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ABSTRACT

This paper presents a new parameter estimation for a Gaussian first-order autoregressive (AR(1))

process with an unknown drift and additive outliers. Recursive median adjustment was applied based on

an α-winsorized mean to the weighted symmetric estimator. The following estimators were considered:

the weighted symmetric estimator (ρ̂W), the recursive mean adjusted weighted symmetric estimator

(ρ̂R–W), the recursive median adjusted weighted symmetric estimator (ρ̂Rmd–W), and the weighted symmetric

estimator using the adjusted recursive median, based on the α-winsorized mean (ρ̂W–Rmd–W). Using

Monte Carlo simulations, the mean square error (MSE) of estimators were compared. Simulation results

showed that the proposed estimator, ρ̂W–Rmd–W, provided an MSE lower than those of ρ̂W–Rmd–W, and

ρ̂W–Rmd–W for almost all situations.
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correspond to the situation in which a gross error

of observation or recording affects a single

observation (Fox, 1972). An innovations outlier

affects not only the particular observation, but also

subsequent observations (Fox, 1972). The current

study focuses solely on additive outliers, as they

are the most common type found in time series,

due to their association with human errors, such

as typing and recording mistakes (Zaharim, 2009).

Furthermore, additive outliers are more harmful

than innovations outliers (Chatfield, 2001). A time

series that does not contain any outliers is called

an outlier-free series.

Suppose an outlier-free time series {Xt ;

t = 2,3,...,n} follows an AR(1) model as shown in

Equation 1:

INTRODUCTION

Economic time series are frequently

affected by special events, such as policy

interventions, strikes, the outbreak of war and

sudden changes in the market structure of a

commodity (Nielsen, 2004). Such aberrant

observations are usually referred to as outliers.

Because outliers are known to wreck havoc on

parameter estimation, it is important to have

procedures that will deal with such outlier effects.

The detection of time series outliers was first

studied by Fox (1972), who introduced two

statistical models for times series contaminated by

outliers, namely, additive outliers (AO) and

innovations outliers (IO). Additive outliers



Xt = µ + ρ(Xt–1 – µ) + et , (1)

where µ is the mean of the process, ρ is an

autoregressive parameter, ρ ∈ (–1,1), et are

unobservable independent errors and identically

N(0,σ e
2 ) distributed.

For ρ = 1, model (1) in Equation 1 is

called the random walk model, otherwise it is

called a stationary AR(1) process when ρ < 1.

For ρ close to one or near a non-stationary process,

the mean, variance and autocorrelation function

of this process are not constant through time. Let

the observed time series be denoted by {Yt}. In

the simple case when {Xt} has a single additive

outlier at time point T (1 < T < n), model (1) can

be modified as shown in Equation 2:

Yt = Xt + δIt
(T) , (2)

where δ represents the magnitude of the additive

outlier effect and It
(T) is an indicator variable such

that

It
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It is known that the ordinary least squares estimator

of ρ, which is denoted by ρ̂OLS, for Equation 1 is

biased (see, for example, Shaman and Stine, 1988).

For case of additive outliers, the ordinary least

squares (OLS) estimator not only lacks robustness

in terms of variability but also suffers from severe

bias problems (Guo, 2000). Furthermore, Conover

(1980) pointed out that the OLS estimator was

sensitive to outliers (see Section 5.5). Therefore,

statisticians have suggested methods to reduce the

bias. Park and Fuller (1995) proposed the weighted

symmetric estimator of ρ, which is denoted by

ρ̂W. So and Shin (1999) applied a recursive mean

adjustment to the OLS estimator (R-OLS) and they

concluded that the mean square error of the R-

OLS estimator, which is denoted by ρ̂R–OLS, is

smaller than the OLS estimator for ρ ∈ (0,1). They

also showed that the ρ̂R–OLS estimator has a

coverage probability that is close to the nominal

value. Niwitpong (2007) applied the recursive

mean adjustment to the weighted symmetric

estimator (R-W) of Park and Fuller (1995).

Panichkitkosolkul (2010) suggested an estimator

for an unknown mean Gaussian AR(1) process

with additive outliers by applying the recursive

median adjustment to the weighted symmetric

estimator (Rmd-W). He found that the ρ̂Rmd–W

estimator produces a mean square error lower than

those of ρ̂W and ρ̂R–W for almost all situations. New

recursive median adjustment based on an α -

winsorized mean (see Serfling, 1980) is applied

to the weighted symmetric estimator (W-Rmd-W)

for model (1) when there are additive outliers in

the time series data. Because the outliers do not

affect the α -winsorized mean and median values,

the recursive mean adjustment is replaced by a

new recursive median adjustment based on an α -

winsorized mean to the weighted symmetric

estimator. The aim of the current study was to

compare four estimators, ρ̂W ,  ρ̂R–W , ρ̂Rmd–W and

ρ̂W–Rmd–W , in terms of the mean square error (MSE)

of the estimators.

METHODOLOGY

Park and Fuller (1995) proposed that the

weighted symmetric estimator of ρ is given by

Equation 3:
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Niwitpong (2007) replaced Y  by

Yt = ∑
=

1

1t
Yi

i

t
 in Equation 3. The estimator of ρ

obtained as a result of this recursive mean

adjustment is given by Equation 4:
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When there are outliers in time series
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data, it affects the recursive mean Yt  in Equation

4. Panichkitkosolkul (2010) replaced the recursive

mean in Equation 4 by the recursive median. The

estimator of ρ obtained as a result of the recursive

median adjustment is given by Equation 5:
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where ˜ ( , ,..., )Y Y Y Yt t = median   1 2 .

The effect of outliers on an estimator of

ρ in model (1) can be reduced by using a new

recursive median adjustment based on the α -
winsorized mean, which is a robust estimator of a

mean (David and Nagaraja, 2003). The α -
winsorized mean, which is shown by Epstein and

Sobel (1953 cited in Staudte and Sheather, 1990),

is a winsorized statistical measurement of central

tendency, like the mean and median and even more

similar to the trimmed mean (Mahir and Al-

Khazaleh, 2009; Wu and Zuo, 2009). Additionally,

the α -winsorized mean eliminates the outliers at

both ends of an ordered set of observations. Unlike

the trimmed mean, the α -winsorized mean

replaces the outliers with observed values, rather

than discarding them. Apart from that, the α -
winsorized mean is more efficient more the

trimmed mean (Johnson et al., 1994). In addition,

this statistic has various applications in detecting

outliers (Barnett and Lewis, 1994). Thus, the

improved recursive median values adjusted using

an α -winsorized mean are derived from

computing the α -winsorized mean of the recursive

median. There are two steps in computing the new

recursive median. First, the recursive median ( Ỹt )

is computed using the time series data Yt. Second,

the α -winsorized mean is calculated using the

recursive median obtained from the first step.

Therefore, the recursive median in Equation 5 is

replaced by a new recursive median. The new

estimator of ρ obtained as a result of this new

recursive median adjustment is given by Equation

6:
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denote the ordered values of the recursive median
Ỹt , α denotes the fraction of time series data to be

trimmed, 0 < α < 0.5 and [tα] denotes the greatest

integer not greater than tα.

RESULTS

The performance of the proposed

estimator for a Gaussian AR(1) process with

additive outliers was examined (via Monte Carlo

simulations), with particular emphasis on

comparisons between the new and existing

approaches. Data were generated from a Gaussian

AR(1) process with additive outliers. It should be

noted that while this process generates

Y N e
1

2

20
1

~ ( , )
σ
ρ−

 and simulates the time series of

length n + 50, the time series used in the

calculations were {Y51, Y52,...,Yn+50}. The

following parameter values were used: ( , )µ σ e
2  =

(0, 1); ρ = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and

0.9; sample sizes n = 25, 50, 100 and 250; the

magnitude of the AOs effect δ = 3σe and 5σe ; the

percentage of additive outliers p = 5% and 10%;

the fraction of data to be trimmed α = 0.05. All

simulations were performed using programs

written in the R statistical software package (The

R Development Core Team, 2009a, 2009b) with

the number of simulation runs, M = 10,000. In

addition, the additive outliers occurred randomly.

The simulation results, including the

estimated mean square error (MSE) of all

estimators, ρ̂W , ρ̂R–W , ρ̂Rmd–W and ρ̂W–Rmd–W , are

shown in Tables 1 and 2. Table 3 showed the

standard error of all estimators. As can be seen

from Tables 1 and 2, the MSE of ρ̂W was larger
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Table 1 The estimated mean square error (MSE) of ρ̂W , ρ̂R–W , ρ̂Rmd–W and ρ̂W–Rmd–W for the percentage

of additive outliers; p = 5%.

n ρ δ = 3σe δ = 5σe

W R-W Rmd-W W-Rmd-W W R-W Rmd-W W-Rmd-W

25 0.1 0.0429 0.0384 0.0365 0.0446 0.0387 0.0340 0.0317 0.0336

0.2 0.0500 0.0428 0.0404 0.0409 0.0554 0.0469 0.0435 0.0368

0.3 0.0611 0.0514 0.0474 0.0412 0.0773 0.0657 0.0622 0.0467

0.4 0.0701 0.0583 0.0551 0.0414 0.1021 0.0869 0.0834 0.0595

0.5 0.0812 0.0676 0.0657 0.0451 0.1342 0.1162 0.1136 0.0779

0.6 0.0932 0.0785 0.0770 0.0494 0.1625 0.1420 0.1399 0.0942

0.7 0.1036 0.0886 0.0870 0.0545 0.1936 0.1701 0.1680 0.1123

0.8 0.1125 0.0975 0.0973 0.0591 0.2106 0.1876 0.1874 0.1237

0.9 0.1186 0.1059 0.1069 0.0642 0.2227 0.2005 0.2014 0.1315

50 0.1 0.0214 0.0198 0.0192 0.0238 0.0228 0.0209 0.0195 0.0202

0.2 0.0256 0.0231 0.0218 0.0228 0.0335 0.0300 0.0274 0.0225

0.3 0.0308 0.0273 0.0253 0.0220 0.0499 0.0449 0.0418 0.0306

0.4 0.0384 0.0341 0.0321 0.0236 0.0682 0.0618 0.0584 0.0411

0.5 0.0433 0.0386 0.0370 0.0252 0.0897 0.0820 0.0790 0.0542

0.6 0.0483 0.0435 0.0421 0.0264 0.1039 0.0956 0.0928 0.0623

0.7 0.0513 0.0466 0.0453 0.0276 0.1181 0.1094 0.1073 0.0706

0.8 0.0493 0.0455 0.0445 0.0261 0.1178 0.1099 0.1081 0.0696

0.9 0.0441 0.0416 0.0413 0.0237 0.1063 0.1002 0.0991 0.0606

100 0.1 0.0113 0.0107 0.0101 0.0121 0.0137 0.0129 0.0113 0.0111

0.2 0.0152 0.0140 0.0128 0.0117 0.0243 0.0226 0.0194 0.0154

0.3 0.0202 0.0187 0.0171 0.0130 0.0394 0.0370 0.0330 0.0247

0.4 0.0265 0.0246 0.0229 0.0158 0.0592 0.0560 0.0514 0.0383

0.5 0.0317 0.0296 0.0280 0.0184 0.0791 0.0755 0.0712 0.0527

0.6 0.0354 0.0332 0.0317 0.0200 0.0947 0.0907 0.0866 0.0627

0.7 0.0361 0.0342 0.0330 0.0200 0.1040 0.0999 0.0966 0.0688

0.8 0.0317 0.0302 0.0292 0.0172 0.0971 0.0933 0.0910 0.0609

0.9 0.0232 0.0225 0.0219 0.0122 0.0719 0.0696 0.0678 0.0425

250 0.1 0.0052 0.0050 0.0046 0.0047 0.0074 0.0071 0.0057 0.0052

0.2 0.0080 0.0076 0.0068 0.0055 0.0160 0.0154 0.0127 0.0101

0.3 0.0121 0.0116 0.0106 0.0076 0.0295 0.0286 0.0250 0.0201

0.4 0.0165 0.0158 0.0146 0.0102 0.0458 0.0446 0.0405 0.0328

0.5 0.0201 0.0194 0.0184 0.0125 0.0626 0.0612 0.0571 0.0463

0.6 0.0228 0.0220 0.0211 0.0143 0.0757 0.0742 0.0707 0.0564

0.7 0.0222 0.0216 0.0209 0.0136 0.0792 0.0777 0.0748 0.0580

0.8 0.0177 0.0173 0.0167 0.0103 0.0687 0.0675 0.0656 0.0483

0.9 0.0101 0.0100 0.0097 0.0056 0.0412 0.0406 0.0394 0.0261



960 Kasetsart J. (Nat. Sci.) 44(5)

Table 2 The estimated mean square error (MSE) of ρ̂W , ρ̂R–W , ρ̂Rmd–W and ρ̂W–Rmd–W for the percentage

of additive outliers; p = 10%.

n ρ δ = 3σe δ = 5σe

W R-W Rmd-W W-Rmd-W W R-W Rmd-W W-Rmd-W

25 0.1 0.0441 0.0391 0.0366 0.0417 0.0445 0.0394 0.0345 0.0354

0.2 0.0553 0.0471 0.0424 0.0400 0.0666 0.0574 0.0498 0.0428

0.3 0.0723 0.0612 0.0556 0.0445 0.0967 0.0836 0.0738 0.0582

0.4 0.0925 0.0781 0.0723 0.0522 0.1395 0.1222 0.1106 0.0844

0.5 0.1143 0.0973 0.0915 0.0628 0.1862 0.1648 0.1533 0.1153

0.6 0.1367 0.1176 0.1136 0.0756 0.2343 0.2097 0.1978 0.1472

0.7 0.1538 0.1339 0.1302 0.0846 0.2745 0.2462 0.2353 0.1720

0.8 0.1686 0.1484 0.1455 0.0936 0.3159 0.2861 0.2767 0.1997

0.9 0.1736 0.1555 0.1532 0.0971 0.3347 0.3044 0.2978 0.2094

50 0.1 0.0240 0.0221 0.0202 0.0232 0.0261 0.0239 0.0193 0.0202

0.2 0.0334 0.0299 0.0261 0.0231 0.0454 0.0412 0.0323 0.0276

0.3 0.0469 0.0420 0.0374 0.0284 0.0740 0.0678 0.0554 0.0444

0.4 0.0623 0.0561 0.0508 0.0359 0.1100 0.1019 0.0865 0.0675

0.5 0.0786 0.0714 0.0661 0.0447 0.1489 0.1391 0.1225 0.0956

0.6 0.0926 0.0849 0.0800 0.0518 0.1913 0.1799 0.1630 0.1251

0.7 0.1009 0.0931 0.0888 0.0572 0.2237 0.2110 0.1961 0.1475

0.8 0.1038 0.0965 0.0930 0.0586 0.2401 0.2268 0.2153 0.1566

0.9 0.0905 0.0852 0.0828 0.0505 0.2207 0.2087 0.1996 0.1364

100 0.1 0.0129 0.0121 0.0109 0.0122 0.0160 0.0150 0.0109 0.0114

0.2 0.0200 0.0185 0.0157 0.0133 0.0319 0.0299 0.0216 0.0185

0.3 0.0305 0.0283 0.0246 0.0180 0.0571 0.0542 0.0422 0.0347

0.4 0.0440 0.0412 0.0368 0.0257 0.0892 0.0854 0.0710 0.0579

0.5 0.0566 0.0534 0.0491 0.0341 0.1243 0.1198 0.1041 0.0848

0.6 0.0656 0.0623 0.0587 0.0398 0.1580 0.1526 0.1374 0.1106

0.7 0.0705 0.0672 0.0639 0.0425 0.1819 0.1759 0.1633 0.1278

0.8 0.0644 0.0617 0.0594 0.0381 0.1818 0.1761 0.1665 0.1245

0.9 0.0463 0.0448 0.0433 0.0261 0.1426 0.1382 0.1322 0.0898

250 0.1 0.0064 0.0061 0.0050 0.0050 0.0093 0.0089 0.0051 0.0052

0.2 0.0128 0.0122 0.0098 0.0077 0.0243 0.0235 0.0150 0.0131

0.3 0.0223 0.0215 0.0183 0.0138 0.0473 0.0462 0.0340 0.0295

0.4 0.0335 0.0325 0.0291 0.0221 0.0767 0.0752 0.0606 0.0532

0.5 0.0439 0.0428 0.0396 0.0302 0.1091 0.1074 0.0918 0.0804

0.6 0.0510 0.0498 0.0469 0.0354 0.1378 0.1358 0.1212 0.1052

0.7 0.0526 0.0514 0.0494 0.0362 0.1565 0.1542 0.1423 0.1203

0.8 0.0448 0.0439 0.0424 0.0298 0.1500 0.1478 0.1399 0.1131

0.9 0.0255 0.0252 0.0244 0.0154 0.1002 0.0987 0.0950 0.0691
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than the MSEs of the other estimators, especially

when ρ  is close to one and for small sample sizes.

These values decreased as the sample sizes

increased. The ρ̂W performed well for n ≥ 50. On

the other hand, the new estimator,  ρ̂W–Rmd–W ,

provided the lowest MSE in all scenarios that were

considered, except when the parameter ρ
was small (ρ = 0.1 or 0.2). Additionally, the ρ̂W–

Rmd–W performed very well with respect to the other

three estimators. The proposed estimator, ρ̂W–Rmd–

W in Equation 6, dominated all estimators, since

the MSE of the proposed estimator was the lowest

for almost all cases. For the rest, the MSE of ρ̂

Rmd–W was less than that of ρ̂R–W and ρ̂W for almost

all situations. The ρ̂Rmd–W often ranked second best

following the proposed estimator. Furthermore, the

MSEs shown in Table 1 are less than those reported

in Table 2, because the time series data of Table 1

had less outliers.

DISCUSSION AND CONCLUSIONS

A new parameter estimation for a

Gaussian AR(1) process with an unknown drift

and additive outliers has been proposed in this

paper. This proposed estimator of ρ was obtained

by applying the recursive median adjustment based

on an α -winsorized mean to the weighted

symmetric estimator. The adjusted recursive

median values were derived from computing the

α -winsorized mean of the recursive median.

Furthermore, the weighted symmetric estimator

(ρ̂W), the recursive mean adjusted weighted

symmetric estimator (ρ̂R–W), the recursive median

adjusted weighted symmetric estimator (ρ̂Rmd–W)

and the new estimator (ρ̂W–Rmd–W) were compared

in this study. The new estimator, ρ̂W–Rmd–W ,

performed better than ρ̂W , ρ̂R–W , and ρ̂Rmd–W in

terms of the MSE for almost all scenarios. One

reason behind this is that the additive outliers do

not affect the median and α -winsorized mean

values. Moreover, the adjusted recursive median

values applied in the formula for ρ̂W–Rmd–W in

Equation 6 could also reduce the mean square error

(MSE) of the estimator. Therefore, the proposed

estimator (ρ̂W–Rmd–W), which is based on the

recursive median adjusted by an α -winsorized

mean, is superior to the existing estimators.

There is a problem for further research,

which goes beyond the scope of the present paper,

but is of practical interest. In practice, a statistician

or an econometrician has one time series set that

is contaminated by various kinds of outliers (i.e.,

additive outliers (AO) and innovations outliers

Table 3 Standard errors of all estimators, ρ̂W , ρ̂R–W , ρ̂Rmd–W and ρ̂W–Rmd–W.
Standard error of estimators
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(IO)). Thus, it would be interesting to see whether,

in this context, the proposed approach still

maintains an edge over the other methodologies.
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