

On Sum-Free Arithmetic Sequences

Chitlada Somsup

ABSTRACT

An arithmetic sequence of integers is said to be sum-free if no integer of the sequence is the sum of distinct integers of this sequence. This paper investigated whether $A = \{a, a+d, a+2d, \dots\}$, where a and d are positive integers, is sum-free, and then showed that there exists a sum-free subset B of A such that $|B| \geq \frac{1}{2}|A|$. Moreover, it was also shown that if $A = \{a, 2a, \dots, T(n)a\}$, where a is a positive integer, then $\frac{3^n - 1}{2} \leq T(n) \leq [n!e] - 1$, where $T(n)$ is the largest positive integer such that A can be partitioned into n sum-free subsets.

Key words: sum-free, arithmetic sequence

INTRODUCTION

Schur's theorem says that for any positive integer k , there is a positive integer N such that for any k partitioned subset of $\{1, 2, \dots, N\}$, we have $x + y = z$ for some positive integers x, y and z in the same subset (Schur, 1916). From this theorem many mathematicians determined the properties of a subset S of positive integers such that if for any $x, y \in S$ then $x + y \notin S$. Such sets are known as a sum-free set. A set S of positive integers is called *sum-free* if there are not (not necessarily distinct) $x, y, z \in S$ such that $x + y = z$.

The Schur function $f(n)$ is defined to be the largest positive integer such that the set of integers $\{1, 2, \dots, f(n)\}$ can be partitioned into n sum-free sets. Only four values of $f(n)$ are known: $f(1) = 1$, $f(2) = 4$ and $f(3) = 13$. The value $f(4) = 44$ was determined by Baumert (1961) as follows :

$$\begin{aligned} S_1 &= \{1, 3, 5, 15, 17, 19, 26, 28, 40, 42, 44\}, \\ S_2 &= \{2, 7, 8, 18, 21, 24, 27, 33, 37, 38, 43\}, \\ S_3 &= \{4, 6, 13, 20, 22, 23, 25, 30, 32, 39, 41\}, \\ S_4 &= \{9, 10, 11, 12, 14, 16, 29, 31, 34, 35, 36\}. \end{aligned}$$

For any positive integer $n \geq 5$, Street (1972) proved that

$$\frac{3^n - 1}{2} \leq f(n) \leq [n!e] - 1.$$

Department of Mathematics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.
 * corresponding author, E-mail: fscichs@ku.ac.th

In this paper, some sufficient conditions are given for an arithmetic sequence $A = \{a, a+d, a+2d, \dots\}$ to be sum-free and it is then shown that if $|A| < \infty$, there exists a sum-free subset B of A such that $|B| \geq \frac{1}{2}|A|$. Finally, bounds are also given for $T(n)$, where $T(n)$ defined to be the largest positive integer such that $\{a, 2a, \dots, T(n)a\}$, where a is any positive integer, can be partitioned into n sum-free subsets.

MATERIALS AND METHODS

Definition 1. Let S be a subset of positive integers.

We called S is *sum-free*, if for any $x, y \in S$, then $x + y \notin S$.

Definition 2. A *partition* of a set X is a set of nonempty subsets of X such that every element x in X is in exactly one of these subsets.

Equivalently, a set P of nonempty sets is a *partition* of X , if

1. The union of the elements of P is equal to X .
2. The intersection of any two distinct elements of P is empty.

Proposition 3. For any positive integer $n \geq 2$, we have

$$[n!e] = n! \left(1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!} \right),$$

where, $[x]$ means the greatest integer less than or equal to x .

RESULTS AND DISCUSSION

The following theorems show some arithmetic sequences which are sum-free.

Theorem 1. Let a and d be positive integers such that $a < d$. Then

$$A = \{a, a+d, a+2d, \dots\}$$

is a sum-free set.

Proof Let $x, y \in A$. There exist nonnegative integers r, s such that $x = a + rd$ and $y = a + sd$. Then $x + y = (a + rd) + (a + sd)$. Since $a < d$, we get $a + (r+s)d < (a + rd) + (a + sd) < a + (r+s+1)d$. Therefore $x + y \notin A$. Hence A is a sum-free set.

Theorem 2. Let a and d be positive integers such that $a \geq d$. Then

- (1) For any positive integer k , $T = \{kd, (k+1)d, \dots, (2k-1)d\}$ is a sum-free set.
- (2) If a is not divisible by d , then $A = \{a, a+d, a+2d, \dots\}$ is a sum-free set.

Proof (1) Let $t_1, t_2 \in T$. Then $t_1 = md$ and $t_2 = nd$ for some positive integers m, n where $k \leq m, n \leq 2k-1$. Since $2k \leq m+n \leq 4k-2$, we have $t_1 + t_2 \geq 2kd$. Therefore, $t_1 + t_2 \notin T$. Hence T is a sum-free set.

(2) Since $a > d$ and $d \nmid a$, we have $a - d > 0$. So, we let $a_1 = a - d$. Then $B_1 = \{a_1, a_1 + d, \dots\} = \{a - d, a, a + d, \dots\}$. If $a_1 > d$, let $a_2 = a_1 - d$. Hence $B_2 = \{a_2, a_2 + d, \dots\} = \{a - 2d, a - d, a, a + d, \dots\}$. If $a_2 > d$, let $a_3 = a_2 - d$. Therefore $B_3 = \{a_3, a_3 + d, \dots\} = \{a - 3d, a - 2d, a - d, a, a + d, \dots\}$. Continuing this way until we get $a_k < d$, it is true that we use $d \nmid a$ and $a_{k-1} > d$. By Theorem 1, we have $B_k = \{a_k, a_k + d, \dots\}$ is a sum-free set. Since $A \subseteq B_1 \subseteq B_2 \subseteq \dots \subseteq B_k$ and B_k is a sum-free set, so A is a sum-free set.

Proposition 3. Suppose that $A = \{x_1a, x_2a, \dots, x_na\}$ is a sum-free set, where a and x_1, \dots, x_n are positive integers. Then,

$$B = \{(3x_1 - 1)a, 3x_1a, (3x_2 - 1)a, 3x_2a, \dots, (3x_n - 1)a, 3x_na\}$$

is a sum-free set.

Proof Suppose that B is not sum free. Then, there exist $\alpha, \beta \in B$, such that $\alpha + \beta \in B$.

Case $\alpha + \beta = 3x_k a$ for some $k \in \{1, 2, \dots, n\}$. If $\alpha = 3x_i a$ and $\beta = 3x_j a$ for some $i, j \in \{1, 2, \dots, n\}$, then $3x_k a = \alpha + \beta = 3(x_i a + x_j a)$. Therefore, $x_i a + x_j a = x_k a$, which is a contradiction because $x_i a, x_j a, x_k a \in A$ and A is a sum-free set. If $\alpha = (3x_i - 1)a$ and $\beta = (3x_j - 1)a$ for some $i, j \in \{1, 2, \dots, n\}$, then $3x_k a = \alpha + \beta = (3(x_i + x_j) - 2)a$. Thus $2 = 3(x_i + x_j - x_k)$, which is impossible. If $\alpha = (3x_i - 1)a$ and $\beta = 3x_j a$ for some $i, j \in \{1, 2, \dots, n\}$, then $3x_k a = \alpha + \beta = (3(x_i + x_j) - 1)a$. Therefore $1 = 3(x_i + x_j - x_k)$, which is impossible.

Case $\alpha + \beta = (3x_k - 1)a$ for some $k \in \{1, 2, \dots, n\}$. If $\alpha = 3x_i a$ and $\beta = 3x_j a$ for some $i, j \in \{1, 2, \dots, n\}$, then $(3x_k - 1)a = \alpha + \beta = 3(x_i + x_j)a$. Thus $-1 = 3(x_i + x_j - x_k)$, which is impossible. If $\alpha = (3x_i - 1)a$ and $\beta = (3x_j - 1)a$ for some $i, j \in \{1, 2, \dots, n\}$, then $(3x_k - 1)a = \alpha + \beta = (3(x_i + x_j) - 2)a$. Therefore $1 = 3(x_i + x_j - x_k)$, which is impossible. If $\alpha = (3x_i - 1)a$ and $\beta = 3x_j a$ for some $i, j \in \{1, 2, \dots, n\}$, then $(3x_k - 1)a = \alpha + \beta = (3x_i - 1)a + 3x_j a$. Therefore $x_i a + x_j a = x_k a$, which is a contradiction because $x_i a, x_j a, x_k a \in A$ and A is a sum-free set. Hence B is a sum-free set.

In the next theorem, we will consider the lower bound of a sum-free subset in a set of arithmetic sequence.

Theorem 4. Let $A = \{a, a + d, \dots, a + nd\}$ be an arithmetic sequence, where a and d are positive integers and n is a nonnegative integer. Then there exists a sum-free subset $B \subseteq A$ such that

$$|B| \geq \frac{1}{2}|A|.$$

Proof If $n = 0$, then $A = \{a\}$. Let $B = \{a\} = A$. Then B is a sum-free set and $|B| = |A| \geq \frac{1}{2}|A|$.

Assume that $n \geq 1$. If $a < d$, by Theorem 1, we get A is a sum-free set. So, we let $B = A$. Then B is a sum-free set and $|B| = |A| \geq \frac{1}{2}|A|$. If $a \geq d$ and $d \nmid a$, by Theorem 2, we get A is a

sum-free set. So, we let $B = A$. Then B is a sum-free set and $|B| = |A| \geq \frac{1}{2}|A|$. If $a \geq d$ and $d \mid a$, then there exists a positive integer k such that $a = kd$. Then $A = \{kd, (k+1)d, \dots, (k+n)d\}$ and $|A| = n+1$. If $\left\lfloor \frac{k+n}{2} \right\rfloor + 1 \leq k$, then let $B = A$. So, we get $|B| \geq \frac{1}{2}|A|$. Now, if $\left\lfloor \frac{k+n}{2} \right\rfloor + 1 > k$, then let $B = \left\{ \left(\left\lfloor \frac{k+n}{2} \right\rfloor + 1 \right) d, \dots, (k+n)d \right\}$.

Next, we will show that $B \subseteq A$.

Case $k+n$ is an even number, we have $k+n - \left\lfloor \frac{k+n}{2} \right\rfloor = \left\lfloor \frac{k+n}{2} \right\rfloor$, and then $\left\lfloor \frac{k+n}{2} \right\rfloor + 1 = k + \left(n - \left\lfloor \frac{k+n}{2} \right\rfloor + 1 \right)$. Therefore $n - \left\lfloor \frac{k+n}{2} \right\rfloor + 1 = \frac{n-k}{2} + 1$. If $n=k$, then $\frac{n-k}{2} + 1 \leq n$. If $n < k$, then $\frac{n-k}{2} + 1 < 1 \leq n$. If $n > k$, then $\frac{n-k}{2} + 1 \leq n$. So $\left(\left\lfloor \frac{k+n}{2} \right\rfloor + 1 \right) d = \left(k + \left(n - \left\lfloor \frac{k+n}{2} \right\rfloor + 1 \right) \right) d \leq (k+n)d$.

Case $k+n$ is an odd number, we have $\left\lfloor \frac{k+n}{2} \right\rfloor = \frac{k+n-1}{2}$. Therefore $k+n - \left\lfloor \frac{k+n}{2} \right\rfloor = \left\lfloor \frac{k+n}{2} \right\rfloor + 1$. So $\left\lfloor \frac{k+n}{2} \right\rfloor + 1 = k + \left(n - \left\lfloor \frac{k+n}{2} \right\rfloor \right)$. Then $n - \left\lfloor \frac{k+n}{2} \right\rfloor = \frac{n-k+1}{2}$. Since $k+n$ is an odd number, $k \neq n$. If $n < k$, then $\frac{n-k+1}{2} \leq n$. If $n > k$, then $\frac{n-k+1}{2} \leq n$. So $\left(\left\lfloor \frac{k+n}{2} \right\rfloor + 1 \right) d = \left(k + \left(n - \left\lfloor \frac{k+n}{2} \right\rfloor + 1 \right) \right) d \leq (k+n)d$. Hence $B \subseteq A$.

Next, we will show that B is a sum-free set. Let $x, y \in B$. Then there exist r, s such that $x = rd$ and $y = sd$, where $\left\lfloor \frac{k+n}{2} \right\rfloor + 1 \leq r, s \leq k+n$. Since $2\left\lfloor \frac{k+n}{2} \right\rfloor + 2 \leq r+s \leq 2(k+n)$, we get $x+y \geq (k+n)d$. This implies that $x+y \notin B$. Thus, B is a sum-free set. So

$$|B| = (k+n) - \left\lfloor \frac{k+n}{2} \right\rfloor \geq \frac{k+n}{2} . \text{ Since } k \geq 1 \text{ and } |A| = n+1, \text{ we have } |B| \geq \frac{1}{2}|A| .$$

Example 5. Assume that $A = \{3, 4, 5, 6, 7, 8, 9, 10\}$. So $|A| = 8$.

Let $B = \{6, 7, 8, 9, 10\} \subseteq A$. Then, we see that B is a sum-free set and $|B| = 5$. Hence,

$$5 = |B| > \frac{1}{2}|A| = 4 .$$

Definition 6. Given an arithmetic sequence $A = \{a, 2a, 3a, \dots, T(n)a\}$, where a is a positive integer. Define $T(n)$ to be the largest positive integer such that A can be partitioned into n sum-free subsets.

Theorem 7. Let a be a positive integer. Suppose that $A = \{a, 2a, \dots, T(n)a\}$ can be partitioned into n sum-free subsets. Then,

$$\frac{3^n - 1}{2} \leq T(n) \leq [n!e] - 1.$$

Proof Suppose that A can be partitioned into n sum-free subsets, say S_1, S_2, \dots, S_n . Hence, $A = S_1 \cup S_2 \cup \dots \cup S_n$ and $S_i \cap S_j = \emptyset$ for all $i \neq j$.

Without loss of generality, we assume that $m_i = |S_i| \geq |S_j|$, for $i = 1, 2, \dots, n$. Hence $T(n) \leq (m_1 n)$. Let $S_1 = \{x_1 a, x_2 a, \dots, x_{m_1} a\}$, where $x_1 a < x_2 a < \dots < x_{m_1} a$. Let $B_1 = \{(x_2 - x_1)a, (x_3 - x_1)a, \dots, (x_{m_1} - x_1)a\}$. It is obvious that $B_1 \subseteq A$. Since S_1 is a sum-free set, $B_1 \not\subseteq S_1$. Hence $B_1 \subseteq A - S_1$ or $B_1 \subseteq S_2 \cup S_3 \cup \dots \cup S_n$. Let S_2 be such that $m_2 = |S_2 \cap B_1| \geq |S_j \cap B_1|$ for $j = 2, 3, \dots, n$. That is $\{(x_{i_1} - x_1)a, \dots, (x_{i_{m_2}} - x_1)a\} \subseteq S_2$, where $i_1 < i_2 < \dots < i_{m_2}$. Then $m_1 - 1 \leq m_2(n-1)$. Hence $B_2 = \{(x_{i_2} - x_{i_1})a, \dots, (x_{i_{m_2}} - x_{i_1})a\} \subseteq S_3 \cup \dots \cup S_n$. Let S_3 be such that $m_3 = |S_3 \cap B_2| \geq |S_j \cap B_2|$ for $j = 3, 4, \dots, n$. Then $m_2 - 1 \leq m_3(n-2)$. Continuing in this way, we get $m_r - 1 \leq m_{r+1}(n-r)$ for $r = 1, 2, \dots, k$ and $m_k = 1$, where $1 \leq k \leq n$. Hence

$$T(n) \leq n! \left(\frac{1}{(n-1)!} + \dots + \frac{1}{(n-k)!} \right) \leq [n!e] - 1.$$

Next we will show that $T(n) \geq \left(\frac{3^n - 1}{2} \right)$. Suppose that $\{a, 2a, \dots, T(n)a\}$ can be partitioned into n sum-free subsets, namely

$$\begin{aligned} S_1 &= \{x_{11}a, x_{12}a, \dots, x_{1l_1}a\}, \\ S_2 &= \{x_{21}a, x_{22}a, \dots, x_{2l_2}a\}, \\ &\vdots \\ S_n &= \{x_{n1}a, x_{n2}a, \dots, x_{nl_n}a\}. \end{aligned}$$

Then $\{a, 2a, \dots, (3T(n)+1)a\}$ can be partitioned into $n+1$ subsets, namely

$$\begin{aligned} \bar{S}_1 &= \{(3x_{11} - 1)a, 3x_{11}a, (3x_{12} - 1)a, 3x_{12}a, \dots, (3x_{1l_1} - 1)a, 3x_{1l_1}a\}, \\ \bar{S}_2 &= \{(3x_{21} - 1)a, 3x_{21}a, (3x_{22} - 1)a, 3x_{22}a, \dots, (3x_{2l_2} - 1)a, 3x_{2l_2}a\}, \\ &\vdots \\ \bar{S}_n &= \{(3x_{n1} - 1)a, 3x_{n1}a, (3x_{n2} - 1)a, 3x_{n2}a, \dots, (3x_{nl_n} - 1)a, 3x_{nl_n}a\}, \\ \bar{S}_{n+1} &= \{a, 4a, 7a, \dots, (3T(n)+1)a\}. \end{aligned}$$

By Theorem 1 and Theorem 3, then $\bar{S}_1, \bar{S}_2, \dots, \bar{S}_{n+1}$ are sum-free sets. Therefore $T(n+1) \geq 3T(n)+1$. Since $T(1) = 1$, this yields $T(n) \geq \frac{3^n - 1}{2}$. This completes the proof of this theorem.

CONCLUSIONS

The results of this paper show that:

- (1) For an arithmetic sequence $A = \{a, a+d, a+2d, \dots\}$ where a and d are positive integers,
 - 1.1 if $a < d$, then A is a sum-free set;
 - 1.2 if $a \geq d$ and $d \nmid a$, then $T = \{kd, (k+1)d, \dots, (2k-1)d\}$ is a sum-free set for all positive integer k ;
 - 1.3 if $a > d$ and $d \nmid a$, then A is a sum-free set.
- (2) Let $A = \{a, a+d, \dots, a+nd\}$ be an arithmetic sequence, where a and d are positive integers and n is a nonnegative integer. Then, there exists a sum-free subset $B \subseteq A$, such that $|B| \geq \frac{1}{2}|A|$.
- (3) Let a be a positive integer. Suppose that $A = \{a, 2a, \dots, T(n)a\}$ can be partitioned into n sum-free subsets. Then,

$$\frac{3^n - 1}{2} \leq T(n) \leq [n!e] - 1.$$

LITERATURE CITED

Baumert, L.D. 1961. Sum-Free sets. **J.P.L. Research summary** 1: 16-18.

Schur, I. 1916. Über die Kongruenz $x^m + y^m \equiv z^m \pmod{p}$. **Jahresbericht der Deutschen Mathematiker Vereinigung** 25: 114-117.

Street, A.P. 1972. Sum-Free sets. **Springer Lect. Notes in Math.** 292: 123-272.

Text and Journal Publication Co., Ltd.

158/3 Soi Viphawadi Rangsit 5, Viphawadi Rangsit Road, Chom Phon, Chatuchak, Bangkok 10900
tel. 0-2617-8611-2 fax. 0-2617-8616