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Calculation of Potential Flow Around an Oblate Spheroid Using

Indirect Boundary Element Method
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ABSTRACT

An indirect boundary element method was applied to calculate a potential flow around an

oblate spheroid. The computed results for flow velocities were compared with analytical results. The

accuracy of the computed results was quite good.

Key words: boundary element method, potential flow, axisymmetric flow, oblate spheroid, planetary

ellipsoid

INTRODUCTION

It has always been a struggle in fluid flow
modeling to find more efficient numerical methods
that can be used to solve a complicated system of
partial differential equations (PDE) of fluid flows.
The calculation of practical flows was made
possible over time by the development of many
numerical techniques, such as the finite difference
method, the finite element method, the finite
volume method and the boundary element method.
These methods, which have evolved with the
discovery of new algorithms and the availability
of faster computers, are CPU time and storage
hungry. One of the advantages of the boundary
element method is that the entire surface of the
body has to be discretized, whereas with domain
methods it is essential to discretize the entire region
of the flow field. The most important
characteristics of the boundary element method
are the much smaller system of equations and the
considerable reduction in data, with the latter being

a prerequisite to run a computer program
efficiently. These methods have been successfully
applied in a number of fields, including elasticity,
potential theory, elastostatics and elastodynamics
(Brebbia, 1978; Brebbia and Walker, 1980).
Furthermore, this method is well suited to
problems having an infinite domain. Thus, it is
concluded that the boundary element method is a
time-saving, accurate and efficient numerical
technique compared with other numerical
techniques. It can be classified into direct boundary
element and indirect boundary element methods.
The direct boundary element method has been used
for flow field calculations around complicated
bodies (Morino et al., 1975). The indirect method
utilizes a distribution of singularities over the
boundary of the body and computes this
distribution as the solution of the integral equation.
The indirect method has been used for many years
for flow field calculations surrounding three-
dimensional bodies (Hess and Smith, 1967; Hess,
1973).
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Flow past an oblate spheroid

Let an oblate spheroid be generated by
rotating an ellipse of semi-major axis a and semi-
minor axis b about its minor axis and let a uniform
stream of velocity U be in the positive direction
of the z axis as shown in the Figure 1.

An axi-symmetric flow is most
conveniently formulated using cylindrical polar
coordinates. The cylindrical polar coordinates are
taken as (1, 0, z).

In Shah (2008) the oblate spheroid is
defined by the transformation:

zZ+ir =csinh T

=csinh (E+1im)
= c (sinh § cos M +i cosh E sinm)
=csinh§cosn+iccoshEsinm

Comparing real and imaginary parts, we
have (Equation 1):

z=csinh§cosm r=ccosh&sinn (1)

Therefore the curve &= is an ellipse
in the z r plane whose semi-axes are (Equation 2):

a=ccosh&yb=csinh§, 2)

and so § = & is an oblate spheroid
The stream function 1 for an oblate spheroid
moving in the negative direction of the z axis, with
velocity U can be calculated as in Shah, 2008
(Equation 3):

1 .
EU Cz[sinh E-cosh® € cot™'(sinh ‘g)] sin® m

v ew/l—e2 -sin”' e

3)
where e is the eccentricity.
The stream function  for the uniform stream with
velocity U in the positive direction of the z axis is
also given by Shah (2008) (Equation 4):

m

=S\

Figure 1 The flow past an Oblate spheroid.

Y= —%Urz @)

Therefore, the stream function 1 for the
streaming motion past a fixed oblate spheroid in
the positive direction of the z axis becomes

1 .
_EU Cz[sinh £ —cosh? & cot”!(sinh E)] sin n
evl-e? —sin e

which, on substituting from (1) becomes Equation
5:

1
= —*Ur2+

Y= —%U c¢? cosh? € sin? n+

1 .
EU Cz[sinh € - cosh? E cot™'(sinh ?;)] sin® )

e«/l —e?-sin'e
(%)
To determine the formula for the velocity, the
relation in Equation 6 is used (Milne-Thomson,
1968; Shah, 2008)
Ve ©T@© = (a—”’)z il
IS
Since f(T)=csinh T , therefore
f'(T)=ccoshT=ccosh(E+in),
1 (€)=ccosh(T-im)
and (%) f'(T)=c2(cosh2E cos 2 1 + sinh?
Esin?n) (7
When € =&, then from (1) , (6) and (7)
V2c4cosh?€(sin?m (cosh?2&(cos?n

2
0
_lP) (6)

m

2 2
: . d J
+sinh2gsin’n )= (%) &=Eo +(%) g=Eo (®)

Now from (5), we get

(g—g) = —UcZ2cosh E,sinh &, sin2n +
&=8o

U cz[cosh gy —cosh &, sinh §; cot™! (sinh EO)] sin? n

e\/l —e?—sinl e

€))
Since for an oblate spheroid

a= ccosh&,, b =csinhg, (10)

Butcot~! (sinh&€,) =6, e =sin0 = <

o
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2 = cosH = b (11)
a

From (9), (10), and (11), we get

and l-¢

ac-ab®
() v ).
IS0 a a
Usin?n [_abs 267200 2 (12)
bc-a“ 0
and from (5), (10) and (11), we obtain
aq;)
— =0
(a (13)
M E=gp

Using (12) and (13), (8) becomes
V2c4cosh? & sin?n[cosh?Egcos?n
+sinh2x4sin?2n]= UZ2sin*n

ac—-ab0 ,
—ab+—bc_a26a ] (14)
But from (1) and (2), we get
cosm = E, sinm = I (15)
b a
Using (10), (15) in (14), we have
Voo U2 2 b2 S
(bc-a?0)? (a* -z2+b* -1%)?
(16)

where 0 = sin~! (€)
\a/

Taking the square root of (16), the
magnitude of the exact velocity distribution over
the boundary of an oblate spheroid is given by

V= Ubc’r
(bc—a2 6)«/a4 2 +b*r?

Boundary conditions

The boundary condition to be satisfied
over the surface of an oblate spheroid is shown in
Equation 17:

a(‘)o.s _ A D
== Ula-k) (17)

where ¢, is the perturbation velocity

potential of an oblate spheroid and 1 is the

outward drawn unit normal to the surface of an

oblate spheroid.

The equation of the boundary of the oblate
2 2

2
. z y X
spheroid b—2+a—2+a—2 =1
2 2 2
VAR
Let f(x,y,2)= b—2+a—2+a—2—1

2x> 2y~ 225

Then V= =i+=j+—k
a’ a2J b’
2X+» 2y¢ 27 A
—1+—5j+-—5k
Thereforeﬁ:v_f= 322 a’ 2b2 _
vl Jﬂz\ 20, (2%)
\b2) "\a?) \a?2)
=7
Thus n-k = b*
2 2 2
J(ZZ\ L2925
\p2) %) "\a?)
z
b2
T T2 2 2
VA y X
B
b* at  at

Therefore, the boundary condition in (17) takes

the form
z
aq)o.s = U b2
an \/34 22 +b* y? +b* x?
a’ b’
B za’
\/a4 z2 +b* (y2 +x2)
(Taking U = 1) (18)

Equation 18 is the boundary condition,
which must be satisfied over the boundary of an
oblate spheroid.

DISCRETIZATION OF ELEMENTS
Consider the surface of the sphere in one

octant to be divided into three quadrilateral
elements by joining the centroid of the surface with
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the mid points of the curves in the coordinate
planes as shown in Figure 2 (Mushtaq et al., 2009).

Then, each element is divided further into
four elements by joining the centroid of that
element with the midpoint of each side of the
element. Thus one octant of the surface of the
sphere is divided into 12 elements and the whole
surface of the body is divided into 96 boundary
elements and so on. The above-mentioned method
is adopted in order to produce a uniform
distribution of elements over the surface of the
body.

Figure 3 shows the method for finding
the coordinate (xp, Yps zp) of any point P on the
surface of the sphere.

Figure 3 provides the following equation

y
£

Figure 2 Surface of the sphere divided into three
quadrilateral elements.

B feg ¥ B2

O o)

Figure 3 The method of finding the coordinate
(Xp» ¥p» Zp) Of any point P on the surface
of the sphere.

or in Cartesian form

xlz) + ylz) + zlz, =1

Xp (X1 =X) +¥p (Y1 —Y2) +72,(21-29) =0

Xp (Y1 22— 21 ¥2) +¥p (X221 = X1 29) + 7,
X1y2-%y)=0

As the body possesses planes of
symmetry, this fact may be used in the input to the
program and only the non-redundant portion needs
to be specified by input points. The other portions
are automatically taken into account. The planes
of symmetry are taken to be the coordinate planes
of the reference coordinate system. The advantage
of the use of symmetry is that it reduces the order
of the resulting system of equations and
consequently reduces the computing time in
running a program. As a sphere is symmetric with
respect to all three coordinate planes of the
reference coordinate system, only one eighth of
the body surface need be specified by the input
points, while the other seven eighths can be
accounted for by symmetry.

The oblate spheroids of fineness ratios 2
and 10 were discretized into 24, 96 and 384
boundary elements and the computed velocity
distributions compared with analytical solutions
for the oblate spheroids. For both spheroids, the
input points were distributed on the surface of a
sphere and the x and y-coordinates of these points
were then divided by the fineness ratios to generate
the points for the oblate spheroids. The number of
boundary elements used to obtain the computed
velocity distribution was the same as that used
for the sphere.

The calculated velocity distributions
were compared with analytical solutions for the
oblate spheroid of fineness ratios 2 and 10 using
Fortran programming.
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Figures 4, 6 and 8 show the comparison
of the computed and analytical distributions over
the surface of an oblate spheroid of fineness ratio
2 for 24, 96 and 384 boundary elements,
respectively. Figures 5, 7 and 9 show the
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distributions over the surface of an oblate spheroid
of fineness ratio 10 for 24, 96 and 384 boundary
elements, respectively. The accuracy of the
calculated results in both case of an oblate spheroid
of fineness ratio 2 and 10 is seen to be good.

comparison of the computed and analytical

Table 1 Comparison of the computed velocities with exact velocity over the surface of an oblate spheroid
with fineness ratio 2 using 24 boundary elements.

R =
Element XM YM M / (YM)? +(ZM)> Computed Exact velocity
velocity
1 - 161E+00 -.748E+00 .321E+00 .81391E+00 .14559E+01 .20456E+01
2 -374E+00 -.321E+00 .321E+00 .45412E+00 S52484E+00  .75697E+00
3 -374E+00  .321E+00 .321E+00 45412E+00 52484E+00  .75697E+00
4 - 161E+00  .748E+00  .321E+00 .81391E+00 .14559E+01 .20456E+01
5 A61E+00  .748E+00  .321E+00 .81391E+00 14559E+01  .20456E+01
6 374E+00  321E+00  .321E+00 45412E+00 S52484E+00  .75697E+00
7 374E+00  -.321E+00  .321E+00 45412E+00 52484E+00  .75697E+00
8 A61E+00  -.748E+00  .321E+00 .81391E+00 14559E+01 .20456E+01
9 - 161E+00 -.321E+00 .748E+00 .81391E+00 14559E+01 .20456E+01
10 - 161E+00  .321E+00 .748E+00 .81391E+00 .14559E+01 .20456E+01
11 A61E+00  .321E+00  .748E+00 .81391E+00 14559E+01 .20456E+01
12 A61E+00  -.321E+00  .748E+00 .81391E+00 14559E+01 .20456E+01
24
23
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Figure 4 Comparison of computed and analytical velocity distributions over the surface of an oblate
spheroid using 24 boundary elements with fineness ratio 2.
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An indirect boundary element method

was applied to calculate the incompressible

potential flow around an oblate spheroid. The

computed flow velocities obtained by this method
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were compared with the analytical solutions for

flow past an oblate spheroid. It was found that the

computed results for velocity distribution were in

good agreement with the analytical results for the

body under consideration.

Table 2 Comparison of the computed velocities with exact velocity over the surface of an oblate spheroid

with fineness ratio 10 using 24 boundary elements.

R =
Element XM YM M / (YM)? + (ZM)? Computed Exact velocity
velocity
1 -321E-01 -748E+00 .321E+00 .81391E+00 A5726E+01 . 17673E+01
2 -748E-01 -321E+00 .321E+00 45412E+00 36626E+00  .43595E+00
3 -748E-01  .321E+00 .321E+00 45412E+00 36626E+00  .43595E+00
4 -321E-01  .748E+00 .321E+00 .81391E+00 A5726E+01 . 17673E+01
5 321E-01  .748E+00  .321E+00 .81391E+00 A5726E+01  .17673E+01
6 JJ48E-01  .321E+00  .321E+00 45412E+00 .36626E+00  .43595E+00
7 JJ48E-01  -.321E+00  .321E+00 45412E+00 .36626E+00 .43595E+00
8 321E-01  -.748E+00  .321E+00 .81391E+00 A5726E+01  .17673E+01
9 -321E-01 -321E+00 .748E+00 .81391E+00 A5726E+01 . 17673E+01
10 -.321E-01 321E+00  .748E+00 .81391E+00 A5726E+01  .17673E+01
11 321E-01  .321E+00  .748E+00 .81391E+00 A5726E+01  .17673E+01
12 321E-01  -321E+00 .748E+00 .81391E+00 A5726E+01  .17673E+01
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Figure 5 Comparison of computed and analytical velocity distributions over the surface of an oblate

spheroid using 24 boundary elements with fineness ratio 10.
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Table 3 Comparison of the computed velocities with exact velocity over the surface of an oblate spheroid

with fineness ratio 2 using 96 boundary elements.

R=
ELEMENT XM YM M (YM)? + (ZM)> COMPUTED  EXACT

VELOCITY VELOCITY

1 -.885E-01 -.934E+00 .177E+00 .95057E+00 .18636E+01  .24420E+01
2 -261E+00 -.798E+00 .157E+00 .81353E+00 .12896E+01 .16013E+01
3 -399E+00 -.522E+00 .157E+00 .54527E+00 .68456E+00  .84220E+00
4 -467E+00 -.177E+00 .177E+00 .25022E+00 .25845E+00  .34596E+00
5 -467E+00 .177E+00  .177E+00 .25022E+00 .25845E+00  .34596E+00
6 -399E+00  .522E+00  .157E+00 .54527E+00 .68456E+00  .84220E+00
7 -261E+00 .798E+00 .157E+00 .81353E+00 .12896E+01 .16013E+01
8 -.885E-01  .934E+00 .177E+00 .95057E+00 .18636E+01 .24420E+01
9 .885E-01  .934E+00 .177E+00 .95057E+00 .18636E+01 .24420E+01
10 261E4+00 .798E+00  .157E+00 .81353E+00 .12896E+01 .16013E+01
11 399E+00  .522E+00  .157E+00 .54527E+00 .68456E+00  .84220E+00
12 A67E+00  .177E+00  .177E+00 .25022E+00 .25846E+00  .34596E+00
13 A67E+00 -.177E+00  .177E+00 .25022E+00 .25846E+00  .34596E+00
14 399E+00 -.522E+00  .157E+00 .54527E+00 .68456E+00  .84220E+00
15 261E4+00 -.798E+00 .157E+00 .81353E+00 .12896E+01 .16013E+01
16 .885E-01 -.934E+00 .177E+00 .95057E+00 .18636E+01  .24420E+01
17 -785E-01 -7798E+00  .522E+00 .95386E+00 .18585E+01 .24750E+01
18 -.235E+00 -.703E+00  .470E+00 .84578E+00 .14277E+01  .17433E+01
19 -.352E+00 -.470E+00 .470E+00 .66440E+00 .84484E+00 .11129E+01
20 -.399E+00 -.157E+00  .522E+00 .54527E+00 .68456E+00  .84220E+00
21 -.399E+00 .157E+00 .522E+00 .54527E+00 .68456E+00  .84220E+00
22 -.352E+00 .470E+00 .470E+00 .66440E+00 .84484E+00 .11129E+01
23 -235E+00 .703E+00 .470E+00 .84578E+00 14277E+01  .17433E+01
24 -785E-01  .798E+00  .522E+00 .95386E+00 .18585E+01  .24750E+01
25 JI85E-01  J798E+00  .522E+00 .95386E+00 .18585E+01  .24750E+01
26 235E4+00  .703E+00  .470E+00 .84578E+00 14277E+01  .17433E+01
27 352E4+00  .470E+00  .470E+00 .66440E+00 .84484E+00 .11129E+01
28 399E+00  .157E+00  .522E+00 .54527E+00 .68456E+00  .84220E+00
29 399E+00 -.157E+00  .522E+00 .54527E+00 .68456E+00  .84220E+00
30 .352E+00 -.470E+00 .470E+00 .66440E+00 .84484E+00 .11129E+01
31 235E+00 -.703E+00  .470E+00 .84578E+00 .14277E+01  .17433E+01
32 J785E-01  -.798E+00  .522E+00 .95386E+00 .18585E+01 .24750E+01
33 -785E-01 -.522E+00 .798E+00 .95386E+00 .18585E+01 .24750E+01
34 -.235E+00 -.470E+00 .703E+00 .84578E+00 14277E+01  .17433E+01
35 -261E+00 -.157E+00  .798E+00 .81353E+00 .12896E+01 .16013E+01
36 -261E+00 .157E+00 .798E+00 .81353E+00 .12896E+01 .16013E+01
37 -.235E+00  .470E+00  .703E+00 .84578E+00 14277E+01  .17433E+01
38 -785E-01  .522E+00  .798E+00 .95386E+00 .18585E+01  .24750E+01
39 J85E-01  .522E+00  .798E+00 .95386E+00 .18585E+01  .24750E+01
40 235E+00  .470E+00  .703E+00 .84578E+00 .14277E+01  .17433E+01
41 261E4+00 .157E+00  .798E+00 .81353E+00 .12896E+01 .16013E+01
42 261E+00 -.157E+00  .798E+00 .81353E+00 .12896E+01 .16013E+01
43 235E+00 -.470E+00 .703E+00 .84578E+00 .14277E+01  .17433E+01
44 J785E-01  -.522E+00  .798E+00 .95386E+00 .18585E+01 .24750E+01
45 -.885E-01 -.177E+00  .934E+00 .95057E+00 .18636E+01 .24420E+01
46 -.885E-01  .177E+00  .934E+00 .95057E+00 .18636E+01 .24420E+01
47 .885E-01  .177E+00  .934E+00 .95057E+00 .18636E+01 .24420E+01
48 .885E-01 -.177E+00  .934E+00 .95057E+00 .18636E+01 .24420E+01
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Figure 6 Comparison of computed and analytical velocity distributions over the surface of an oblate
spheroid using 96 boundary elements with fineness ratio 2.
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Figure 7 Comparison of computed and analytical velocity distributions over the surface of an oblate
spheroid using 96 boundary elements with fineness ratio 10.
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Table 4 Comparison of the computed velocities with exact velocity over the surface of a oblate spheroid
with fineness ratio 10 using 96 boundary elements.

R=
Element XM YM M (YM)? +(ZM)? Computed Exact velocity
velocity

1 -177E-01  -934E+00 .177E+00 .95057E+00 29112E401  .34041E+01
2 -522E-01  -.798E+00 .157E+00 .81353E+00 10251E+01 . 11072E+01
3 -798E-01  -.522E4+00 .157E+00 .54527E+00 47407E+00  .49020E+00
4 -.934E-01 -.177E4+00 .177E+00 .25022E+00 17447E+00  .19264E+00
5 -.934E-01 A77E+00  .177E+00 .25022E+00 17447E+00  .19264E+00
6 -.798E-01 S522E+00  .157E+00 .54527E+00 AT407E+00  .49020E+00
7 -.522E-01 J98E+00  .157E+00 .81353E+00 .10251E+01  .11072E+01
8 -.177E-01 934E+00  .177E+00 .95057E+00 29112E+01  .34041E+01
9 A77E-01 934E+00 .177E+00 .95057E+00 29112E+01  .34041E+01
10 .522E-01 J198E+00  .157E+00 .81353E+00 .10251E+01 .11072E+01
11 .798E-01 S522E+00  .157E+00 .54527E+00 AT407E+00  .49020E+00
12 934E-01 A77E+00  .177E+00 .25022E+00 17447E+00  .19264E+00
13 934E-01 -.177E4+00 .177E+00 .25022E+00 17447E+00  .19264E+00
14 J798E-01  -522E4+00  .157E+00 .54527E+00 AT407E+00  .49020E+00
15 S522E-01  -798E+00  .157E+00 .81353E+00 10251E+01 . 11072E+01
16 A77E-01  -934E+00 .177E+00 .95057E+00 29112E4+01  .34041E+01
17 -157E-01  -.798E+00  .522E+00 .95386E+00 27699E+01  .37350E+01
18 -470E-01 -.703E+00 .470E+00 .84578E+00 .12380E+01  .12744E+01
19 -703E-01  -.470E+00 .470E+00 .66440E+00 .60931E+00 .67649E+00
20 -798E-01 -.157E4+00 .522E+00 .54527E+00 AT407E+00  .49020E+00
21 -.798E-01 A57E+00  .522E+00 .54527E+00 AT7407E+00  .49020E+00
22 -.703E-01 AT0E+00  .470E+00 .66440E+00 .60931E+00 .67649E+00
23 -470E-01 J703E+00  .470E+00 .84578E+00 J12380E+01  .12744E+01
24 -.157E-01 J198E+00  .522E+00 .95386E+00 27699E+01  .37350E+01
25 .157E-01 J98E+00  .522E+00 .95386E+00 27699E+01  .37350E+01
26 470E-01 JJ03E+00  .470E+00 .84578E+00 .12380E+01 .12744E+01
27 J703E-01 A470E+00  .470E+00 .66440E+00 .60932E+00 .67649E+00
28 .798E-01 A57E+00  .522E+00 .54527E+00 47408E+00  .49020E+00
29 J798E-01  -.157E+00  .522E+00 .54527E+00 A4T7408E+00  .49020E+00
30 J703E-01  -.470E+00 .470E+00 .66440E+00 .60932E+00 .67649E+00
31 470E-01  -703E+00 .470E+00 .84578E+00 .12380E+01  .12744E+01
32 157E-01  -798E+00  .522E+00 .95386E+00 27699E+01  .37350E+01
33 -157E-01  -.522E+00 .798E+00 .95386E+00 27699E+01  .37350E+01
34 -470E-01 -.470E+00 .703E+00 .84578E+00 .12380E+01  .12744E+01
35 -.522E-01 -.157E4+00 .798E+00 .81353E+00 .10251E+01  .11072E+01
36 -.522E-01 A57E+00  .798E+00 .81353E+00 10251E+01 . 11072E+01
37 -470E-01 A70E+00  .703E+00 .84578E+00 .12380E+01  .12744E+01
38 -.157E-01 S522E+00  .798E+00 .95386E+00 27698E+01  .37350E+01
39 .157E-01 S522E+00  .798E+00 .95386E+00 27699E+01  .37350E+01
40 470E-01 AT70E+00  .703E+00 .84578E+00 .12380E+01  .12744E+01
41 .522E-01 A57E+00  .798E+00 .81353E+00 .10251E+01  .11072E+01
42 S522E-01  -.157E+00  .798E+00 .81353E+00 .10251E+01  .11072E+01
43 470E-01 -470E+00 .703E+00 .84578E+00 .12380E+01  .12744E+01
44 157E-01  -522E+00  .798E+00 .95386E+00 27699E+01  .37350E+01
45 -177E-01  -.177E4+00  .934E+00 .95057E+00 29112E+01  .34041E+01
46 -.177E-01 A77E+00  .934E+00 .95057E+00 29112E+01  .34041E+01
47 .177E-01 A77E+00  .934E+00 .95057E+00 29112E+01  .34041E+01

48 A77E-01  -.177E+00  .934E+00 .95057E+00 29112E+01  .34041E+01
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Figure 8 Comparison of computed and analytical velocity distributions over the surface of an oblate
spheroid using 384 boundary elements with fineness ratio 2.
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Figure 9 Comparison of computed and analytical velocity distributions over the Surface of an oblate
spheroid using 384 boundary elements with fineness ratio 10.
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