

## On Derivations of BCC-algebras

Chanwit Prabpayak and Utsanee Leerawat\*

### ABSTRACT

In this paper, the notions of left-right (resp. right-left) derivations of BCC-algebras are studied and some properties on derivations of BCC-algebras are investigated. This paper also considers regular derivations and the d-invariant on ideals of BCC-algebras.

**Key words:** derivation, BCC-algebra, BCI-algebra, regular, d-invariant

### INTRODUCTION

In the theory of rings, the properties of derivations are important. Several authors (Meng and Xin, 1992; Meng, 1987; Iseki and Tanaka, 1976; Iseki and Tanaka, 1978; Dudek, 1992; Dudek and Zhang, 1998) have studied BCI-algebras, BCK-algebras and BCC-algebras. In 2004, Jun and Xin applied the notion of derivations in ring and near-ring theory to BCI-algebras, and they also introduced a new concept called a regular derivation in BCI-algebras. They investigated some of its properties, defined a d-derivation ideal and gave conditions for an ideal to be d-derivation. Two years later, Hamza and Al-Shehri (2006) studied derivation in BCK-algebras. In 2007, Hamza and Al-Shehri defined a left derivation in BCI-algebras and investigated a regular left derivation. In this paper, the notion of a regular derivation in BCI-algebras is applied to BCC-algebras and some related properties are also investigated.

The algebra  $G = (G, \cdot, 0)$  defines a non-empty set  $G$ , together with a binary operation multiplication and a constant 0. In the sequel, a multiplication will be denoted by juxtaposition.

An algebra  $(G, \cdot, 0)$  is called a BCC-algebra, if for all  $x, y, z \in G$ , the following axioms hold:

- (1)  $((xy)(zy))(xz) = 0$ ,
- (2)  $0x = 0$ ,
- (3)  $x0 = x$ ,
- (4)  $xy = yx = 0$  implies  $x = y$

By (1) we get:  $(xy)x = 0$  and  $x x = 0$  for all  $x, y \in G$ .

A non-empty subset  $S$  of a BCC-algebra  $G$  is called a BCC-subalgebra of  $G$ , if  $xy \in S$  whenever  $x, y \in S$ . If a binary relation  $\leq$  on  $G$  is defined by putting  $x \leq y$  if and only if  $xy = 0$ , then  $(G, \leq)$  is a partially ordered set. A non-empty subset  $A$  of a BCC-algebra  $G$  is called a BCC-ideal, if

- (5)  $0 \in A$ ,
- (6)  $(xy)z \in A$  and  $y \in A$  imply  $xz \in A$ .

Putting  $z = 0$  in (6) obtains:  $x \in y A$  and  $y \in A$  implies  $x \in A$ .

For more details, refer to Dudek (1992) and Dudek and Zhang (1998).

### MATERIALS AND METHODS

For elements  $x$  and  $y$  of a BCC-algebra  $G = (G, \cdot, 0)$ , denote  $x \wedge y = y(xy)$ .

Department of Mathematics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.

\* Corresponding author, e-mail: fsciutl@ku.ac.th

**Definition** Let  $G$  be a BCC-algebra. A map  $d : G \rightarrow G$  is a left-right derivation (briefly,  $(l,r)$ -derivation) of  $G$ , if it satisfies the identity  $d(xy) = d(x)y \wedge xd(y)$  for all  $x, y \in G$ . If  $d$  satisfies the identity  $d(xy) = xd(y) \wedge d(x)y$  for all  $x, y \in G$ , then  $d$  is a right-left derivation (briefly,  $(r,l)$ -derivation) of  $G$ . Moreover, if  $d$  is both a  $(l,r)$  and  $(r,l)$ -derivation, then  $d$  is a derivation of  $G$ .

**Example** Let  $G = \{0, 1, 2, 3\}$  be a BCC-algebra in which the operation  $\cdot$  is defined as follows:

| . | 0 | 1 | 2 | 3 |
|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 0 | 1 | 0 |
| 2 | 2 | 2 | 0 | 0 |
| 3 | 3 | 3 | 1 | 0 |

Define a map  $d : G \rightarrow G$  by

$$d(x) = \begin{cases} 0 & \text{if } x = 0, 1, 3, \\ 2 & \text{if } x = 2. \end{cases}$$

And define a map  $d^* : G \rightarrow G$  by

$$d^*(x) = \begin{cases} 0 & \text{if } x = 0, 1, \\ 2 & \text{if } x = 2, 3. \end{cases}$$

Then it is easily checked that  $d$  is both a  $(l,r)$  and  $(r,l)$ -derivation of  $G$  and  $d^*$  is a  $(r,l)$ -derivation but not a  $(l,r)$ -derivation of  $G$ .

**Definition** A derivation  $d$  of a BCC-algebra is said to be regular if  $d(0) = 0$ .

## RESULTS AND DISCUSSION

**Theorem.** A  $(r,l)$ -derivation  $d$  of a BCC-algebra  $G$  is regular.

**Proof** Since  $d$  is  $(r,l)$ -derivation of  $G$ ,  $d(0) = d(0x) = 0d(x) \wedge d(0)x = 0 \wedge d(0)x = (d(0)x)((d(0)x)(0)) = (d(0)x)(d(0)x) = 0$ . #

**Corollary** A derivation  $d$  of a BCC-algebra  $G$  is

regular.

Using regular derivations, some properties of derivations of BCC-algebra can be obtained.

**Proposition** Let  $d$  be a self-map of a BCC-algebra  $G$ .

1. If  $d$  is a  $(l,r)$ -derivation of  $G$ , then  $d(x) = d(x) \wedge x$  for all  $x \in G$ .
2. If  $d$  is a  $(r,l)$ -derivation of  $G$ , then for all  $d(x) = x \wedge d(x)$  for all  $x \in G$ .

**Proof** 1. Let  $d$  be a  $(l,r)$ -derivation of  $G$ . Then  $d(x) = d(x0) = d(x)0 \wedge xd(0) = d(x) \wedge x0 = d(x) \wedge x$ .  
2. Let  $d$  be a  $(r,l)$ -derivation of  $G$ . Then  $d(x) = d(x0) = xd(0) \wedge d(x)0 = x0 \wedge d(x) = x \wedge d(x)$ . #

**Proposition** Let  $G$  be a BCC-algebra with partial order  $\leq$ , and let  $d$  be a derivation of  $G$ . Then the following hold for all  $x, y \in G$  :

1.  $d(x) \leq x$ ,
2.  $d(xy) \leq d(x)y$ ,
3.  $d(xy) \leq xd(y)$ ,
4.  $d(xd(x)) = 0$ ,
5.  $d(d(x)) \leq x$ ,
6.  $d^{-1}(0) := \{x \in G \mid d(x) = 0\}$  is a BCC-subalgebra of  $G$ .

**Proof** 1. By the previous Proposition,  $d(x) = x(xd(x))$ . Then  $d(x)x = 0$ . Thus  $d(x) \leq x$ .

2.  $d(xy) = xd(y) \wedge d(x)y = (d(x)y)((d(x)y)(xd(y)))$ , then  $d(xy)(d(x)y) = 0$ . Thus  $d(xy) \leq d(x)y$ .

3.  $d(xy) = d(x)y \wedge xd(y) = (xd(y))((xd(y))(d(x)y))$ . Thus  $d(xy) \leq xd(y)$ .

4.  $d(xd(x)) = xd(d(x)) \wedge d(x)d(x) = xd(d(x)) \wedge 0 = 0(0(xd(d(x)))) = 0$

5.  $d(d(x)) = d(x(xd(x))) = d(x)(xd(x)) \wedge x = x(xd(x)(xd(x)))$ . Thus  $d(d(x)) \leq x$ .

6. Since  $d$  is regular,  $d^{-1}(0) \neq \emptyset$ . Let  $x, y$

$\in d^{-1}(0)$ . Since  $d(xy) = xd(y) \wedge d(x)y = x0 \wedge 0y = x \wedge 0 = 0$ , we get  $xy \in d^{-1}(0)$ . Hence  $d^{-1}(0)$  is a BCC-subalgebra of  $G$ . #

Note that  $d^{-1}(0)$  is, in general, not an ideal of  $G$ , as seen in the previous example, (23)  $1 \in d^{-1}(0)$  and  $3 \in d^{-1}(0)$  but  $21 \notin d^{-1}(0)$ .

**Proposition** Let  $G$  be a BCC-algebra. Then  $d_n(d_{n-1}(\dots(d_2(d_1(x))\dots))) \leq x$  for  $n \in \mathbb{N}$ , where  $d_1, d_2, \dots, d_n$  are derivations of  $G$ .

**Proof** For  $n=1$ ,  $d_1(x) = d_1(x0) = d_1(x)0 \wedge xd_1(0) = d_1(x) \wedge x = x(d_1(x)) \leq x$ . Then  $d_1(x)x = 0$ . That is  $d_1(x) \leq x$ .

Let  $n \in \mathbb{N}$  and assume that  $d_n(d_{n-1}(\dots(d_2(d_1(x))\dots))) \leq x$ . For simplicity, let  $D_n = d_n(d_{n-1}(\dots(d_2(d_1(x))\dots)))$ . Then  $d_{n+1}(D_n) = d_{n+1}(D_n0) = d_{n+1}(D_n)0 \wedge D_n d_{n+1}(0) = d_{n+1}(D_n) \wedge D_n = D_n(D_n d_{n+1}(D_n))$ . Thus  $d_{n+1}(D_n)D_n = 0$ . Hence  $d_{n+1}(D_n) \leq D_n$ . By assumption,  $d_{n+1}(D_n) \leq D_n \leq x$ . #

**Definition.** Let  $d$  be a derivation of a BCC-algebra  $G$ . An ideal  $A$  of  $G$  is said to be  $d$ -invariant if  $d(A) \subseteq A$ , where  $d(A) = \{d(x) \mid x \in A\}$ .

**Example.** Let  $G = \{0,1,2,3,4,5\}$  and the multiplication be defined as follows:

| . | 0 | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 0 | 0 | 0 | 0 | 1 |
| 2 | 2 | 2 | 0 | 0 | 1 | 1 |
| 3 | 3 | 2 | 1 | 0 | 1 | 1 |
| 4 | 4 | 4 | 4 | 4 | 0 | 1 |
| 5 | 5 | 5 | 5 | 5 | 5 | 0 |

Then  $G$  is a BCC-algebra and  $A = \{0,1,2,3,4\}$  is a BCC-ideal of  $G$  (Dudek and Zhang, 1998). Define  $d : G \rightarrow G$  by

$$d(x) = \begin{cases} 0 & \text{if } x = 0,1,2,3,4, \\ 5 & \text{if } x = 5. \end{cases}$$

Then it is easily checked that  $d$  is a derivation of  $G$ . And  $d(A) = \{0\} \subseteq A$ . Thus  $A$  is  $d$ -invariant.

The following theorem shows that every ideal in BCC-algebra is  $d$ -invariant.

**Theorem** Let  $d$  be a derivation of a BCC-algebra  $G$ . Then every ideal  $A$  of  $G$  is  $d$ -invariant.

**Proof** Let  $A$  be an ideal of a BCC-algebra  $G$ . Let  $y \in d(A)$ . Then  $y = d(x)$  for some  $x \in A$ . It follows that  $yx = d(x)x = 0 \in A$ , which implies  $y \in A$ . Thus  $d(A) \subseteq A$ . Hence  $A$  is  $d$ -invariant. #

## CONCLUSION

The BCC-algebra  $G = (G, \cdot, 0)$  defines a non-empty set  $G$  with a constant  $0$  and a binary operation denoted by juxtaposition satisfying the following axioms for all  $x, y, z \in G$  :

- (1)  $((xy)(zy))(xz) = 0$ ,
- (2)  $0x = 0$ ,
- (3)  $x0 = x$ ,
- (4)  $xy = yx \Rightarrow x = y$

For elements  $x$  and  $y$  of a BCC-algebra  $G$ , denote  $x \wedge y = y(xy)$  and define a map  $d : G \rightarrow G$ . Then  $d$  is a  $(l,r)$ -derivation of  $G$ , if it satisfies the identity  $d(xy) = d(x)y \wedge xd(y)$  for all  $x, y \in G$ . If  $d$  satisfies the identity  $d(xy) = xd(y) \wedge d(x)y$  for all  $x, y \in G$ , then  $d$  is a  $(r,l)$ -derivation of  $G$ . And if  $d$  is both  $(l,r)$ - and  $(r,l)$ -derivations,  $d$  is a derivation of  $G$ .

A derivation  $d$  of a BCC-algebra is said to be regular if  $d(0) = 0$ . An ideal  $A$  of  $G$  is said to be  $d$ -invariant if  $d(A) \subseteq A$ .

The results of this paper show that:

1. A derivation of BCC-algebra is regular.
2. If  $d$  is a  $(l,r)$ -derivation of a BCC-algebra  $G$ , then  $d(x) = d(x) \wedge x$  for all  $x \in G$ . If  $d$  is a  $(r,l)$ -derivation of a BCC-algebra  $G$ , then  $d(x) = x \wedge d(x)$  for all  $x \in G$ .

3. In BCC-algebra, the following hold:

- 3.1  $d(x) \leq x$ ,
- 3.2  $d(xy) \leq d(x)y$ ,
- 3.3  $d(xy) \leq xd(y)$ ,
- 3.4  $d(xd(x)) = 0$ ,
- 3.5  $d(d(x)) \leq x$  and
- 3.6  $d^{-1}(0) := \{x \in G \mid d(x) = 0\}$  is a BCC-subalgebra of  $G$ .

4.  $d_n(d_{n-1}(\dots(d_2(d_1(x)))\dots)) \leq x$  where  $d_1, d_2, \dots, d_n$  are derivations of a BCC-algebra  $G$ .

5. If  $d$  is a derivation of a BCC-algebra  $G$ , then any ideal of  $G$  is  $d$ -invariant.

### ACKNOWLEDGEMENT

This work was supported by a grant from the Graduate School, Kasetsart University.

### LITERATURE CITED

Dudek, W. A. 1992. On constructions of BCC-algebras. **Selected Papers on BCK- and BCC-algebras** 1: 93-96.

Dudek, W. A. and X. Zhang. 1998. On ideals and congruences in BCC-algebras. **Czechoslovak Math. Journal**. 48(123): 21-29.

Hamza, A. S. A. and N. O. Al-Shehri. 2006. Some results on derivations of BCI-algebras. **Coden Jnsmac** 46: 13-19.

Hamza, A. S. A. and N. O. Al-Shehri. 2007. On left derivations of BCI-algebras. **Soochow Journal of Mathematics** 33(3): 435-444.

Iseki, K. and S. Tanaka. 1976. Ideal theory of BCK-algebras. **Math. Japonica**. 21: 351-366.

Iseki, K. and S. Tanaka. 1978. An introduction to the theory of BCK-algebras. **Math. Japonica**. 23: 1-26.

Jun, Y. B. and X. L. Xin. 2004. On derivations of BCI-algebras. **Information Sciences** 159: 167-176.

Meng, D. J. 1987. BCI-algebras and abelian groups. **Math. Japonica**. 47(1): 693-696.

Meng, J. and X. L. Xin. 1992. Commutative BCI-algebras. **Math. Japonica**. 37(3): 569-572.