

The Efficiency of Pedigree and Single Seed Descent Selections for Yield Improvement at Generation 4 (F_4) of Two Yardlong Bean Populations

Teerawat Sarutayophat^{1*} and Charassri Nualsri²

ABSTRACT

The efficiency of the selection procedure during succeeding generations is the most important role of any breeding program. There are many selection methods, but no method is perfect for general use with all crop plants. Breeders must carefully consider which method will be the most effective for their purposes. This study was conducted to compare the effectiveness between the pedigree selection (PS) and single seed descent (SSD) methods in two yardlong bean crosses. Both procedures started from the same F_2 population in each cross. In 2004, 15 F_4 progenies were selected by each selection method from each population. Thirty F_4 progenies and the parents of each population were tested in separate experiments with two check cultivars at the Songkhla Field Crop Research Station, Songkhla Province. Selected-PSU and VU135 were grown as check yardlong bean cultivars. Narrow sense heritability (h^2) for the pod yield and yield components were estimated through regression analysis of the F_4 progenies on F_3 parental plants. Correlations among yield and yield components were also estimated. The results showed that the mean pod yield and yield components of selected F_4 progenies derived from both PS and SSD were not significantly different in both the 4501 and 4502 populations. Low heritability for pod yield per plant was found in both the 4501 and 4502 populations at 4.62 and 2.96%, respectively, which indicated why selection for yield improvement in early generations had been ineffective. The highest positive correlation was found between the number of pods per plant and pod yield in both the 4501 and 4502 populations, with correlation coefficients of 0.7540 and 0.9229 ($p < 0.01$), respectively. This study shows that PS and SSD are equally effective for yield improvement in yardlong bean.

Keywords: pedigree selection, single seed descent, heritability, yardlong bean

INTRODUCTION

Cultivar improvement in self-pollinated species, such as yardlong bean, is accomplished by inducing genetic variability and then selectively recombining desirable genotypes. Selection is a

process based on selecting individuals or groups of plants during suitable generations by inbreeding to increase homozygosity. There are many methods of selection, and breeders need to consider carefully which method will be most effective for their purposes. The efficiency of

¹ Department of Plant Production Technology, Faculty of Agricultural Technology, King Mongkut's Institute of Technology, Ladkrabang, Bangkok 10520, Thailand.

² Department of Plant Science, Faculty of Natural Resources, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand.

* Corresponding author, e-mail: kkteeraw@kmit.ac.th

selection depends not only on the selection method, but also on the heritability of different characters in different species. There have been many reports on the effectiveness of different selection approaches for improvement in different crops. The most commonly used selection methods are PS, SSD and the bulk method (BM). PS is well known and its success in creatively improving many cultivars has been widely acclaimed. However, Padi and Ehlers (2008) reported that the PS method for grain yield in cowpea was ineffective. De Pauw and Shebeski (1973) and Inakaki *et al.* (1998) have also pointed out that single-plant selection in early generations is ineffective for certain quantitative traits, such as yield in wheat (*Triticum aestivum* L.). The same limitation has been confirmed in barley (*Hordeum vulgare* L.) (Hanson *et al.*, 1979). Simmonds (1979) reported that PS was effective in early generations only for traits with high heritability, such as grain size. In contrast, many groups of researchers have reported successful individual selection for yield in F_2 populations in various plant species, such as durum wheat (Michell *et al.*, 1982), spring wheat (Lungu *et al.*, 1987) and faba bean (Roupaikias *et al.*, 1997) and cotton (Batzios, 1997). By contrast, Sakai (1951) and Nakai (1962) have also suggested that rigorous PS in early generations might result in the loss of desirable genotypes, leading to the possibility that in some situations, BM might be preferable to PS. In related research, no significant difference was found between selection methods for yield in blackgram (Arshad, 2004), soybean (Boerma and Cooper, 1975), wheat (Knott and Kumar, 1975) and mungbean (Gill *et al.*, 1995). One advantage of the SSD method is the reduced requirement for land needed to segregate generations. The plants can be grown in dense populations and larger numbers can be kept under controlled conditions to speed up the generation time, since no selection is made until homozygosity has been achieved. Haddad and Muehlbauer (1981) studied three lentil

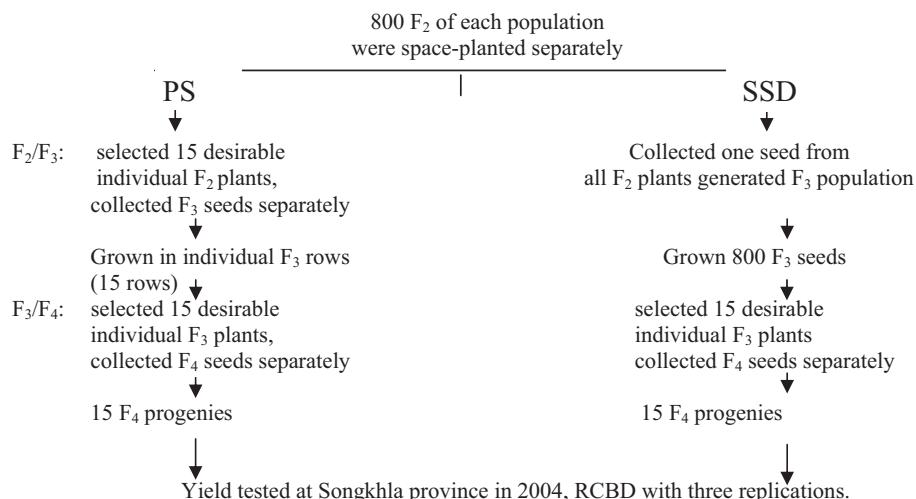
(*Lens culinaris*) populations and reported that the SSD method was an efficient and cost-saving method for advancing lentil populations and recommended it for lentil breeding. Ntare *et al.* (1984) compared selection methods, including PS, SSD and BM, in two crosses of cowpea and concluded that the grain yields of lines derived by the SSD procedure were as good as those derived from early selection.

The objectives of this study were to compare the efficiency of two selection methods (PS and SSD) for yield and yield components in two yardlong bean populations in the F_4 generation and to estimate the correlation coefficients among yield and yield components.

MATERIALS AND METHODS

Yardlong bean, which is grown in Southern Thailand, produces a relatively low pod yield because of unfavorable environmental conditions, such as heavy rainfall. Therefore, it is desirable to improve new varieties with high adaptability to such unfavorable environmental conditions. Thirty-seven yardlong bean and cowpea accessions were tested in the field in Songkhla province in 2002 (Sarutayophat, 2007). Based on the field tests, VU162 was the best among the southern accessions and was expected to be the most suitable female parent. It exhibited vigorous indeterminate growth with relatively high pod yield and high consuming qualities. VU189 was the elite line from China, with determinate growth and a vigorous peduncle that produced consecutive well-developed pods with high consuming qualities. VU171 (known as Green Arrow 692) was one of the most popular among Thai farmers; it was indeterminate, produced high pod yield and had the highest consuming qualities immature pod. Based on the field tests and genetic relatedness realized by RAPD markers (Sarutayophat, 2007), VU189 and VU171 were expected to be the most suitable male parents. Two

crosses of yardlong bean (VU 162 × VU 189 and VU 162 × VU 171) were made. The F₁ plants from each cross were allowed to self-pollinate to produce F₂ seeds. The F₂ populations of the two crosses, cross 4501 (VU162 × VU189) and cross 4502 (VU162 × VU171), were used as segregated material by two selection methods, PS and SSD. The procedure used for each method is illustrated in Figure 1. In the pedigree method, 15 desirable individuals among 800 F₂ plants of each population were selected based on visual criteria and the F₃ seeds were collected separately. Fifteen F₃ progenies were planted in separate rows. Fifteen desirable F₃ plants were selected between and within rows and the F₄ seeds from each F₃ plant were collected separately.


In the SSD procedure, one seed from all 800 F₂ plants was individually harvested from each population. A separate reserve single seed of F₃ was harvested for four sets, with one for the yield test and the other three for unexpected failures during the selection procedure. Then 800 F₃ seeds were planted, with 15 desirable F₃ plants selected based on visual criteria and all F₄ seeds from each F₃ plant were collected separately. A total of 30 F₄ lines, made up of 15 from each of the two selection methods, were grown for yield, which was tested

separately in each population with parents and two check cultivars (selected-PSU and VU135). During 2004, yield trials were conducted at the Songkhla Field Crop Research Station, Songkhla province. A randomized complete block design (RCBD) with three replications was used. Narrow sense heritability was estimated by the regression analysis of F₄ progenies on the F₃ parental plants. Correlation coefficients between yield and yield components were estimated among the 30 F₄ progenies of each population.

RESULTS AND DISCUSSION

Pod yield and yield components of F₄ progenies from SSD and PS methods

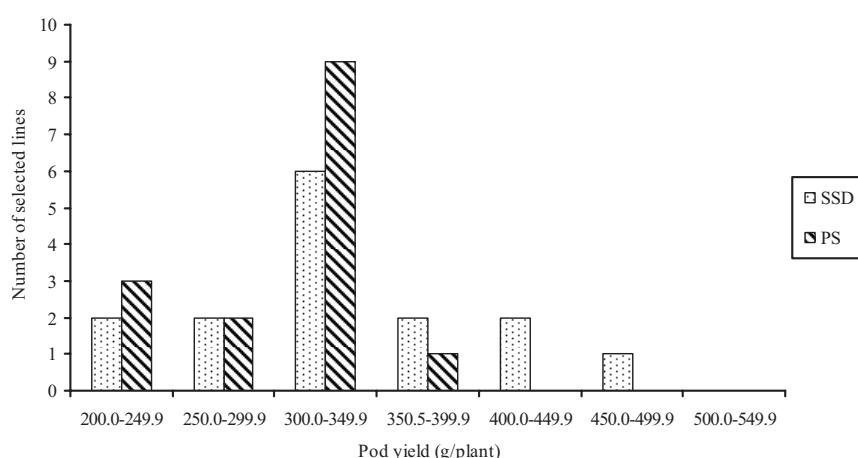
Mean pod yield of the F₄ progenies derived by SSD and PS was not significantly different in both populations (Table 1). In the 4501 population (VU 162 × VU 189), the SSD progenies produced a non-significantly higher pod yield than the PS progenies (328.8 and 298.0 g/plant, respectively), while the SSD and PS progenies from the 4502 population (VU 162 × VU 171) produced almost the same yield (366.3 and 368.3 g/plant, respectively). In the 4501 population, the best SSD progeny produced a non-significantly

Figure 1 Diagrammatic illustration of PS and SSD for each yardlong bean population.

higher pod yield than the best PS progeny (470.30 and 354.20 g/plant, respectively) (Table 2). Table 3 shows that the best PS progeny in the 4502 population produced a slightly higher pod yield than the SSD (503.53 and 445.03 g/plant,

respectively). However, in both populations there was no significant difference in pod yield between the SSD and PS methods. The pod yield and number of selected lines from the F₄ progenies in both populations are presented in Figure 2. The

Table 1 Mean pod yield and yield components of F₄ progenies derived by SSD and PS from two yardlong bean populations.


Population	Selection method	Pod yield (g/plant)	No. of pods/plant	Pod wt. (g./pod)	No. of inflorescences/plant	Pod diameter (cm)	Pod length (cm)
4501	SSD	328.8	20.7 a	16.1 ab	15.7 a	0.75 bc	44.4 c
	PS	298.0	17.4 b	17.1 ab	14.8 a	0.75 bc	46.3 bc
	Mean parent	262.3	17.7 b	13.7 b	12.2 b	0.72 d	43.7 c
	National check	278.2	14.6 c	18.8 a	14.8 a	0.79 a	50.0 ab
	Local check	299.0	15.3 c	19.5 a	12.2 b	0.77 ab	50.9 a
F. test		ns	**	*	*	**	*
C.V. (%)		12.6	6.1	11.2	9.1	1.6	4.6
4502	Mean (SSD)	366.3	18.1 ab	20.1	15.1	0.77	48.8
	Mean (PS)	368.3	18.9 a	19.1	15.1	0.76	48.9
	Mean parent	260.0	12.5 c	20.9	13.6	0.74	47.0
	National check	278.2	14.6 bc	18.8	14.8	0.79	49.4
	Local check	299.0	15.3 abc	19.5	12.2	0.77	50.9
F. test		ns	*	ns	ns	ns	ns
C.V. (%)		15.4	13.1	10.0	10.0	2.4	3.6

Note: Means within the same column followed by different letter(s) indicates significant differences between treatments by Duncan's multiple range test (DMRT).

ns = non significant difference.

* = significant at p<0.05.

** = significant at p<0.01.

Figure 2 Pod yield (g/plant) of F₄ progenies derived by PS and SSD from the 4501 population.

results from the present study found that selecting lines from early generations for pod yield was ineffective in yardlong bean, as has been previously reported in wheat (De Pauw and

Shebeski, 1973; Inagaki *et al.*, 1998), barley (Hanson *et al.*, 1979), mungbean (Gill *et al.*, 1995), linseed (Salas and Friedt, 1995) and rice (Nagai, 1962). In the 4501 population, the best progenies

Table 2 Mean of pod yield and five yield components of F₄ yardlong bean progenies derived by PS and SSD from the 4501 population.

Progeny/selection method	Pod yield (g/plant)	No. of pods/ plant	Pod wt. (g./pod)	No. of inflorescences/plant	Pod diameter (cm)	Pod length (cm)
1 Best (SSD)	470.30 a	27.93 a	17.20 ab	17.40	0.77	47.60
2 Best (PS)	354.20 ab	23.97 ab	17.80 ab	17.50	0.77	49.87
3 Mean 3top (SSD)	430.47 ab	26.20 a	17.50 ab	17.10	0.77	47.37
4 Mean 3top (PS)	341.77 bc	20.82 abc	18.30 ab	16.40	0.76	49.57
5 Mean all 15 F ₄ (SSD)	328.77 bc	20.67 abc	16.10 b	15.70	0.75	44.37
6 Mean all 15 F ₄ (PS)	297.93 c	17.43 bc	17.10 ab	14.83	0.75	46.27
7 Mean parents	262.27 c	17.73 bc	13.70 b	12.23	0.72	43.67
8 National check	278.20 c	14.60 c	18.80 ab	14.77	0.79	49.43
9 Local check	299.03 c	15.30 c	19.50 a	12.20	0.77	50.86
F-test	*	**	*	ns	ns	ns
C.V. (%)	14.6	21.3	9.4	9.3	1.6	4.9

Note: Means within the same column followed by different letter(s) indicate significant differences between treatments by DMRT.
ns = non-significant difference.

* = significant at p<0.05.

** = significant at p<0.01.

Table 3 Mean pod yield and five yield components of F₄ yardlong bean progenies derived by PS and SSD from the 4502 population.

Progenies/selection method	Pod yield (g/plant)	No. of pods/ plant	Pod wt. (g./pod)	No. of inflorescences/plant	Pod diameter (cm)	Pod length (cm)
1 Best (SSD)	445.03 ab	22.63 bc	19.7	16.80	0.80	52.50
2 Best (PS)	503.53 a	28.10 a	18.0	16.53	0.78	52.70
3 Mean 3top (SSD)	442.10 ab	21.50 bc	20.5	16.43	0.78	52.20
4 Mean 3top (PS)	447.33 ab	23.73 b	19.4	16.43	0.77	52.10
5 Mean all 15 F ₄ (SSD)	366.30 bc	18.13 d	20.1	15.10	0.77	48.76
6 Mean all 15 F ₄ (PS)	368.33 bc	18.87 cd	19.1	15.07	0.76	48.90
7 Mean parents	259.95 d	12.47 e	20.9	13.60	0.74	47.03
8 National check	278.20 cd	14.60 de	18.8	14.77	0.79	49.43
9 Local check	299.03 cd	15.30 de	19.5	12.20	0.77	50.86
F-test	*	*	ns	ns	ns	ns
C.V. (%)	15.5	13.4	7.0	13.5	2.6	6.2

Note: Means within the same column followed by different letter(s) indicate significant differences between treatments by DMRT.
ns = non-significant difference.

* = significant at p<0.05.

** = significant at p<0.01.

from the two selection methods and the three top progenies from SSD of the 4501 population produced significantly ($p<0.05$) higher pod yields than the mean parental and two check cultivars (Table 2). Whereas in the 4502 population, the best and the three top progenies of both selection methods produced significantly ($p<0.05$) higher pod yields than the mean parental and two check cultivars (Table 3).

For yield components, significant differences were found in almost all characters in the 4501 population, notably the number of pods/plant, pod weight, pod length, pod diameter and the number of inflorescence/plant. The F_4 progenies from the SSD method had a higher number of pods/plant than from the PS method, while only the number of pods/plant between PS, SSD and mean parents were significantly different (Table 1). There was limited segregation among the 4502 progenies, because the male and female parents of the 4502 progenies were similar in almost all characteristics. The best SSD progeny also produced a non-significantly higher number of pods/plant than the best PS (27.93 and 23.97 pods/plant, respectively) (Table 2), while the best PS progeny in the 4502 population produced significantly ($p<0.05$) higher pods/plant than the best SSD (28.10 and 22.63 pods/plant, respectively) (Table 3). The mean number of inflorescence/plant, pod diameter and pod length of F_4 progenies of both methods, mean parents and

check cultivars were non-significantly different in both populations (Tables 2, 3). The results were similar to those previously reported in cowpea (Padi and Ehlers, 2008), where the selection for yield components in an early generation was ineffective. Inca and Inca-LD are two yardlong bean cultivars created through SSD (Ponce and Casanova, 1999). Gill *et al.* (1995) reported that the SSD method for mungbean was preferable to PS and BM because of the shorter time required and the greater cost effectiveness in handling segregation of generations. The same recommendation and reasons were given for wheat by Oeveren (1992). In contrast, PS was found to be superior to SSD for seed size of greengram (*Vigna radiata* L.) (Dahiya and Singh, 1986). Several cultivars of cowpea, a very closely related subspecies of yardlong bean, have previously been derived by the PS method, such as Mouride, Melakk and Ein El Gazal (Singh *et al.*, 2003). The success of PS is based on the number of plants to be selected for segregation and the traits of interest should be highly heritable and predominantly controlled by an additive gene.

Heritability

Heritability for selected traits was quite low. For example, pod yield in the 4501 and 4502 populations was 4.62 and 2.96%, respectively (Table 4). The same findings were reported by Santhadphanich (1987), who found that heritability

Table 4 Heritability (h^2) in the narrow sense for pod yield and five yield components in two yardlong bean populations.

Traits	Heritability (%)	
	4501 population	4502 population
Regression of F_4 progenies on F_3 parents		
Pod yield	4.62	2.96
Pod weight	18.48	7.88
No. of pod/plant	18.43	12.93
No. of inflorescences/plant	0.13	1.47
Pod diameter	38.21	0.06
Pod length	39.13	0.01

in the broad sense for pod yield varied from 4.03 to 25.30%. Low estimated heritability may be due to a relatively low genetic diversity among cultivated yardlong beans. In contrast, Pornsuriya (1994) estimated the heritability from three yardlong bean populations and reported a highest narrow sense heritability for pod yield of 66%. Heritability was quite high in his study because his estimation used the variance, so environmental interactions were confounded with the genetic variance. Table 4 shows that the heritability of pod diameter and pod length of the 4501 and 4502 populations were very different (38.21 and 39.13% in 4501 and 0.06 and 0.01% in the 4502 population). The pod characteristics of the parents of the 4502 population were quite similar, while those of the 4501 population were different (Sarutayophat, 2007). It has been reported that pedigree was the most effective selection method when heritability was high (75%) or moderate (50%). With heritability around 10%, SSD without prior selection would be the preferred method (Tigchelaar and Casali, 1976).

Correlation coefficient

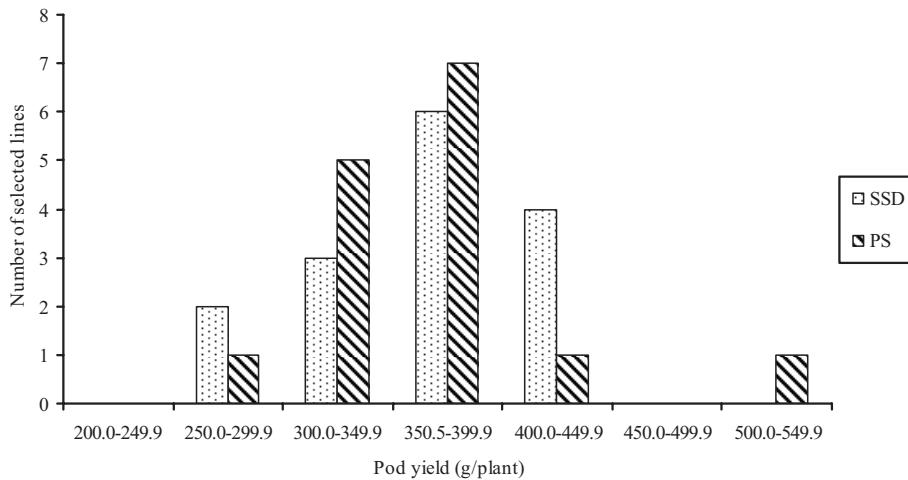

The highest positive correlation was found between pod number per plant and pod yield in both the 4501 and 4502 populations, with correlation coefficients (*r*) of 0.7540 and 0.9229, respectively, which were both highly significant at *p*< 0.01 (Table 5). In the 4501 population, pod weight was significantly positively correlated to pod diameter with a correlation coefficient of 0.5211, significant at *p*< 0.01. Based on the low heritability for yield, a number of breeders have used other traits that are related to yield and express high heritability for indirect selection (Singh *et al.*, 2003). The results from the current study showed that pod number/plant had a highly significant positive correlation with pod yield in both populations; however, pod number/plant has low heritability (18.48% in the 4501 population and 12.93% in the 4502 population). The low heritability found in the current study confirmed low genetic diversity among cultivated yardlong beans. A higher estimation of heritability was found in other characters, such as pod length and

Table 5 Correlation coefficients among pod yield and yield components of F₄ progenies of 4501 and 4502 populations.

Population	Traits	Pod weight g./pod)	No. of inflorescences/plant	No. of pods/plant	Pod diameter	Pod length	Pod yield
4501	Pod weight	1.0000	0.0389	-0.4839	0.5211*	0.3546	0.1913
	No. inflorescences/plant		1.0000	0.3727	-0.0453	-0.0306	0.4438
	No. pods/plant			1.0000	-0.3645	-0.02334	0.7540**
	Pod diameter				1.0000	0.2681	0.0961
	Pod length					1.0000	0.0301
4502	Pod weight	1.0000	0.0368	-0.2563	0.3529	0.1628	0.1247
	No. inflorescences/plant		1.0000	0.1959	0.0353	-0.3118	0.1914
	No. pods/plant			1.0000	0.2114	0.2874	0.9229**
	Pod diameter				1.0000	0.3405	0.3626
	Pod length					1.0000	0.3488

* = significant at *p*<0.05.

** = significant at *p*<0.01.

Figure 3 Pod yield (g/plant) of F₄ progenies derived by PS and SSD from the 4502 population.

pod diameter in the 4501 population. In faba bean, Sinhu *et al.* (1986) reported that the efficiency of selection had been improved by up to 30% by some combinations of characters. In order to obtain a good choice of characters for indirect selection, the correlation and path coefficient must be analyzed (Ranalli and Cubero, 1997).

CONCLUSION

Comparative efficiency between selection methods has been studied in various species. However, to date, this has not been studied in yardlong bean. The current study found that for the PS and SSD selection methods, pod yield and yield components in two yardlong bean populations were not significantly different. Heritability in the narrow sense for pod yield in the 4501 and 4502 populations was low with a value of 4.62 and 2.96%, respectively, which explained why selection for yield improvement had been ineffective. However, the best, and the three top F₄ progenies of both populations derived by PS and SSD produced higher pod yields than the mean parent and check cultivars.

ACKNOWLEDGEMENTS

The authors are grateful to Mr Krung Sitathan, Thailand Vegetable Research Center (TVRC) outreach program and the Ubonrajathani Field Crops Research Center for providing yardlong bean/cowpea germplasm, the Songkhla Field Crop Research Station for the field test area and special thanks are given to Mr Sook Keb-vai for his practical assistance in the fieldwork. The authors are also grateful to the Graduate School of the Prince of Songkla University for financial support.

LITERATURE CITED

Arshad, M. 2004. **Inheritance of Genetic Traits and Breeding Methodologies Based on Various Segregating Generations in Blackgram [Vigna mungo (L.) Hepper].** Ph.D. Dissertation. Quaid-i-Azam University, Pakistan.

Batzios, D.P. 1997. **Effectiveness of Two Selection Methods in the Breeding of Cotton (*Gossypium birsutum* L.).** Ph.D. Dissertation Aristotelian Univ. of Thessaloniki, Greece.

Boerma, H.R. and R.L. Cooper. 1975. Comparison of three selection procedures for yield in soybean. **Crop Sci.** 15: 225-229.

Dahiya, B.N. and V.P. Singh. 1986. Comparison of single seed descent, selective intermating and mass selection for seed size in greengram [*Vigna radiata* (L.) Wilczek]. **Theor. Appl. Genet.** 72: 678-681.

De Pauw, R.M. and L.H. Shebeski. 1973. An evaluation of an early generation yield testing procedure in *Triticum aestivum* L. **Can. J. Plant Sci.** 53: 465-470.

Gill, J.S., M.N. Verma, R.K. Gumber and J.S. Brar. 1995. Comparative efficiency of four selection methods for deriving high-yielding lines in mungbean [*Vigna radiata* (L.) Wilczek]. **Theor. Appl. Genet.** 90: 554-560.

Haddad, N.I. and F.J. Muehlbauer. 1981. Comparison of random bulk segregation and single seed descent methods for lentil breeding. **Euphytica** 30: 643-651.

Hanson, P.R., G. Jenkins and B. Westcott. 1979. Early generation selection in a cross of spring barley. **Z. Pflanzenzuchtg.** 83: 64-80.

Inagaki, M.N., G. Varughese, S. Rajaram, M. V. Ginkel and A. Mujeeb-Kazi. 1998. Comparison of broad wheat lines selected by double haploid, single seed descent and pedigree selection methods. **Theor. Appl. Genet.** 97: 550-556.

Knott, D.R. and J. Kumar. 1975. Comparison of early generation yield testing and single seed descent procedure in wheat breeding. **Crop Sci.** 15: 295-299.

Lungu, D.M., P.J. Kaltsikes and E.N. Larter. 1987. Honeycomb selection for yield in early generations of spring wheat. **Euphytica** 36: 831-839.

Michell, J.W., R.J. Baker and D.R. Knott. 1982. Evaluation of honeycomb selection for single plant yield in durum wheat. **Crop Sci.** 22: 840-843.

Nagai, I. 1962. **Japonica Rice Its Breeding and Culture.** Yokendo Ltd, Tokyo. 843 pp.

Ntare, B.R., M.E. Akenowa, R.J. Redden and B.B. Singh. 1984. The effectiveness of early generation (F3) yield testing and single seed descent procedures in two cowpea (*Vigna unguiculata* (L) Walp) crosses. **Euphytica** 33: 539-547.

Oeveren, A.T. 1992. A comparison between single seed descent and early cross selection in wheat breeding. **Euphytica** 64: 91-97.

Padi, F.K. and J.D. Ehlers. 2008. Effectiveness of early selection in cowpea for grain yield and agronomic characteristics in semiarid west Africa. **Crop Sci.** 48: 533-540.

Ponce, M. and A. Casanova. 1999. Information on new varieties. Inca and Inca-LD, the first varieties of yardlong bean (*Vigna unguiculata* L. Walp. subs. *sesquipedalis*). **Cultivos-Tropicales** 20: 61.

Pornsuriya, P. 1994. **Comparison and Inheritance of Pod Quality in Crosses between Yardlong bean and Cowpea.** MS. Thesis. Kasetsart University, Bangkok.

Ranalli, P. and J.I. Cubero. 1997. Bases for genetic improvement of grain legumes. **Field Crops Research** 53: 69-82.

Roupaikias, D., A. Zesopoulou, S. Kazolea, Dalkalitses, G.A. Mavromatis and T. Lazaridou. 1997. Effectiveness of early generation selection under two plant densities in faba bean (*Vicia faba* L.) **Euphytica** 93: 63-70.

Sakai, K. 1951. Studies on individual selection and selection efficiency in plant breeding. **Jap. J. Breed.** 1: 1-9.

Salas, G. and W. Friedt. 1995. Comparison of pedigree selection and single seed descent for oil yield in linseed (*Linum usitatissimum* L.). **Euphytica** 83: 25-32.

Santhadphanich, R. 1987. **The Inheritance of Some Characters in Yardlong bean (*Vigna unguiculata* L.Walp. subs. *Sesquipedalis* Verdc.).** MS. Thesis. Kasetsart University, Bangkok.

Sarutayophat, T., C. Nualsri, Q. Santipracha and V. Saereeprasert. 2007. Characterization and genetic relatedness among 37 yardlong bean and cowpea accessions based on morphological characters and RAPD analysis. **Songklanakarin J. Sci. Technol.** 29(3): 591-600.

Simmonds, N.W. 1979. **Principles of Crop Improvement.** Longman, London. 408 pp.

Singh, B.B., P. Hartman, C. Fatokun, M. Tamo, S. Tarawali and R. Ortiz. 2003. Recent progress on cowpea improvement. **Chronica Horticulturae** 43: 8-12.

Sinhu, J.S., O.P. Singh and K.P. Singh, 1986. Component analysis of the factors determining grain yield in faba bean. **FABIS.** 13: 5.

Tigchelaar, E.C. and V.W.D. Casali. 1976. Single seed descent: applications and merits in breeding self-pollinated crops. **Acta Horticulturae** 63: 85-70.