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Improvement in Parameter Estimation for a Gaussian AR(1)
Process with an Unknown Drift and Additive Outliers:
A Simulation Study

Wararit Panichkitkosolkul

ABSTRACT

This paper presents a new parameter estimation for a Gaussian first-order autoregressive (AR(1))

process with an unknown drift and additive outliers. Recursive median adjustment was applied based on

an a-winsorized mean to the weighted symmetric estimator. The following estimators were considered:

the weighted symmetric estimator (0y), the recursive mean adjusted weighted symmetric estimator

(Or_w), the recursive median adjusted weighted symmetric estimator (Og,,._w), and the weighted symmetric

estimator using the adjusted recursive median, based on the a-winsorized mean (Oy_gimqw)- Using

Monte Carlo simulations, the mean square error (MSE) of estimators were compared. Simulation results

showed that the proposed estimator, Py_gme_w> provided an MSE lower than those of Py_g,.ew» and

Dw_rma—w for almost all situations.
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INTRODUCTION

Economic time series are frequently
affected by special events, such as policy
interventions, strikes, the outbreak of war and
sudden changes in the market structure of a
commodity (Nielsen, 2004). Such aberrant
observations are usually referred to as outliers.
Because outliers are known to wreck havoc on
parameter estimation, it is important to have
procedures that will deal with such outlier effects.
The detection of time series outliers was first
studied by Fox (1972), who introduced two
statistical models for times series contaminated by
outliers, namely, additive outliers (AO) and
innovations outliers (I0). Additive outliers

correspond to the situation in which a gross error
of observation or recording affects a single
observation (Fox, 1972). An innovations outlier
affects not only the particular observation, but also
subsequent observations (Fox, 1972). The current
study focuses solely on additive outliers, as they
are the most common type found in time series,
due to their association with human errors, such
as typing and recording mistakes (Zaharim, 2009).
Furthermore, additive outliers are more harmful
than innovations outliers (Chatfield, 2001). A time
series that does not contain any outliers is called
an outlier-free series.

Suppose an outlier-free time series {X, ;
t=2,3,...,n} follows an AR(1) model as shown in
Equation 1:
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Xi=u+pX 1 —w+e, (1)
where u is the mean of the process, p is an
autoregressive parameter, p € (-1,1), e, are
unobservable independent errors and identically
N(0, 0%) distributed.

For | p| =1, model (1) in Equation 1 is
called the random walk model, otherwise it is
called a stationary AR(1) process when |p| < 1.
For p close to one or near a non-stationary process,
the mean, variance and autocorrelation function
of this process are not constant through time. Let
the observed time series be denoted by {Y,}. In
the simple case when {X,} has a single additive
outlier at time point 7' (1 < 7' < n), model (1) can
be modified as shown in Equation 2:

Y,=X,+ 81D, 2)
where O represents the magnitude of the additive
outlier effect and 7P is an indicator variable such
that

/0 _ 1,t=T,
t
0,t=T.

It is known that the ordinary least squares estimator
of p, which is denoted by Py, for Equation 1 is
biased (see, for example, Shaman and Stine, 1988).
For case of additive outliers, the ordinary least
squares (OLS) estimator not only lacks robustness
in terms of variability but also suffers from severe
bias problems (Guo, 2000). Furthermore, Conover
(1980) pointed out that the OLS estimator was
sensitive to outliers (see Section 5.5). Therefore,
statisticians have suggested methods to reduce the
bias. Park and Fuller (1995) proposed the weighted
symmetric estimator of p, which is denoted by
Pw- So and Shin (1999) applied a recursive mean
adjustment to the OLS estimator (R-OLS) and they
concluded that the mean square error of the R-
OLS estimator, which is denoted by Pr_ors, 18
smaller than the OLS estimator for p &€ (0,1). They
also showed that the Pp_po;g estimator has a
coverage probability that is close to the nominal
value. Niwitpong (2007) applied the recursive
mean adjustment to the weighted symmetric

estimator (R-W) of Park and Fuller (1995).
Panichkitkosolkul (2010) suggested an estimator
for an unknown mean Gaussian AR(1) process
with additive outliers by applying the recursive
median adjustment to the weighted symmetric
estimator (Rmd-W). He found that the Pg,,0w
estimator produces a mean square error lower than
those of Py, and Pg_yy for almost all situations. New
recursive median adjustment based on an o -
winsorized mean (see Serfling, 1980) is applied
to the weighted symmetric estimator (W-Rmd-W)
for model (1) when there are additive outliers in
the time series data. Because the outliers do not
affect the o -winsorized mean and median values,
the recursive mean adjustment is replaced by a
new recursive median adjustment based on an o -
winsorized mean to the weighted symmetric
estimator. The aim of the current study was to
compare four estimators, Py, Pr_w > Prma—w and
DPw_rmd—w » in terms of the mean square error (MSE)
of the estimators.

METHODOLOGY

Park and Fuller (1995) proposed that the
weighted symmetric estimator of p is given by
Equation 3:

S (Y,-7)(¥,,-T)
Pw = =2 m —. €)]
Y=Y +n7' 3(Y,-Y)
=1

M=

3

~
Il

Niwitpong (2007) replaced Y by

_ 1
Yz=;2Yi in Equation 3. The estimator of p

i=l
obtained as a result of this recursive mean
adjustment is given by Equation 4:

S -T)(¥-T)

t=2

(Y=Y ) +n”! 21<Y,—?,>2 '
=

Prw =

“

M=
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When there are outliers in time series
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data, it affects the recursive mean 17, in Equation
4. Panichkitkosolkul (2010) replaced the recursive
mean in Equation 4 by the recursive median. The
estimator of p obtained as a result of the recursive
median adjustment is given by Equation 5:

§2<Y,—2><Y,_1—2_1>

(Y=Y +n 3(Y,-1,)?
t=1

PRrma-w =

®)

M=

3

~
Il

where l;l = median(1}, Y, ..., Y}).

The effect of outliers on an estimator of
p in model (1) can be reduced by using a new
recursive median adjustment based on the o -
winsorized mean, which is a robust estimator of a
mean (David and Nagaraja, 2003). The «a -
winsorized mean, which is shown by Epstein and
Sobel (1953 cited in Staudte and Sheather, 1990),
is a winsorized statistical measurement of central
tendency, like the mean and median and even more
similar to the trimmed mean (Mahir and Al-
Khazaleh, 2009; Wu and Zuo, 2009). Additionally,
the a -winsorized mean eliminates the outliers at
both ends of an ordered set of observations. Unlike
the trimmed mean, the o -winsorized mean
replaces the outliers with observed values, rather
than discarding them. Apart from that, the o -
winsorized mean is more efficient more the
trimmed mean (Johnson et al., 1994). In addition,
this statistic has various applications in detecting
outliers (Barnett and Lewis, 1994). Thus, the
improved recursive median values adjusted using
an o -winsorized mean are derived from
computing the a -winsorized mean of the recursive
median. There are two steps in computing the new
recursive median. First, the recursive median ( I?t )
is computed using the time series data Y,. Second,
the o -winsorized mean is calculated using the
recursive median obtained from the first step.
Therefore, the recursive median in Equation 5 is
replaced by a new recursive median. The new
estimator of p obtained as a result of this new
recursive median adjustment is given by Equation
6:

Pw-Rmd-w = =

PO AR i(Yz—E)z > (6)
t=3 =

-ta]

= 1 ~ 4
where Y, = ;([fa]y([mm). >

i=[tal+

1Y(i> +[w‘]Y(r—[zaD) ,

Y, = median(1}, Y;...., Y,), Yy sYy <-<Y,

denote the ordered values of the recursive median

I?, , adenotes the fraction of time series data to be
trimmed, 0 < &< 0.5 and [#¢] denotes the greatest
integer not greater than o

RESULTS

The performance of the proposed
estimator for a Gaussian AR(1) process with
additive outliers was examined (via Monte Carlo
simulations), with particular emphasis on
comparisons between the new and existing
approaches. Data were generated from a Gaussian
AR(1) process with additive outliers. It should be
noted that while this process generates

0'2

Y1~N(0,1 62) and simulates the time series of
-pP
length n + 50, the time series used in the

calculations were {Ys;, Ys5,....Y,450}. The

following parameter values were used: (u, 062) =
0, 1); p=0.1,0.2,0.3,0.4,0.5,0.6,0.7, 0.8 and
0.9; sample sizes n = 25, 50, 100 and 250; the
magnitude of the AOs effect § =30, and 50, ; the
percentage of additive outliers p = 5% and 10%;
the fraction of data to be trimmed «a = 0.05. All
simulations were performed using programs
written in the R statistical software package (The
R Development Core Team, 2009a, 2009b) with
the number of simulation runs, M = 10,000. In
addition, the additive outliers occurred randomly.

The simulation results, including the
estimated mean square error (MSE) of all
estimators, Py, Pr_w > Prma—w and Py_rma_w > are
shown in Tables 1 and 2. Table 3 showed the
standard error of all estimators. As can be seen
from Tables 1 and 2, the MSE of py, was larger
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Table 1 The estimated mean square error (MSE) of Py , Or_w » Prma—w and Pw_gma_w for the percentage

of additive outliers; p = 5%.

n 14 0=30, 60=50,
w R-W  Rmd-W W-Rmd-W W R-W  Rmd-W W-Rmd-W
25 0.1 0.0429 0.0384 0.0365 0.0446 0.0387 0.0340 0.0317 0.0336
0.2 0.0500 0.0428 0.0404 0.0409 0.0554 0.0469  0.0435 0.0368
0.3 00611 0.0514 0.0474 0.0412 0.0773  0.0657  0.0622 0.0467
04 0.0701 0.0583 0.0551 0.0414 0.1021 0.0869  0.0834 0.0595
0.5 0.0812 0.0676  0.0657 0.0451 0.1342  0.1162 0.1136 0.0779
0.6 0.0932 0.0785 0.0770 0.0494 0.1625 0.1420 0.1399 0.0942
0.7 0.1036  0.0886  0.0870 0.0545 0.1936  0.1701  0.1680 0.1123
0.8 0.1125 0.0975 0.0973 0.0591 0.2106 0.1876  0.1874 0.1237
0.9 0.1186 0.1059 0.1069 0.0642 0.2227 0.2005 0.2014 0.1315
50 0.1 0.0214 0.0198 0.0192 0.0238 0.0228 0.0209 0.0195 0.0202
0.2 0.0256 0.0231 0.0218 0.0228 0.0335 0.0300 0.0274 0.0225
0.3 0.0308 0.0273 0.0253 0.0220 0.0499 0.0449 0.0418 0.0306
04 0.0384 0.0341 0.0321 0.0236 0.0682 0.0618 0.0584 0.0411
0.5 0.0433 0.0386 0.0370 0.0252 0.0897 0.0820  0.0790 0.0542
0.6 0.0483 0.0435 0.0421 0.0264 0.1039  0.0956  0.0928 0.0623
0.7 0.0513 0.0466  0.0453 0.0276 0.1181 0.1094 0.1073 0.0706
0.8 0.0493 0.0455 0.0445 0.0261 0.1178  0.1099  0.1081 0.0696
0.9 0.0441 0.0416 0.0413 0.0237 0.1063  0.1002  0.0991 0.0606
100 0.1 0.0113 0.0107 0.0101 0.0121 0.0137 0.0129 0.0113 0.0111
0.2 0.0152 0.0140 0.0128 0.0117 0.0243 0.0226 0.0194 0.0154
0.3 0.0202 0.0187 0.0171 0.0130 0.0394 0.0370  0.0330 0.0247
04 0.0265 0.0246 0.0229 0.0158 0.0592 0.0560 0.0514 0.0383
0.5 0.0317 0.0296 0.0280 0.0184 0.0791 0.0755 0.0712 0.0527
0.6 0.0354 0.0332 0.0317 0.0200 0.0947  0.0907  0.0866 0.0627
0.7 0.0361 0.0342 0.0330 0.0200 0.1040  0.0999  0.0966 0.0688
0.8 0.0317 0.0302 0.0292 0.0172 0.0971 0.0933  0.0910 0.0609
0.9 0.0232 0.0225 0.0219 0.0122 0.0719 0.0696  0.0678 0.0425
250 0.1  0.0052 0.0050 0.0046 0.0047 0.0074  0.0071  0.0057 0.0052
0.2 0.0080 0.0076  0.0068 0.0055 0.0160 0.0154 0.0127 0.0101
0.3 0.0121 0.0116 0.0106 0.0076 0.0295 0.0286  0.0250 0.0201
04 0.0165 0.0158 0.0146 0.0102 0.0458 0.0446  0.0405 0.0328
0.5 0.0201 0.0194 0.0184 0.0125 0.0626 0.0612  0.0571 0.0463
0.6 0.0228 0.0220 0.0211 0.0143 0.0757 0.0742  0.0707 0.0564
0.7 0.0222 0.0216  0.0209 0.0136 0.0792 0.0777 0.0748 0.0580
0.8 0.0177 0.0173 0.0167 0.0103 0.0687 0.0675  0.0656 0.0483
0.9 0.0101 0.0100 0.0097 0.0056 0.0412 0.0406 0.0394 0.0261
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Table 2 The estimated mean square error (MSE) of Oy , Or_w » Prma—w and Pyw_rma_w for the percentage
of additive outliers; p = 10%.
n o 60=30, 0=50,
\Y R-W  Rmd-W W-Rmd-W W R-W  Rmd-W W-Rmd-W
25 0.1 0.0441 0.0391 0.0366 0.0417 0.0445 0.0394 0.0345 0.0354
0.2 0.0553 0.0471 0.0424 0.0400 0.0666 0.0574  0.0498 0.0428
0.3 0.0723 0.0612  0.0556 0.0445 0.0967 0.0836  0.0738 0.0582
04 0.0925 0.0781 0.0723 0.0522 0.1395 0.1222  0.1106 0.0844
0.5 0.1143  0.0973  0.0915 0.0628 0.1862 0.1648  0.1533 0.1153
0.6 0.1367 0.1176  0.1136 0.0756 0.2343  0.2097  0.1978 0.1472
0.7 0.1538 0.1339 0.1302 0.0846 0.2745 0.2462  0.2353 0.1720
0.8 0.1686 0.1484  0.1455 0.0936 0.3159 0.2861 0.2767 0.1997
0.9 0.1736  0.1555 0.1532 0.0971 0.3347 03044 0.2978 0.2094
50 0.1 0.0240 0.0221 0.0202 0.0232 0.0261 0.0239  0.0193 0.0202
0.2 0.0334 0.0299 0.0261 0.0231 0.0454 0.0412  0.0323 0.0276
0.3 0.0469 0.0420 0.0374 0.0284 0.0740 0.0678  0.0554 0.0444
04 0.0623 0.0561 0.0508 0.0359 0.1100  0.1019  0.0865 0.0675
0.5 0.0786 0.0714 0.0661 0.0447 0.1489 0.1391  0.1225 0.0956
0.6 0.0926 0.0849  0.0800 0.0518 0.1913  0.1799  0.1630 0.1251
0.7  0.1009 0.0931 0.0888 0.0572 0.2237 0.2110  0.1961 0.1475
0.8  0.1038  0.0965 0.0930 0.0586 0.2401 0.2268  0.2153 0.1566
0.9 0.0905 0.0852 0.0828 0.0505 0.2207  0.2087  0.1996 0.1364
100 0.1 0.0129 0.0121 0.0109 0.0122 0.0160 0.0150 0.0109 0.0114
0.2 0.0200 0.0185 0.0157 0.0133 0.0319 0.0299 0.0216 0.0185
0.3 0.0305 0.0283 0.0246 0.0180 0.0571 0.0542 0.0422 0.0347
04 0.0440 0.0412 0.0368 0.0257 0.0892 0.0854 0.0710 0.0579
0.5 0.0566 0.0534 0.0491 0.0341 0.1243  0.1198  0.1041 0.0848
0.6 0.0656 0.0623  0.0587 0.0398 0.1580 0.1526  0.1374 0.1106
0.7 0.0705 0.0672  0.0639 0.0425 0.1819 0.1759  0.1633 0.1278
0.8 0.0644 0.0617 0.059%4 0.0381 0.1818 0.1761  0.1665 0.1245
0.9 0.0463 0.0448 0.0433 0.0261 0.1426  0.1382  0.1322 0.0898
250 0.1  0.0064 0.0061 0.0050 0.0050 0.0093 0.0089  0.0051 0.0052
0.2 0.0128 0.0122  0.0098 0.0077 0.0243  0.0235 0.0150 0.0131
0.3 0.0223 0.0215 0.0183 0.0138 0.0473  0.0462  0.0340 0.0295
04 0.0335 0.0325 0.0291 0.0221 0.0767 0.0752  0.0606 0.0532
0.5 0.0439 0.0428 0.0396 0.0302 0.1091 0.1074  0.0918 0.0804
0.6 0.0510 0.0498 0.0469 0.0354 0.1378 0.1358  0.1212 0.1052
0.7 0.0526 0.0514 0.0494 0.0362 0.1565 0.1542  0.1423 0.1203
0.8 0.0448 0.0439 0.0424 0.0298 0.1500 0.1478  0.1399 0.1131
0.9 0.0255 0.0252 0.0244 0.0154 0.1002  0.0987  0.0950 0.0691
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than the MSEs of the other estimators, especially
when pis close to one and for small sample sizes.
These values decreased as the sample sizes
increased. The Py performed well for n = 50. On
the other hand, the new estimator, Pw_ruaw »
provided the lowest MSE in all scenarios that were
considered, except when the parameter p
was small (p =0.1 or 0.2). Additionally, the Py
rma—w performed very well with respect to the other
three estimators. The proposed estimator, Oy._gq
w in Equation 6, dominated all estimators, since
the MSE of the proposed estimator was the lowest
for almost all cases. For the rest, the MSE of p
rmd-w Was less than that of pg_y, and Py, for almost
all situations. The Pg,,._w often ranked second best
following the proposed estimator. Furthermore, the
MSESs shown in Table 1 are less than those reported
in Table 2, because the time series data of Table 1
had less outliers.

DISCUSSION AND CONCLUSIONS

A new parameter estimation for a
Gaussian AR(1) process with an unknown drift
and additive outliers has been proposed in this
paper. This proposed estimator of p was obtained
by applying the recursive median adjustment based

961

on an o -winsorized mean to the weighted
symmetric estimator. The adjusted recursive
median values were derived from computing the
a -winsorized mean of the recursive median.
Furthermore, the weighted symmetric estimator
(Pw), the recursive mean adjusted weighted
symmetric estimator (Og_y), the recursive median
adjusted weighted symmetric estimator (Og,,._w)
and the new estimator (Oy._gmq_w) Were compared
in this study. The new estimator, Ow_gmaw »
performed better than Py, Pr_w, and Pg.aw i
terms of the MSE for almost all scenarios. One
reason behind this is that the additive outliers do
not affect the median and o -winsorized mean
values. Moreover, the adjusted recursive median
values applied in the formula for Py_g,.w in
Equation 6 could also reduce the mean square error
(MSE) of the estimator. Therefore, the proposed
estimator (Ow_gmq_w)>, Which is based on the
recursive median adjusted by an o -winsorized
mean, is superior to the existing estimators.
There is a problem for further research,
which goes beyond the scope of the present paper,
but is of practical interest. In practice, a statistician
or an econometrician has one time series set that
is contaminated by various kinds of outliers (i.e.,
additive outliers (AO) and innovations outliers

Table 3 Standard errors of all estimators, Py , Pr_w > Prma—w ANd Pw_rimd_w-

Standard error of estimators

N

~ O,
SE(py) = n—W >
(¥, -Y)
=2
. O
SE(Py ) = ——220
(Y. -Y,)
=2
. O
SE(Pyy ) = it
¥ -1
=2
. Oy -
SE(Py_gma-w) = HW% )
Z (Y;—l - Y;—l )2

n

2 =Y =p, (¥, ~T))

=2

n—-2
(Y, - )7, - ﬁR—W (YH - )7:—1))2

A2 =2
()' =

RW n—2

(Y, - Y: - laRmd—W (Yt—l - 271))2

6_2 1=2

Rmd-W n— 2

(Y, - Y~; - lbW—Rmd—W (Yt—] - Yt—] ))2

A2 =2
Oy Rimd—w

n-2
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(I0)). Thus, it would be interesting to see whether,
in this context, the proposed approach still
maintains an edge over the other methodologies.
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