.
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INTRODUCTION

Over the last decade, researchers have

become increasingly aware of the problem of a

methodology for measuring agreement on

assessing the acceptability of a new or generic

process which can arise throughout many scientific

and non-scientific fields. Measuring agreement has

been used very often to designate the level of

agreement between different data-generating

sources referred to as raters. A rater could be a

clinician, a nurse, a psychologist, a radiologist, a

chemist, a statistician, a pharmacist, a laboratory

apparatus, an instrument, a rating system, a

diagnosis, a treatment, a method, a process, a

technique or a formula. There are numerous

examples that illustrate these situations. Firstly,

in education and social science measurement, the

comparison of a newly developed measurement

method with an established one is often used to

see whether there is sufficient agreement for the

new to replace the old. This makes sure that the

new method of measurement is cheap, quick,

correct and optimal. Secondly, in clinical and

medical diagnosis problems, a team of physicians

is used in order to diagnose and select the

appropriate treatment for a comatose patient.

Thirdly, in criminal trials, a group of jurors is used

and sentencing depends on complete agreement

among the jurors. Fourthly, hotels receive five stars

only after several visitors agree on the service.

Finally, the medals and rankings in sport games

are based on the ratings of several judges.

One of the most popular indices of
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agreement was originally presented by Cohen

(1960), namely Cohen’s kappa statistic (κC), as a

reliability index for measuring agreement between

two raters employing nominal scales. Later, in

1968, Cohen generalized the original kappa

statistic to a weighted kappa that provided for the

incorporation of a ratio-scaled degree of

disagreement (or agreement) to each of the cells

of the k × k table of joint nominal scale

assignments, such that disagreements of varying

gravity (or agreements of varying degree) were

weighted accordingly.

Formulas for estimators of standard

errors for kappa can be found, for instance, in

Hildebrand et al. (1977) and in Liebetrau (1983).

When the sample size is sufficiently large, Everitt

(1968) and Fleiss et al. (1969) gave valid formulas

for the approximate, large-sample mean and

variance of the two statistics, kappa and weighted

kappa.

Moreover, in the work of Landis and

Koch (1977), it was found that weighted kappa

was appropriate for measuring agreement when

the categories of response were ordinal. Landis

and Koch (1977) also proposed an approach by

expressing the quantities which reflected the extent

to which the raters agreed among themselves as

functions of observed proportions obtained from

underlying, multidimensional contingency tables.

Davies and Fleiss (1982) proposed a generalization

for multiple observers by the average of pairwise

agreement. Some limitations of the kappa index

are known, for example, that its value depends on

the balance and symmetry of the marginal totals

of the table (Feinstein and Cicchetti,1990;

Guggenmoos-Holzmann, 1993) and some

alternative methods of evaluating agreement

among observers have been proposed (Donner and

Donald, 1988; Cicchetti and Feinstein, 1990;

Graham and Jackson, 1993). Abraira and Pérez

de Vargas (1999) generalized the proposals of

Schouten (1986) and Gross (1986) for multiple

observers and incomplete design, in order to

encompass ordinal variables with the inclusion of

weights to enable pondering the severity of

disagreement among different categories.

Several authors have proposed guidelines

for the interpretation of the kappa statistic (Fleiss,

1981; Lantz and Nebenzahl, 1996). Even a matter

as simple as the range of kappa is not clear from

the literature but many discussions of kappa state

that it ranges from –1 to 1, with 0 indicating no

agreement beyond that expected by chance and 1

indicating perfect agreement. A comprehensive

review paper is provided by Banerjee et al. (1999).

The use of kappa for qualitative or

dichotomous judgments, such as presence or

absence of disease, has been described by Fleiss

and Chilton (1983). The kappa index is still a very

frequently used statistic in clinical epidemiological

literature (e.g. Jelles et al., 1995; Pérez et al.,

1997). In addition, many other applications of the

kappa statistic in a variety of different contexts

can be found in the recent works of Guimarães et

al. (2008), Jittavisutthikul et al. (2008) and

Prabhasavat and Homgade (2008).

MATERIALS AND METHODS

Brief description of Cohen’s kappa statistic
Consider a reliability research where two

raters, referred to as rater A and rater B, are

required to classify n subjects into one of two

possible response categories. The two response

categories, labeled as 1 and 2, are assumed to be

disjoint. Denote πij as the chance that rater A

classifies a subject into category  i, while rater B

classifies the same subject into category j,  i,j=1,2.

Let  π π1 1
1

2

⋅
=

= ∑ j
j

 and π π2 2
1

2

⋅
=
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be the

probability of being classified by rater A to

categories 1 and 2, respectively. The probabilities
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 are also defined in
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the same manner.

Under these conditions, Cohen’s kappa

statistic for measuring agreement between the two

raters is defined as

κ
θ θ

θC
o e

e
=

−

−1  (1)

where

θo = π11 + π22, θe = π1⋅π⋅1 + π2⋅π⋅2. (2)

In applications, if there are n subjects and

nij represents the number of subjects classified in

category i  by rater A and in category j by rater B,

the sample estimate of  κC is given by

ˆ
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Limitations of Cohen’s kappa statistic
Sinha et al. (2006)  critically examined

some features of κC. The properties of κC are:

(i) κC = 1  if and only if θo=1. This means

that there are no controversial judgments by the

two raters i.e., the disagreement cells [(1, 2) and

(2,1)] have zero probability each.

(ii) κC = 0 if and only if θo = θe.

Technically, this holds if and only if

(π11−π1⋅π⋅1) + (π22−π2⋅π⋅2)  (5)

which, in its turn, implies that

πij = πi⋅π⋅j; i,j = 1,2. (6)

(iii)  κC =-1 if and only if π11 + π22=0,

π12=π21=0.5.  Technically, this means that both the

agreement cells have zero probability each, while

the two disagreement cells are equally likely.

Sinha et al. (2006) pointed out some

undesirable features of κC and also said that the

case of “κC =-1” seemed to restrict behavior on

the part of the raters. When π11 =π22=0, there is

already an indication of total disagreement

between the two raters. Therefore, in such

situations, irrespective of the values assumed by

π12 and π21  (0<π12, π21<1, π12+π21=1) it is desired

that the kappa coefficient assumes the value -1.

With this in mind, they set π12= α  and π21=1- α,

0< α <1 and analyzed the situation with the

purpose of modifying the definition of κC  to deal

with the full strength of disagreement between the

two raters, while the ratings are given

independently in a two-point nominal scale.

Their modification was aimed at the

value κC =-1 They modified κC as

κ
θ θ

θM
o e

eA
=

−

− (7)

and suggested a value of  A to take care of the

situations:

π11 = π22 = 0, π12 = α,

π21 = 1-α, 0 < α < 1  (8)

along with κM =-1. Under (8), κM reduces to

κ
α α
α αM A

=
− −
− −
2 1

2 1

( )

( )  (9)

and κM =-1 yields

A = 4α(1- α). (10)

Then, replacing  α by 
π π1 2

2
⋅ ⋅+

 in (10) produces

A = ⋅
+ +⋅ ⋅ ⋅ ⋅4
2 2

1 2 1 2π π π π
.

 ( )( )π π π π1 2 1 2⋅ ⋅ ⋅ ⋅+ + .  (11)

Next, substituting (11) in (7) produces

κ
θ θ

π π π π π π π πM
o e=
−

+ + − +⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅( )( ) ( )1 2 1 2 1 1 2 2
.(12)

Hence, the modified kappa statistic κM  is defined

as
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κ
θ θ

π π π πM
o e=
−

+⋅ ⋅ ⋅ ⋅1 2 1 2
. (13)

This modification is based on the analysis

of situations leading to total disagreement between

the two raters and all of the three essential features

of the kappa statistic are retained by κM.

The current study applies and extends the

work of Sinha et al. (2006) by deriving the large

sample variance of the modified kappa statistic

V M( ˆ )κ . It is necessary to propose V M( ˆ )κ  in order

to see whether the modified Cohen’s kappa statistic

can be used to replace Cohen’s kappa statistic by

comparing the estimate of the asymptotic variance

of κ̂M   against the variance estimate of κ̂C .

RESULTS AND DISCUSSION

From (13), the estimate of κM can be

obtained by

κ̂M =    (14)

When the sample is sufficiently large

(n>30), large sample theory can be used to evaluate

the expected value and variance of ˆ ( ( ˆ ))κ κM ME  .

It then can be shown that the asymptotic mean of

κ̂M  is κM, that is E M M( ˆ )κ κ= , and the

approximate asymptotic variance expression of

κ̂M  is given by

       

        (15)

or equivalently,

  

                    (16)

where

       (17)

That is,

  V M( ˆ )κ   =

+ − + − − + + }π π π π π21
3

21
2

12
3

21 21
21 1 2( ) ( )

.          (18)

Finally, upon simplification, the

asymptotic variance of κ̂M  can be written in the

form
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V
Q

nM
M( ˆ )κ =                            (19)

where

   QM  =

{ ( ) ( )}2 2 1 1π π θ θij ij o o− + − ]          (20)

A comparison of κ̂M  and κ̂C  is of

interest and can be carried out by comparing the

asymptotic variance of κ̂M  with the asymptotic

variance of κ̂C   Base on Fleiss et al. (1969), the

approximate asymptotic expression for the

variance of κ̂C   can be given by

V
Q

nC
C( ˆ )κ =                            (21)

where, in general terms, QC  is defined as

    

       (22)

It has further been noted by Cantor

(1996) that all of the values π2⋅ , π⋅2, θe,  θo, π22,

π11, π12, and π21 can be determined by π1⋅ , π⋅1  and

κC, namely

and              (23)

Since  it

turns out that an analogous result also holds in

terms of π1⋅, π⋅1 and κM. Therefore, it is now

possible to use the comparison of QM  and QC

instead of the comparison of the asymptotic

variance of κ̂M  and the estimated large sample

variance of κ̂C . For values of π⋅1 and π1⋅, Tables 1

and 2 display the values of QC  for κC and the

values of  QM for κM, respectively. Since the upper

bounds of κC and κM are less than 1 for π1⋅ ≠ π⋅1,
Tables 1 and 2 thus have no values of QC for κC

and  QM for κM  that are not permissible.

It follows from Tables 1 and 2 that, based

on the same value of κM and κC when κM ≤-0.5

(or κC ≤-0.5) and κM ≥ 0.5  (or κC ≥ 0.5), QM is

less than  QC in all values of π1⋅ and π⋅1. This

implies that the proposed estimator V M( ˆ )κ  is

more efficient than V M( ˆ )κ  when (κM)2≥0.5 (or

(κC)2≥0.5).

CONCLUSION

This paper discussed the problem of

measuring agreement or disagreement between

two raters where the ratings are given separately

in a two-point nominal scale. The discussion

focused on the modified Cohen’s kappa statistic

κM which deals with the full strength of

disagreement between the two raters. In addition,

a method was proposed to determine the estimated

asymptotic variance of the modified Cohen’s

kappa statistic. Based on the comparison of the

proposed estimate V M( ˆ )κ  with the estimated large

sample variance of Cohen’s kappa V C( ˆ )κ , it was

concluded that, for (κM)2≥0.5 (or (κC)2≥0.5), the

preference is mostly for κM in all values of π1⋅ and

π⋅1 .
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-0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
0.1 0.1         1.690 1.000 1.598 1.984 2.179 2.205 2.083 1.835 1.481 1.043 0.542 
0.1 0.2         0.417 0.852 1.159 1.350 1.434 1.425 1.331 1.166    
0.1 0.3         0.430 0.654 0.808 0.899 0.931 0.911      
0.1 0.4         0.397 0.490 0.550 0.580        
0.1 0.5        0.346 0.356 0.360 0.356 0.346        
0.1 0.6        0.392 0.318 0.257 0.207         
0.1 0.7        0.423 0.284 0.174          
0.1 0.8        0.443 0.254 0.105          
0.1 0.9        0.458 0.228 0.048          
0.2 0.1         0.417 0.852 1.159 1.350 1.434 1.425 1.331 1.166    
0.2 0.2        0.366 0.730 1.000 1.182 1.284 1.312 1.272 1.172 1.018 0.817 0.576 0.301 
0.2 0.3       0.280 0.560 0.776 0.931 1.029 1.075 1.072 1.024 0.935 0.808 0.647   
0.2 0.4       0.477 0.618 0.722 0.793 0.832 0.840 0.819 0.771 0.697     
0.2 0.5      0.538 0.582 0.614 0.634 0.640 0.634 0.614 0.582 0.538      
0.2 0.6      0.699 0.638 0.583 0.534 0.490 0.448 0.408        
0.2 0.7      0.814 0.665 0.540 0.436 0.350 0.280         
0.2 0.8      0.898 0.676 0.492 0.342 0.221 0.129         
0.2 0.9        0.443 0.254 0.105          
0.3 0.1         0.430 0.654 0.808 0.899 0.931 0.911      
0.3 0.2       0.280 0.560 0.776 0.931 1.029 1.075 1.072 1.024 0.935 0.808 0.647   
0.3 0.3      0.328 0.568 0.759 0.902 1.000 1.055 1.070 1.046 0.986 0.893 0.768 0.614 0.433 0.228 
0.3 0.4     0.388 0.567 0.711 0.823 0.903 0.953 0.973 0.965 0.929 0.867 0.780 0.668 0.533   
0.3 0.5    0.538 0.630 0.706 0.764 0.806 0.832 0.840 0.832 0.806 0.764 0.706 0.630 0.538    
0.3 0.6    0.812 0.796 0.780 0.762 0.742 0.719 0.691 0.659 0.621 0.576 0.524      
0.3 0.7   1.154 1.024 0.911 0.811 0.725 0.649 0.583 0.524 0.472 0.424 0.379       
0.3 0.8      0.814 0.665 0.540 0.436 0.350 0.280         
0.3 0.9        0.423 0.284 0.174          
0.4 0.1         0.397 0.490 0.550 0.580        
0.4 0.2       0.477 0.618 0.722 0.793 0.832 0.840 0.819 0.771 0.697     
0.4 0.3     0.388 0.567 0.711 0.823 0.903 0.953 0.973 0.965 0.929 0.867 0.780 0.668 0.533   
0.4 0.4    0.432 0.594 0.728 0.835 0.916 0.971 1.000 1.004 0.984 0.940 0.872 0.781 0.668 0.533 0.376 0.198 
0.4 0.5  0.346 0.490 0.614 0.720 0.806 0.874 0.922 0.950 0.960 0.950 0.922 0.874 0.806 0.720 0.614 0.490 0.346  
0.4 0.6 0.543 0.617 0.682 0.737 0.783 0.819 0.844 0.859 0.861 0.852 0.830 0.796 0.748 0.686 0.610 0.519    
0.4 0.7    0.812 0.796 0.780 0.762 0.742 0.719 0.691 0.659 0.621 0.576 0.524      
0.4 0.8      0.699 0.638 0.583 0.534 0.490 0.448 0.408        
0.4 0.9        0.392 0.318 0.257 0.207         
0.5 0.1        0.346 0.356 0.360 0.356 0.346        
0.5 0.2      0.538 0.582 0.614 0.634 0.640 0.634 0.614 0.582 0.538      
0.5 0.3    0.538 0.630 0.706 0.764 0.806 0.832 0.840 0.832 0.806 0.764 0.706 0.630 0.538    
0.5 0.4  0.346 0.490 0.614 0.720 0.806 0.874 0.922 0.950 0.960 0.950 0.922 0.874 0.806 0.720 0.614 0.490 0.346  
0.5 0.5 0.190 0.360 0.510 0.640 0.750 0.840 0.910 0.960 0.990 1.000 0.990 0.960 0.910 0.840 0.750 0.640 0.510 0.360 0.190 
0.5 0.6  0.346 0.490 0.614 0.720 0.806 0.874 0.922 0.950 0.960 0.950 0.922 0.874 0.806 0.720 0.614 0.490 0.346  
0.5 0.7    0.538 0.630 0.706 0.764 0.806 0.832 0.840 0.832 0.806 0.764 0.706 0.630 0.538    
0.5 0.8       0.582 0.614 0.634 0.640 0.634 0.614 0.582 0.538      
0.5 0.9        0.346 0.356 0.360 0.356 0.346        
0.6 0.1        0.392 0.318 0.257 0.207         
0.6 0.2      0.699 0.638 0.583 0.534 0.409 0.448 0.408        
0.6 0.3    0.812 0.796 0.780 0.762 0.742 0.719 0.691 0.659 0.621 0.576 0.524      
0.6 0.4 0.543 0.617 0.682 0.737 0.783 0.819 0.844 0.859 0.861 0.852 0.830 0.796 0.748 0.686 0.610 0.519    
0.6 0.5  0.346 0.490 0.614 0.720 0.806 0.874 0.922 0.950 0.960 0.950 0.922 0.874 0.806 0.720 0.614 0.490 0.346  
0.6 0.6    0.432 0.594 0.728 0.835 0.916 0.971 1.000 1.004 0.984 0.940 0.872 0.781 0.668 0.533 0.376 0.198 
0.6 0.7     0.388 0.567 0.711 0.823 0.903 0.953 0.973 0.965 0.929 0.867 0.780 0.668 0.533   
0.6 0.8       0.477 0.618 0.722 0.793 0.832 0.840 0.819 0.771 0.697     
0.6 0.9         0.397 0.490 0.550 0.580        
0.7 0.1        0.423 0.284 0.174          
0.7 0.2      0.814 0.665 0.540 0.436 0.350 0.280         
0.7 0.3   1.154 1.024 0.911 0.811 0.725 0.649 0.583 0.524 0.472 0.424 0.379       
0.7 0.4    0.812 0.796 0.780 0.762 0.742 0.719 0.691 0.659 0.621 0.576 0.524      
0.7 0.5    0.538 0.630 0.706 0.764 0.806 0.832 0.840 0.832 0.806 0.764 0.706 0.630 0.538    
0.7 0.6     0.388 0.567 0.711 0.823 0.903 0.953 0.973 0.965 0.929 0.867 0.780 0.668 0.533   
0.7 0.7      0.328 0.568 0.759 0.902 1.000 1.055 1.070 1.046 0.986 0.893 0.768 0.614 0.433 0.228 
0.7 0.8       0.280 0.560 0.776 0.931 1.029 1.075 1.072 1.024 0.935 0.808 0.647   
0.7 0.9         0.430 0.654 0.808 0.899 0.931 0.911      
0.8 0.1        0.443 0.254 0.105          
0.8 0.2      0.898 0.676 0.492 0.342 0.221 0.129         
0.8 0.3      0.814 0.665 0.540 0.436 0.350 0.280         
0.8 0.4      0.699 0.638 0.583 0.534 0.490 0.448 0.408        
0.8 0.5      0.538 0.582 0.614 0.634 0.640 0.634 0.614 0.582 0.538      
0.8 0.6       0.477 0.618 0.722 0.793 0.832 0.840 0.819 0.771 0.697     
0.8 0.7       0.280 0.560 0.776 0.931 1.029 1.075 1.072 1.024 0.935 0.808 0.647   
0.8 0.8        0.366 0.730 1.000 1.182 1.284 1.312 1.272 1.172 1.018 0.817 0.576 0.301 
0.8 0.9         0.417 0.852 1.159 1.350 1.434 1.425 1.331 1.166    
0.9 0.1        0.458 0.228 0.048          
0.9 0.2        0.443 0.254 0.105          
0.9 0.3        0.423 0.284 0.174          
0.9 0.4        0.392 0.318 0.257 0.207         
0.9 0.5        0.346 0.356 0.360 0.356 0.346        
0.9 0.6         0.397 0.490 0.550 0.580        
0.9 0.7         0.430 0.654 0.808 0.899 0.931 0.911      
0.9 0.8         0.417 0.852 1.159 1.350 1.434 1.425 1.331 1.166    
0.9 0.9                 0.169 1.000 1.598 1.984 2.179 2.205 2.083 1.835 1.481 1.043 0.542 

1⋅π⋅1π
Cκ

Table 1 Values of QC for κC.
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-0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
0.1 0.1         0.169 1.000 1.598 1.984 2.179 2.205 2.083 1.835 1.481 1.043 0.542 
0.1 0.2         0.464 0.922 1.236 1.419 1.481 1.435 1.292 1.064    
0.1 0.3        0.192 0.572 0.840 1.001 1.062 1.030 0.910      
0.1 0.4        0.415 0.651 0.793 0.846 0.811 0.692       
0.1 0.5        0.608 0.736 0.779 0.736 0.608        
0.1 0.6       0.692 0.811 0.846 0.793 0.651 0.415        
0.1 0.7      0.910 1.030 1.062 1.001 0.840 0.572 0.192        
0.1 0.8    1.064 1.292 1.435 1.481 1.419 1.236 0.922 0.464         
0.1 0.9 0.542 1.043 1.481 1.835 2.083 2.205 2.179 1.984 1.598 1.000 0.169         
0.2 0.1         0.464 0.922 1.236 1.419 1.481 1.435 1.292 1.064    
0.2 0.2        0.366 0.730 1.000 1.182 1.284 1.312 1.272 1.172 1.018 0.817 0.576 0.301 
0.2 0.3       0.292 0.591 0.820 0.982 1.081 1.121 1.105 1.039 0.925 0.768 0.571   
0.2 0.4      0.288 0.540 0.734 0.874 0.960 0.995 0.979 0.916 0.806 0.653 0.456    
0.2 0.5      0.566 0.735 0.855 0.928 0.952 0.928 0.855 0.735 0.566      
0.2 0.6    0.456 0.653 0.806 0.916 0.979 0.995 0.960 0.874 0.734 0.540 0.288      
0.2 0.7   0.571 0.768 0.925 1.039 1.105 1.121 1.081 0.982 0.820 0.591 0.292       
0.2 0.8 0.301 0.576 0.817 1.018 1.172 1.272 1.312 1.284 1.182 1.000 0.730 0.366        
0.2 0.9    1.064 1.292 1.435 1.481 1.419 1.236 0.922 0.464         
0.3 0.1         0.572 0.840 1.001 1.062 1.030 0.910      
0.3 0.2       0.292 0.591 0.820 0.982 1.081 1.121 1.105 1.039 0.925 0.768 0.571   
0.3 0.3      0.328 0.568 0.759 0.902 1.000 1.055 1.070 1.046 0.986 0.893 0.768 0.614 0.433 0.228 
0.3 0.4     0.377 0.574 0.733 0.856 0.943 0.996 1.015 1.001 0.956 0.881 0.777 0.644 0.484 0.299  
0.3 0.5    0.439 0.608 0.747 0.854 0.931 0.977 0.992 0.977 0.931 0.854 0.747 0.608 0.439    
0.3 0.6  0.299 0.484 0.644 0.777 0.881 0.956 1.001 1.015 0.996 0.943 0.856 0.733 0.574 0.377     
0.3 0.7 0.228 0.433 0.614 0.768 0.893 0.986 1.046 1.070 1.055 1.000 0.902 0.759 0.568 0.328      
0.3 0.8   0.571 0.768 0.925 1.039 1.105 1.121 1.081 0.982 0.820 0.591 0.292       
0.3 0.9      0.910 1.030 1.062 1.001 0.840 0.572 0.192        
0.4 0.1        0.415 0.651 0.793 0.846 0.811 0.692       
0.4 0.2       0.540 0.734 0.874 0.960 0.995 0.979 0.916 0.806 0.653     
0.4 0.3     0.377 0.574 0.733 0.856 0.943 0.996 1.015 1.001 0.956 0.881 0.777 0.644 0.484   
0.4 0.4    0.432 0.594 0.728 0.835 0.916 0.971 1.000 1.004 0.984 0.940 0.872 0.781 0.668 0.533 0.376 0.198 
0.4 0.5  0.281 0.449 0.595 0.719 0.820 0.898 0.955 0.988 1.000 0.988 0.955 0.898 0.820 0.719 0.595 0.449 0.281  
0.4 0.6 0.198 0.376 0.533 0.668 0.781 0.872 0.940 0.984 1.004 1.000 0.971 0.916 0.835 0.728 0.594 0.432    
0.4 0.7  0.299 0.484 0.644 0.777 0.881 0.956 1.001 1.015 0.996 0.943 0.856 0.733 0.574 0.377     
0.4 0.8    0.456 0.653 0.806 0.916 0.979 0.995 0.960 0.874 0.734 0.540 0.288      
0.4 0.9       0.692 0.811 0.846 0.793 0.651 0.415 0.084       
0.5 0.1        0.608 0.736 0.779 0.736 0.608        
0.5 0.2      0.566 0.735 0.855 0.928 0.952 0.928 0.855 0.735 0.566      
0.5 0.3    0.439 0.608 0.747 0.854 0.931 0.977 0.992 0.977 0.931 0.854 0.747 0.608 0.439    
0.5 0.4  0.281 0.449 0.595 0.719 0.820 0.898 0.955 0.988 1.000 0.988 0.955 0.898 0.820 0.719 0.595 0.449 0.281  
0.5 0.5 0.190 0.360 0.510 0.640 0.750 0.840 0.910 0.960 0.990 1.000 0.990 0.960 0.910 0.840 0.750 0.640 0.510 0.360 0.190 
0.5 0.6  0.281 0.449 0.595 0.719 0.820 0.898 0.955 0.988 1.000 0.988 0.955 0.898 0.820 0.719 0.595 0.449 0.281  
0.5 0.7    0.439 0.608 0.747 0.854 0.931 0.977 0.992 0.977 0.931 0.854 0.747 0.608 0.439    
0.5 0.8      0.566 0.735 0.855 0.928 0.952 0.928 0.855 0.735 0.566      
0.5 0.9        0.608 0.736 0.779 0.736 0.608        
0.6 0.1       0.692 0.811 0.846 0.793 0.651 0.415        
0.6 0.2     0.653 0.806 0.916 0.979 0.995 0.960 0.874 0.734 0.540       
0.6 0.3   0.484 0.644 0.777 0.881 0.956 1.001 1.015 0.996 0.943 0.856 0.733 0.574 0.377     
0.6 0.4 0.198 0.376 0.533 0.668 0.781 0.872 0.940 0.984 1.004 1.000 0.971 0.916 0.835 0.728 0.594 0.432    
0.6 0.5  0.281 0.449 0.595 0.719 0.820 0.898 0.955 0.988 1.000 0.988 0.955 0.898 0.820 0.719 0.595 0.449 0.281  
0.6 0.6    0.432 0.594 0.728 0.835 0.916 0.971 1.000 1.004 0.984 0.940 0.872 0.781 0.668 0.533 0.376 0.198 
0.6 0.7     0.377 0.574 0.733 0.856 0.943 0.996 1.015 1.001 0.956 0.881 0.777 0.644 0.484 0.299  
0.6 0.8       0.540 0.734 0.874 0.960 0.995 0.979 0.916 0.806 0.653 0.456    
0.6 0.9        0.415 0.651 0.793 0.846 0.811 0.692       
0.7 0.1      0.910 1.030 1.062 1.001 0.840 0.572         
0.7 0.2   0.571 0.768 0.925 1.039 1.105 1.121 1.081 0.982 0.820 0.591 0.292       
0.7 0.3 0.228 0.433 0.614 0.768 0.893 0.986 1.046 1.070 1.055 1.000 0.902 0.759 0.568 0.328      
0.7 0.4   0.484 0.644 0.777 0.881 0.956 1.001 1.015 0.996 0.943 0.856 0.733 0.574 0.377     
0.7 0.5    0.439 0.608 0.747 0.854 0.931 0.977 0.992 0.977 0.931 0.854 0.747 0.608 0.439    
0.7 0.6     0.377 0.574 0.733 0.856 0.943 0.996 1.015 1.001 0.956 0.881 0.777 0.644 0.484   
0.7 0.7      0.328 0.568 0.759 0.902 1.000 1.055 1.070 1.046 0.986 0.893 0.768 0.614 0.433 0.228 
0.7 0.8       0.292 0.591 0.820 0.982 1.081 1.121 1.105 1.039 0.925 0.768 0.571   
0.7 0.9        0.192 0.572 0.840 1.001 1.062 1.030 0.910      
0.8 0.1    1.064 1.292 1.435 1.481 1.419 1.236 0.922 0.464         
0.8 0.2 0.301 0.576 0.817 1.018 1.172 1.272 1.312 1.284 1.182 1.000 0.730 0.366        
0.8 0.3   0.571 0.768 0.925 1.039 1.105 1.121 1.081 0.982 0.820 0.591 0.292       
0.8 0.4     0.653 0.806 0.916 0.979 0.995 0.960 0.874 0.734 0.540       
0.8 0.5      0.566 0.735 0.855 0.928 0.952 0.928 0.855 0.735 0.566      
0.8 0.6       0.540 0.734 0.874 0.960 0.995 0.979 0.916 0.806 0.653     
0.8 0.7       0.292 0.591 0.820 0.982 1.081 1.121 1.105 1.039 0.925 0.768 0.571   
0.8 0.8        0.366 0.730 1.000 1.182 1.284 1.312 1.272 1.172 1.018 0.817 0.576 0.301 
0.8 0.9         0.464 0.922 1.236 1.419 1.481 1.435 1.292 1.064    
0.9 0.1 0.542 1.043 1.481 1.835 2.083 2.205 2.179 1.984 1.598 1.000 0.169         
0.9 0.2    1.064 1.292 1.435 1.481 1.419 1.236 0.922 0.464         
0.9 0.3      0.910 1.030 1.062 1.001 0.840 0.572         
0.9 0.4       0.692 0.811 0.846 0.793 0.651 0.415        
0.9 0.5        0.608 0.736 0.779 0.736 0.608        
0.9 0.6        0.415 0.651 0.793 0.846 0.811 0.692       
0.9 0.7         0.572 0.840 1.001 1.062 1.030 0.910      
0.9 0.8         0.464 0.922 1.236 1.419 1.481 1.435 1.292 1.064    
0.9 0.9                 0.169 1.000 1.598 1.984 2.179 2.205 2.083 1.835 1.481 1.043 0.542 

Mκ
1⋅π⋅1π

Table 2 Values of QM for κM.
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