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On Sum-Free Arithmetic Sequences 

Chitlada  Somsup 

ABSTRACT 

An arithmetic sequence of integers is said to be sum-free if no integer of the sequence is the 
sum of distinct integers of this sequence. This paper investigated whether { , , 2 , ...}= + +A a a d a d ,

where a  and d  are positive integers, is sum-free, and then showed that there exists a sum-free 

subset B  of A  such that 
1

2
≥B A . Moreover, it was also shown that if { , 2 , , ( ) }=A a a T n a ,

where a  is a positive integer, then    3 1 ( )
2

≤−n
T n [ ! ] 1≤ −n e , where ( )T n  is the largest positive 

integer  such that A can be partitioned into n sum-free subsets. 
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INTRODUCTION

       Schurís theorem says that for any positive integer k, there is a positive integer N  such that for 
any k partitioned subset of {1, 2, , }N , we have + =x y z  for some positive integers ,x y  and z in 

the same subset (Schur, 1916). From this theorem many mathematicians determined the properties of 
a subset S  of positive integers such that  if for any , ∈x y S  then  + ∉x y S . Such sets are known 

as a sum-free set. A set S  of positive integers is called  sum-free if there are not (not necessarily 
distinct)  , , ∈x y z S  such that  + =x y z .

      The Schur function ( )f n  is defined to be the largest positive integer  such that the set of 

integers )}(,,2,1{ nf  can  be  partitioned into n sum-free sets. Only four values of  ( )f n  are 

known: (1) 1=f , (2) 4=f  and (3) 13=f . The value (4) 44=f  was determined by Baumert 

(1961) as follows :  
      1 {1, 3, 5, 15, 17, 19, 26, 28, 40, 42, 44}=S ,

2 {2, 7, 8, 18, 21, 24, 27, 33, 37, 38, 43}=S ,

3 {4, 6, 13, 20, 22, 23, 25, 30, 32, 39, 41}=S ,

4 {9, 10, 11, 12, 14, 16, 29, 31, 34, 35, 36}=S .

 For any positive integer 5≥n ,  Street (1972) proved that 

3 1 ( ) [ ! ] 1
2

≤ ≤ −−n
f n n e .
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In this paper, some sufficient conditions are given for an arithmetic sequence 
{ , , 2 , ...}= + +A a a d a d  to be sum-free and it is then shown that if < ∞A , there exists a sum-free 

subset B  of A  such that 
1

2
≥B A . Finally, bounds are also given for ( )T n , where ( )T n  defined 

to be the largest positive integer  such that { , 2 , , ( ) }a a   ... T n a , where a  is any positive integer, can 

be partitioned into n sum-free subsets. 

MATERIALS AND METHODS 

Definition 1. Let S  be a subset of positive integers. 
   We  called S is sum-free, if for any  x, y ∈S, then x + y ∉ S.

Definition 2. A partition of a set X  is a set of nonempty subsets of X  such that every element x in 
X is in exactly one of these subsets. 

     Equivalently, a set P of nonempty sets is a partition of X, if
 1. The union of the elements of P is equal to X.
 2. The intersection of any two distinct elements of P is empty.  

Proposition 3.  For any positive integer 2≥n , we have  
1 1 1

[ ] 1
1! 2! !

= + + + +n!e n!
n

,

               where, [ ]x  means the greatest integer less than or equal to x .

RESULTS AND DISCISSION

 The following theorems show some arithmetic sequences  which are sum-free. 

Theorem 1. Let a and d be positive integers  such that <a d . Then  
{ , , 2 , ...}= + +A a a d a d

is a sum-free set.  

Proof    Let  , ∈x y A . There exist nonnegative integers r, s  such that  = +x a rd  and  = +y a sd .

Then ( ) ( )+ = + + +x y a rd a sd . Since <a d ,  we get ( )+ +a r s d

( ) ( )< + + +a rd a sd ( 1)< + + +a r s d . Therefore + ∉x y A . Hence  A is a sum-free set. 

Theorem 2.  Let a and d be positive integers  such that ≥a d . Then 
  (1)  For any positive integer k, { , ( 1) , ... , (2 1) }= + −T kd k d k d  is a sum-free set. 

  (2)  If a is not divisible by d, then  { , , 2 , ...}= + +A a a d a d  is a sum-free set.  

Proof  (1) Let 1 2, ∈t t T . Then  1 =t md  and 2 =t nd  for some positive integers ,m n  where  

, 2 1≤ ≤ −k m n k . Since 2 4 2≤ + ≤ −k m n k , we have 1 2 2+ ≥t t kd . Therefore,  1 2+ ∉t t T .

Hence T  is a sum-free set.  
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 (2) Since  >a d and d a, we have 0− >a d . So, we let 1 = −a a d . Then  

1 1 1{ , , } { , , , }= + = − +... ...B a a d a d a a d . If 1 >a d , let 2 1= −a a d . Hence 2 2 2{ , , }= +B a a d

{ 2 , , , , }= − − + ...a d a d a a d . If 2 >a d , let 3 2= −a a d . Therefore 3 3 3{ , , }= +B a a d

{ 3 , 2 , , , , }= − − − + ...a d a d a d a a d . Continuing this way until we get ak  <  d, it is true that we use 

d a and 1− >ka d . By Theorem 1, we have { , , }= + ...k k kB a a d  is a sum-free set. Since

1 2⊆ ⊆ ⊆ ⊆... kA B B B  and Bk  is a sum-free set, so A  is a sum-free set.

               
Proposition 3. Suppose that 1 2{ , , , }= nA x a x a x a  is a sum-free set, where a and 1, , nx x  are 
positive integers. Then, 

1 1 2 2{(3 1) , 3 , (3 1) , 3 , , (3 1) , 3 }= − − −... n nB x a x a x a x a x a x a

is a sum-free set. 

Proof  Suppose that B  is not sum free. Then, there exist α, β ∈ B , such that   α + β ∈ B.

              Case 3+ = kx aα β   for some {1,2, , }∈k n . If 3= ix aα   and 3= jx aβ   for some

, {1, 2, ..., }∈i j n , then  3 3( )= + = + jikx a x a x aα β . Therefore, + =i j kx a x a x a , which is a 

contradiction because  , , ∈i j kx a x a x a A  and A is  a sum-free set. If (3 1)= −ix aα  and

(3 1)= −jx aβ  for some , {1,2, , }∈ ...i j n , then 3 (3( ) 2)= + = + −jikx a x x aα β . Thus   

2 3( )= + −i j kx x x , which is impossible. If (3 1)= −ix aα  and 3= jx aβ   for some

, {1, 2, , }∈i j n , then 3 = +kx a α β (3( ) 1)= + −i jx x a . Therefore 1 3( )= + −i j kx x x , which is 

impossible. 
              Case (3 1)+ = −kx aα β   for some {1,2, , }∈k n . If 3= ix aα  and 3= jx aβ     for some

, {1,2, , }∈i j n , then    (3 1)− =kx a +α β 3( )= +i jx x a . Thus 1− = 3( +ix )−j kx x , which is 

impossible. If (3 1)= −ix aα  and (3 1)= −jx aβ  for some , ∈i j {1, 2, , }n , then (3 1)− =kx a

+α β (3( ) 2)= + −i jx x a . Therefore 1 3( )= + −i j kx x x , which is impossible. If (3 1)= −ix aα
and 3= jx aβ  for some , {1, 2, , }∈i j n , then (3 1)− =kx a +α β (3 1) 3= − +i jx a x a . Therefore

+ =i j kx a x a x a , which is a contradiction because , ,i jx a x a ∈kx a A  and A  is a sum-free set. Hence

B is a sum-free set.    

In the next theorem, we will consider the lower bound of a sum-free subset in a set of 
arithmetic sequence. 

Theorem 4.  Let { , , , }= + +A a a d a nd  be an arithmetic sequence, where a and d are positive 

integers and n is a nonnegative integer. Then  there exists a sum-free subset ⊆B A such that  

1

2
≥B A .

Proof   If  0=n , then { }=A a .  Let { }= =B a A . Then B is a sum-free set and 
1

2
= ≥B A A .

Assume that 1≥n . If <a d , by Theorem 1, we get A is a sum-free set. So, we let B = A.

Then B is a sum-free set and 
1

2
= ≥B A A .  If  ≥a d  and d a, by Theorem 2, we get A  is a 
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sum-free set. So, we let B = A. Then B is a sum-free set and 
1

2
= ≥B A A . If  ≥a d  and d a,

then there exists a positive integer k  such that a = kd.  Then { , ( 1) , , ( ) }= + +A kd k d k n d and

1= +A n . If 1
2

+ ≤+k n
k , then let B=A. So, we get 

1

2
≥B A . Now, if 1

2
+ >+k n

k , then 

let 1 , , ( )
2

= + + +k n
B d k n d .

 Next, we will show that ⊆B A .

Case k+n is an even number, we have 
2 2

+ − =+ +k n k n
k n , and then 

1 1
2 2

+ = + − ++ +k n k n
k n . Therefore 1 1

2 2

−− + = ++k n n k
n . If n=k, then 

1
2

≤− +n k
n .  If  n<k, then 1 1

2
< ≤− +n k

n . If n>k, then 1
2

≤− +n k
n . So  

)(11
22

+ = + − + ≤ ++ +k n k n
d k n d k n d .

Case +k n  is an odd number, we have 
1

2 2

−=+ +k n k n
. Therefore   

+ −k n
2

+k n
1

2
= ++k n

. So 1
2 2

+ = + −+ +k n k n
k n . Then 

2
− +k n

n

1

2

− += n k
. Since k+n  is an odd number, ≠k n . If n<k, then 

1

2

+ ≤−n k
n . If n>k, then 

1

2

+ ≤−n k
n . So  )(11

22
+ = + − + ≤ ++ +k n k n

d k n d k n d . Hence  ⊆B A .

 Next, we will show that B is a sum-free set. Let , ∈x y B . Then  there exist r,  s  such that  x=rd 

and y=sd, where 1 ,
2

≤ ≤ ++ +k n
r s k n . Since 2 2

2

+ +k n ≤ +r s

( )

+ ≥

+

x y

k n d.  This implies that + ∉x y B . Thus, B is a sum-free set. So 

( )
2 2

= ≥+ ++ − k n k n
B k n . Since 1≥k  and 1= +A n , we have 

1

2
≥B A .

Example 5.    Assume that {3, 4, 5, 6, 7, 8, 9, 10}=A . So 8=A .

       Let  {6, 7, 8, 9, 10}= ⊆B A . Then, we see that B is a sum-free set and 5=B . Hence, 

1
5 4

2
= > =B A .

Definition 6. Given an arithmetic sequence { , 2 , 3 , , ( ) }=A a a a T n a , where a is a positive 

integer. Define ( )T n  to be the largest positive integer  such that A can be partitioned into n sum-free 

subsets.

...
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2( )≤ +k n , we get 
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Theorem 7. Let a be a positive integer. Suppose that { , 2 , , ( ) }=A a a T n a can be partitioned 

into n sum-free subsets. Then,

3 1 ( ) [ ! ] 1
2

≤ ≤ −−n
T n n e .

Proof   Suppose that A  can be partitioned into n sum-free subsets, say 1 2, , , nS S S . Hence, 

1 2= ∪ ∪ ∪ nA S S S  and ∩ =i jS S ∅  for all ≠i j .

Without loss of generality, we assume that 1 1= ≥ im S S ,   for 1, 2, ,=i n . Hence  

1( ) ( )≤T n m n . Let 
11 1 2{ , , , }= mS x a x a x a , where 1 2< <x a x a

1
< mx a . Let 1 2 1{( ) ,= −B x x a

3 1( ) ,−x x a
1 1, ( ) }−mx x a . It is obvious that 1 ⊆B A . Since 1S  is a sum-free set, 1 1⊄B S . Hence  

1 1⊆ −B A S  or 1 2 3⊆ ∪B S S ∪ ∪ nS . Let 2S  be such that 2 2 1 1= ∩ ≥ ∩jm S B S B  for 

2, 3, ,=j n . That is 
21 11{( ) , , ( ) }− −mix x a x x a 2⊆ S , where 

21 2< < < mi i i . Then  

1 21 ( 1)− ≤ −m m n . Hence
2 12 {( ) , ,= −i iB x x a

12
( ) }−

mi ix x a 3⊆ ∪ ∪ nS S . Let 3S  be such that 

3 3 2 2= ∩ ≥ ∩jm S B S B  for 3, 4, ,=j n . Then  2 1−m 3 ( 2)≤ −m n . Continuing in this way, we 

get  11 ( )+− ≤ −r rm m n r  for 1, 2, ,=r k  and 1=km ,  where 1 ≤ k ≤ n. Hence  

1 1
1]![!)(

( 1)! ( )!
−≤≤ + +− − ennnT

n n k
.

Next  we will show that 3 1( )
2

≥ −n
T n . Suppose that  { , 2 , , ( ) }a a T n a  can be 

partitioned into n sum-free subsets, namely 

11 11 12 1{ , , , }= tS x a x a x a ,

22 21 22 2{ , , , }= tS x a x a x a ,

                       

1 2{ , , , }=
nn n n ntS x a x a x a .

Then  { , 2 , , (3 ( ) 1) }+Öa a T n a  can be partitioned into n+1 subsets, namely

111 11 11 12 12 1 1{(3 1) , 3 , (3 1) , 3 , , (3 1) , 3 }= − − −t tS x a x a x a x a x a x a ,

222 21 21 22 22 2 2{(3 1) , 3 , (3 1) , 3 , , (3 1) , 3 }= − − −t tS x a x a x a x a x a x a ,

   
                  1 1 2 2{(3 1) , 3 , (3 1) , 3 , , (3 1) , 3 }= − − −

nnn n n n n nt ntS x a x a x a x a x a x a ,

               1 { , 4 , 7 , , (3 ( ) 1) }+ = +nS a a a T n a .

By Theorem 1 and Theorem 3, then 1 2 1, , , +nS S S  are sum-free sets. Therefore

( 1) 3 ( ) 1+ ≥ +T n T n . Since (1) 1=T , this yields 
3 1

( )
2

≥ −n

T n . This completes the proof of this 

theorem. 
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CONCLUSIONS 

The results of this paper show that: 

(1) For an arithmetic sequence  { , , 2 , }= + +A a a d a d  where a and d are positive  

            integers,   
 1.1    if <a d , then A is a sum-free set;  
 1.2    if ≥a d and d a , then { , ( 1) , , (2 1) }= + −T kd k d k d  is a sum-free set for  

                     all  positive integer k ;

 1.3    if >a d and d a , then A is a sum-free set. 

(2) Let { , , , }= + +A a a d a nd  be an arithmetic sequence, where a and d  are positive  

integers and n is a nonnegative integer. Then, there exists a sum-free subset ⊆B A , such 

that  
1

2
≥B A .

 (3) Let a be a positive integer. Suppose that { , 2 , , ( ) }=A a a T n a can be partitioned  

 into n sum-free subsets. Then,

3 1 ( ) [ ! ] 1
2

≤ ≤ −−n
T n n e .
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