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ABSTRACT

An indirect boundary element method was applied to calculate a potential flow around an

oblate spheroid. The computed results for flow velocities were compared with analytical results. The

accuracy of the computed results was quite good.
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INTRODUCTION

It has always been a struggle in fluid flow

modeling to find more efficient numerical methods

that can be used to solve a complicated system of

partial differential equations (PDE) of fluid flows.

The calculation of practical flows was made

possible over time by the development of many

numerical techniques, such as the finite difference

method, the finite element method, the finite

volume method and the boundary element method.

These methods, which have evolved with the

discovery of new algorithms and the availability

of faster computers, are CPU time and storage

hungry. One of the advantages of the boundary

element method is that the entire surface of the

body has to be discretized, whereas with domain

methods it is essential to discretize the entire region

of the flow field. The most important

characteristics of the boundary element method

are the much smaller system of equations and the

considerable reduction in data, with the latter being

a prerequisite to run a computer program

efficiently. These methods have been successfully

applied in a number of fields, including elasticity,

potential theory, elastostatics and elastodynamics

(Brebbia, 1978; Brebbia and Walker, 1980).

Furthermore, this method is well suited to

problems having an infinite domain. Thus, it is

concluded that the boundary element method is a

time-saving, accurate and efficient numerical

technique compared with other numerical

techniques. It can be classified into direct boundary

element and indirect boundary element methods.

The direct boundary element method has been used

for flow field calculations around complicated

bodies (Morino et al., 1975). The indirect method

utilizes a distribution of singularities over the

boundary of the body and computes this

distribution as the solution of the integral equation.

The indirect method has been used for many years

for flow field calculations surrounding three-

dimensional bodies (Hess and Smith, 1967; Hess,

1973).



Flow past an oblate spheroid
Let an oblate spheroid be generated by

rotating an ellipse of semi-major axis a and semi-

minor axis b about its minor axis and let a uniform

stream of velocity U be in the positive direction

of the z axis as shown in the Figure 1.

An axi-symmetric flow is most

conveniently formulated using cylindrical polar

coordinates. The cylindrical polar coordinates are

taken as (r, θ, z).

In Shah (2008) the oblate spheroid is

defined by the transformation:

z + i r = c sinh ζ
= c sinh (ξ + i η)

= c (sinh ξ cos η + i cosh ξ sin η)

= c sinh ξ cos η + i c cosh ξ sin η
Comparing real and imaginary parts, we

have (Equation 1):

z = c sinh ξ cos η  r = c cosh ξ sin η (1)

Therefore the curve  ξ = ξ 0 is an ellipse

in the z r plane whose semi-axes are (Equation 2):

a = c cosh ξ 0 b = c sinh ξ 0 (2)

and so ξ  =  ξ 0  is an oblate spheroid

The stream function ψ for an oblate spheroid

moving in the negative direction of the z axis, with

velocity U can be calculated as in Shah, 2008

(Equation 3):
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where e  is the eccentricity.

The stream function ψ for the uniform stream with

velocity U in the positive direction of the z axis is

also given by Shah (2008) (Equation 4):

ψ = −
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Therefore, the stream function ψ for the

streaming motion past a fixed oblate spheroid in

the positive direction of the z axis becomes
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which, on substituting from (1) becomes Equation

5:
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To determine the formula for the velocity, the

relation in Equation 6 is used (Milne-Thomson,

1968; Shah, 2008)
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Since  f ( ζ ) = c sinh ζ  ,  therefore

           f′ ( ζ ) = c cosh ζ = c cosh (ξ + i η) ,

′f  ( ζ ) = c cosh (ζ – i η)

and     f′ ( ζ ) ′f ( ζ ) = c 2 (cosh 2 ξ cos 2 η + sinh2

ξ sin 2 η) (7)

When ξ = ξ 0 , then from (1) , (6) and (7)
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Now from (5), we get
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Since for an oblate spheroid

a =  c cosh ξ 0 ,     b  =  c sinh ξ 0 (10)

But cot – 1 ( sinh ξ 0 )  =  θ ,     e  =  sin θ  = 
c

a
Figure 1 The flow past an Oblate spheroid.
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and     1 2− e   =  cos θ  =  
b

a
(11)

From (9), (10), and (11), we get
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and from (5), (10) and (11), we obtain
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Using (12) and (13), (8) becomes
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But from (1) and (2), we get

cos η = 
z

b
,     sin η = 

r

a
(15)

Using (10), (15) in (14), we have

V 2 = U r b c
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Taking the square root of (16), the

magnitude of the exact velocity distribution over

the boundary of an oblate spheroid is given by

V = U b c r

b a a z b r
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Boundary conditions
The boundary condition to be satisfied

over the surface of an oblate spheroid is shown in

Equation 17:

∂

∂
= ⋅( )φo s

n
U n k

. ˆ ˆ (17)

where φo.s  is the perturbation velocity

potential of an oblate spheroid and n̂  is the

outward drawn unit normal to the surface of an

oblate spheroid.

The equation of the boundary of the oblate

spheroid     
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Therefore, the boundary condition in (17) takes

the form
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Equation 18 is the boundary condition,

which must be satisfied over the boundary of an

oblate spheroid.

DISCRETIZATION OF ELEMENTS

Consider the surface of the sphere in one

octant to be divided into three quadrilateral

elements by joining the centroid of the surface with
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the mid points of the curves in the coordinate

planes as shown in Figure 2  (Mushtaq et al., 2009).

Then, each element is divided further into

four elements by joining the centroid of that

element with the midpoint of each side of the

element. Thus one octant of the surface of the

sphere is divided into 12  elements and the whole

surface of the body is divided into 96 boundary

elements and so on. The above-mentioned method

is adopted in order to produce a uniform

distribution of elements over the surface of the

body.

Figure 3 shows the method for finding

the coordinate (xp, yp, zp) of any point P on the

surface of the sphere.

Figure 3 provides the following equation

v
rp = 1

v v v v
r r r rp p⋅ = ⋅1 2
v v v
r r rp1 2 0×( ) ⋅ =

or in Cartesian form

x y zp p p
2 2 2 1+ + =

xp (x1 – x2) + yp (y1 – y2) + zp (z1 – z2) = 0

xp (y1 z2 – z1 y2) + yp (x2 z1 – x1 z2) + zp

(x1 y2 – x2 y1) = 0

As the body possesses planes of

symmetry, this fact may be used in the input to the

program and only the non–redundant portion needs

to be specified by input points. The other portions

are automatically taken into account. The planes

of symmetry are taken to be the coordinate planes

of the reference coordinate system. The advantage

of the use of symmetry is that it reduces the order

of the resulting system of equations and

consequently reduces the computing time in

running a program. As a sphere is symmetric with

respect to all three coordinate planes of the

reference coordinate system, only one eighth of

the body surface need be specified by the input

points, while the other seven eighths can be

accounted for by symmetry.

The oblate spheroids of fineness ratios 2

and 10 were discretized into 24, 96 and 384

boundary elements and the computed velocity

distributions compared with analytical solutions

for the oblate spheroids. For both spheroids, the

input points were distributed on the surface of a

sphere and the x and y-coordinates of these points

were then divided by the fineness ratios to generate

the points for the oblate spheroids. The number of

boundary elements used to  obtain  the  computed

velocity  distribution was the same as that used

for the sphere.

The calculated velocity distributions

were compared with analytical solutions for the

oblate spheroid of fineness ratios 2 and 10 using

Fortran programming.

Figure 2 Surface of the sphere divided into three

quadrilateral elements.

Figure 3 The method of finding the coordinate

(xp, yp, zp) of any point P on the surface

of the sphere.
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Table 1 Comparison of the computed velocities with exact velocity over the surface of an oblate spheroid

with fineness ratio 2 using 24 boundary elements.

Element XM YM ZM
R

YM ZM

=

+( ) ( )2 2 Computed Exact velocity

velocity

1 -.161E+00 -.748E+00 .321E+00 .81391E+00 .14559E+01 .20456E+01

2 -.374E+00 -.321E+00 .321E+00 .45412E+00 .52484E+00 .75697E+00

3 -.374E+00 .321E+00 .321E+00 .45412E+00 .52484E+00 .75697E+00

4 -.161E+00 .748E+00 .321E+00 .81391E+00 .14559E+01 .20456E+01

5 .161E+00 .748E+00 .321E+00 .81391E+00 .14559E+01 .20456E+01

6 .374E+00 .321E+00 .321E+00 .45412E+00 .52484E+00 .75697E+00

7 .374E+00 -.321E+00 .321E+00 .45412E+00 .52484E+00 .75697E+00

8 .161E+00 -.748E+00 .321E+00 .81391E+00 .14559E+01 .20456E+01

9 -.161E+00 -.321E+00 .748E+00 .81391E+00 .14559E+01 .20456E+01

10 -.161E+00 .321E+00 .748E+00 .81391E+00 .14559E+01 .20456E+01

11 .161E+00 .321E+00 .748E+00 .81391E+00 .14559E+01 .20456E+01

12 .161E+00 -.321E+00 .748E+00 .81391E+00 .14559E+01 .20456E+01

Figure 4 Comparison of computed and analytical velocity distributions over the surface of an oblate

spheroid using 24 boundary elements with fineness ratio 2.

Figures 4, 6 and 8 show the comparison

of the computed and analytical distributions over

the surface of an oblate spheroid of fineness ratio

2 for 24, 96 and 384 boundary elements,

respectively. Figures 5, 7 and 9 show the

comparison of the computed and analytical

distributions over the surface of an oblate spheroid

of fineness ratio 10 for 24, 96 and 384 boundary

elements, respectively. The accuracy of the

calculated results in both case of an oblate spheroid

of fineness ratio 2 and 10 is seen to be good.
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Table 2 Comparison of the computed velocities with exact velocity over the surface of an oblate spheroid

with fineness ratio 10 using 24 boundary elements.

Element XM YM ZM
R

YM ZM

=

+( ) ( )2 2 Computed Exact velocity

velocity

1 -.321E-01 -.748E+00 .321E+00 .81391E+00 .15726E+01 .17673E+01

2 -.748E-01 -.321E+00 .321E+00 .45412E+00 .36626E+00 .43595E+00

3 -.748E-01 .321E+00 .321E+00 .45412E+00 .36626E+00 .43595E+00

4 -.321E-01 .748E+00 .321E+00 .81391E+00 .15726E+01 .17673E+01

5 .321E-01 .748E+00 .321E+00 .81391E+00 .15726E+01 .17673E+01

6 .748E-01 .321E+00 .321E+00 .45412E+00 .36626E+00 .43595E+00

7 .748E-01 -.321E+00 .321E+00 .45412E+00 .36626E+00 .43595E+00

8 .321E-01 -.748E+00 .321E+00 .81391E+00 .15726E+01 .17673E+01

9 -.321E-01 -.321E+00 .748E+00 .81391E+00 .15726E+01 .17673E+01

10 -.321E-01 .321E+00 .748E+00 .81391E+00 .15726E+01 .17673E+01

11 .321E-01 .321E+00 .748E+00 .81391E+00 .15726E+01 .17673E+01

12 .321E-01 -.321E+00 .748E+00 .81391E+00 .15726E+01 .17673E+01

Figure 5 Comparison of computed and analytical velocity distributions over the surface of an oblate

spheroid using 24 boundary elements with fineness ratio 10.

CONCLUSION

An indirect boundary element method

was applied to calculate the incompressible

potential flow around an oblate spheroid. The

computed flow velocities obtained by this method

were compared with the analytical solutions for

flow past an oblate spheroid. It was found that the

computed results for velocity distribution were in

good agreement with the analytical results for the

body under consideration.
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Table 3 Comparison of the computed velocities with exact velocity over the surface of an oblate spheroid

with fineness ratio 2 using 96 boundary elements.

ELEMENT XM YM ZM
R

YM ZM

=

+( ) ( )2 2 COMPUTED EXACT

VELOCITY VELOCITY

1 -.885E-01 -.934E+00 .177E+00 .95057E+00 .18636E+01 .24420E+01
2 -.261E+00 -.798E+00 .157E+00 .81353E+00 .12896E+01 .16013E+01
3 -.399E+00 -.522E+00 .157E+00 .54527E+00 .68456E+00 .84220E+00
4 -.467E+00 -.177E+00 .177E+00 .25022E+00 .25845E+00 .34596E+00
5 -.467E+00 .177E+00 .177E+00 .25022E+00 .25845E+00 .34596E+00
6 -.399E+00 .522E+00 .157E+00 .54527E+00 .68456E+00 .84220E+00
7 -.261E+00 .798E+00 .157E+00 .81353E+00 .12896E+01 .16013E+01
8 -.885E-01 .934E+00 .177E+00 .95057E+00 .18636E+01 .24420E+01
9 .885E-01 .934E+00 .177E+00 .95057E+00 .18636E+01 .24420E+01

10 .261E+00 .798E+00 .157E+00 .81353E+00 .12896E+01 .16013E+01
11 .399E+00 .522E+00 .157E+00 .54527E+00 .68456E+00 .84220E+00
12 .467E+00 .177E+00 .177E+00 .25022E+00 .25846E+00 .34596E+00
13 .467E+00 -.177E+00 .177E+00 .25022E+00 .25846E+00 .34596E+00
14 .399E+00 -.522E+00 .157E+00 .54527E+00 .68456E+00 .84220E+00
15 .261E+00 -.798E+00 .157E+00 .81353E+00 .12896E+01 .16013E+01
16 .885E-01 -.934E+00 .177E+00 .95057E+00 .18636E+01 .24420E+01
17 -.785E-01 -.798E+00 .522E+00 .95386E+00 .18585E+01 .24750E+01
18 -.235E+00 -.703E+00 .470E+00 .84578E+00 .14277E+01 .17433E+01
19 -.352E+00 -.470E+00 .470E+00 .66440E+00 .84484E+00 .11129E+01
20 -.399E+00 -.157E+00 .522E+00 .54527E+00 .68456E+00 .84220E+00
21 -.399E+00 .157E+00 .522E+00 .54527E+00 .68456E+00 .84220E+00
22 -.352E+00 .470E+00 .470E+00 .66440E+00 .84484E+00 .11129E+01
23 -.235E+00 .703E+00 .470E+00 .84578E+00 .14277E+01 .17433E+01
24 -.785E-01 .798E+00 .522E+00 .95386E+00 .18585E+01 .24750E+01
25 .785E-01 .798E+00 .522E+00 .95386E+00 .18585E+01 .24750E+01
26 .235E+00 .703E+00 .470E+00 .84578E+00 .14277E+01 .17433E+01
27 .352E+00 .470E+00 .470E+00 .66440E+00 .84484E+00 .11129E+01
28 .399E+00 .157E+00 .522E+00 .54527E+00 .68456E+00 .84220E+00
29 .399E+00 -.157E+00 .522E+00 .54527E+00 .68456E+00 .84220E+00
30 .352E+00 -.470E+00 .470E+00 .66440E+00 .84484E+00 .11129E+01
31 .235E+00 -.703E+00 .470E+00 .84578E+00 .14277E+01 .17433E+01
32 .785E-01 -.798E+00 .522E+00 .95386E+00 .18585E+01 .24750E+01
33 -.785E-01 -.522E+00 .798E+00 .95386E+00 .18585E+01 .24750E+01
34 -.235E+00 -.470E+00 .703E+00 .84578E+00 .14277E+01 .17433E+01
35 -.261E+00 -.157E+00 .798E+00 .81353E+00 .12896E+01 .16013E+01
36 -.261E+00 .157E+00 .798E+00 .81353E+00 .12896E+01 .16013E+01
37 -.235E+00 .470E+00 .703E+00 .84578E+00 .14277E+01 .17433E+01
38 -.785E-01 .522E+00 .798E+00 .95386E+00 .18585E+01 .24750E+01
39 .785E-01 .522E+00 .798E+00 .95386E+00 .18585E+01 .24750E+01
40 .235E+00 .470E+00 .703E+00 .84578E+00 .14277E+01 .17433E+01
41 .261E+00 .157E+00 .798E+00 .81353E+00 .12896E+01 .16013E+01
42 .261E+00 -.157E+00 .798E+00 .81353E+00 .12896E+01 .16013E+01
43 .235E+00 -.470E+00 .703E+00 .84578E+00 .14277E+01 .17433E+01
44 .785E-01 -.522E+00 .798E+00 .95386E+00 .18585E+01 .24750E+01
45 -.885E-01 -.177E+00 .934E+00 .95057E+00 .18636E+01 .24420E+01
46 -.885E-01 .177E+00 .934E+00 .95057E+00 .18636E+01 .24420E+01
47 .885E-01 .177E+00 .934E+00 .95057E+00 .18636E+01 .24420E+01
48 .885E-01 -.177E+00 .934E+00 .95057E+00 .18636E+01 .24420E+01
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Figure 6 Comparison of computed and analytical velocity distributions over the surface of an oblate

spheroid using 96 boundary elements with fineness ratio 2.

Figure 7 Comparison of computed and analytical velocity distributions over the surface of an oblate

spheroid using 96 boundary elements with fineness ratio 10.
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Table 4 Comparison of the computed velocities with exact velocity over the surface of a oblate spheroid

with fineness ratio 10 using 96 boundary elements.

Element XM YM ZM
R

YM ZM

=

+( ) ( )2 2 Computed Exact velocity

velocity

1 -.177E-01 -.934E+00 .177E+00 .95057E+00 .29112E+01 .34041E+01
2 -.522E-01 -.798E+00 .157E+00 .81353E+00 .10251E+01 .11072E+01
3 -.798E-01 -.522E+00 .157E+00 .54527E+00 .47407E+00 .49020E+00
4 -.934E-01 -.177E+00 .177E+00 .25022E+00 .17447E+00 .19264E+00
5 -.934E-01 .177E+00 .177E+00 .25022E+00 .17447E+00 .19264E+00
6 -.798E-01 .522E+00 .157E+00 .54527E+00 .47407E+00 .49020E+00
7 -.522E-01 .798E+00 .157E+00 .81353E+00 .10251E+01 .11072E+01
8 -.177E-01 .934E+00 .177E+00 .95057E+00 .29112E+01 .34041E+01
9 .177E-01 .934E+00 .177E+00 .95057E+00 .29112E+01 .34041E+01
10 .522E-01 .798E+00 .157E+00 .81353E+00 .10251E+01 .11072E+01
11 .798E-01 .522E+00 .157E+00 .54527E+00 .47407E+00 .49020E+00
12 .934E-01 .177E+00 .177E+00 .25022E+00 .17447E+00 .19264E+00
13 .934E-01 -.177E+00 .177E+00 .25022E+00 .17447E+00 .19264E+00
14 .798E-01 -.522E+00 .157E+00 .54527E+00 .47407E+00 .49020E+00
15 .522E-01 -.798E+00 .157E+00 .81353E+00 .10251E+01 .11072E+01
16 .177E-01 -.934E+00 .177E+00 .95057E+00 .29112E+01 .34041E+01
17 -.157E-01 -.798E+00 .522E+00 .95386E+00 .27699E+01 .37350E+01
18 -.470E-01 -.703E+00 .470E+00 .84578E+00 .12380E+01 .12744E+01
19 -.703E-01 -.470E+00 .470E+00 .66440E+00 .60931E+00 .67649E+00
20 -.798E-01 -.157E+00 .522E+00 .54527E+00 .47407E+00 .49020E+00
21 -.798E-01 .157E+00 .522E+00 .54527E+00 .47407E+00 .49020E+00
22 -.703E-01 .470E+00 .470E+00 .66440E+00 .60931E+00 .67649E+00
23 -.470E-01 .703E+00 .470E+00 .84578E+00 .12380E+01 .12744E+01
24 -.157E-01 .798E+00 .522E+00 .95386E+00 .27699E+01 .37350E+01
25 .157E-01 .798E+00 .522E+00 .95386E+00 .27699E+01 .37350E+01
26 .470E-01 .703E+00 .470E+00 .84578E+00 .12380E+01 .12744E+01
27 .703E-01 .470E+00 .470E+00 .66440E+00 .60932E+00 .67649E+00
28 .798E-01 .157E+00 .522E+00 .54527E+00 .47408E+00 .49020E+00
29 .798E-01 -.157E+00 .522E+00 .54527E+00 .47408E+00 .49020E+00
30 .703E-01 -.470E+00 .470E+00 .66440E+00 .60932E+00 .67649E+00
31 .470E-01 -.703E+00 .470E+00 .84578E+00 .12380E+01 .12744E+01
32 .157E-01 -.798E+00 .522E+00 .95386E+00 .27699E+01 .37350E+01
33 -.157E-01 -.522E+00 .798E+00 .95386E+00 .27699E+01 .37350E+01
34 -.470E-01 -.470E+00 .703E+00 .84578E+00 .12380E+01 .12744E+01
35 -.522E-01 -.157E+00 .798E+00 .81353E+00 .10251E+01 .11072E+01
36 -.522E-01 .157E+00 .798E+00 .81353E+00 .10251E+01 .11072E+01
37 -.470E-01 .470E+00 .703E+00 .84578E+00 .12380E+01 .12744E+01
38 -.157E-01 .522E+00 .798E+00 .95386E+00 .27698E+01 .37350E+01
39 .157E-01 .522E+00 .798E+00 .95386E+00 .27699E+01 .37350E+01
40 .470E-01 .470E+00 .703E+00 .84578E+00 .12380E+01 .12744E+01
41 .522E-01 .157E+00 .798E+00 .81353E+00 .10251E+01 .11072E+01
42 .522E-01 -.157E+00 .798E+00 .81353E+00 .10251E+01 .11072E+01
43 .470E-01 -.470E+00 .703E+00 .84578E+00 .12380E+01 .12744E+01
44 .157E-01 -.522E+00 .798E+00 .95386E+00 .27699E+01 .37350E+01
45 -.177E-01 -.177E+00 .934E+00 .95057E+00 .29112E+01 .34041E+01
46 -.177E-01 .177E+00 .934E+00 .95057E+00 .29112E+01 .34041E+01
47 .177E-01 .177E+00 .934E+00 .95057E+00 .29112E+01 .34041E+01
48 .177E-01 -.177E+00 .934E+00 .95057E+00 .29112E+01 .34041E+01
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Figure 9 Comparison of computed and analytical velocity distributions over the Surface of an oblate

spheroid using 384 boundary elements with fineness ratio 10.

Figure 8 Comparison of computed and analytical velocity distributions over the surface of an oblate

spheroid using 384 boundary elements with fineness ratio 2.
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