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Isolated Polymer Chain in a Random Medium

Cherdsak Kunsombat

ABSTRACT

A model of an isolated polymer chain in a random medium was investigated. The model was

extended from a model using a Gaussian correlation function and was solved in three spatial dimensions

using the path-integral method. The polymer propagator and the mean squared end-to-end displacement

of a chain were derived, respectively. It was shown that the properties of a polymer depended on the

correlation length, the fluctuation magnitude and the density of the random medium. The results from

this model were reduced to the results from the model using the Gaussian correlation function when the

parameter Ω approached zero.
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INTRODUCTION

The problem of modeling a polymer in a

random medium has been solved extensively by

both analytical and numerical methods (Edwards

and Muthukumar, 1988; Thirumalai, 1988; Dua

and Cherayil, 1998; Goldschmidt, 2000; Shiferaw

and Goldschmidt, 2000, 2001; Kunsombat and Sa-

yakanit, 2004, 2005; Romiszowski and Sikoski,

2006; Monthus and Garel, 2006; Craig and

Edwards, 2007; Kolokolov and Korshunov, 2007;

Kunsombat, 2009). Kunsombat and Sa-yakanit

(2005) presented an exact solvable model of a

polymer chain in a random medium with long-

range quadratic correlation using a Gaussian

function (GF). Using the path-integral method, the

analytical results can be computed. For instance,

the mean squared end-to-end displacement is given

by Equation 1:
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where: ξ is the correlation length of a random

medium, f(ξ) is the fluctuation magnitude, b is the

Kuhn length, ρ is the density of random medium

and N is the number of links.

Equation 1 was in good agreement with

Shiferaw and Goldschmidt (2000) and

corresponded to Dua and Cherayil (1998). In the

current study, the model using a Gaussian function

(GF) was extended to a more complicated model

(EGF). However, the EGF model was reduced to

the GF model when the parameter Ω approached

zero. The model was solved in three spatial

dimensions. The analytical expression for the

polymer propagator using the path-integral method

was studied. Consequently, the mean squared end-
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to-end displacement of a polymer was derived.

Finally, this result was compared with the result

from the GF model.

MATERIALS AND METHODS

Consider a flexible polymer chain of

length L (L = Nb) in a random medium having a

density ρ. This system is described by the

Hamiltonian (Equation 2):
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where: W X X
r r
τ σ( )− ( )[ ] is the correlation function,

m = 3/b2 and β = (KBT)–1, Kβ is Boltzmann’s

constant and T is the absolute temperature.

In previous work, Kunsombat and Sa-

yakanit (2005) took the correlation function to be

of the form (Equation 3):
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Substituting Equation 3 into Equation  2 produces

Equation 4:
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where ω2 = 
2

2

ρ ξ

ξ

f N

m

( ) , and the constant part of

the Hamiltonian has been dropped, since it only

contributes an unimportant normalization factor.

Now, the Hamiltonian in Equation 4 can

be extended to a more complicated model, by

introducing the new Hamiltonian in Equation 5:
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where: Ω is a parameter.

This model is identical to the model

disordered system used by Sa-yakanit (1974).

Moreover this model (Equation 5) can be reduced

to the model in Equation 4 for the limit Ω → 0.

The physical meaning of this Hamiltonian is that

of a two-particle model system, in which one

parameter is coupled to a second fictitious particle,

where the position of the fictitious particle has been

eliminated.

The polymer propagator of such a system

can be expressed in path-integral representation

(Equation 6):
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When the polymer propagator is calculated, all the

statistical properties of the polymer can be directly

evaluated. However, there are difficulties involved

in solving Equation 6, because of the presence of

a non-local term cos /sinΩ
ΩN N

2 2
− −



τ σ  in the

Hamiltonian. Therefore, it is more convenient to

obtain the propagator, G X X N
r r

2 1, ; ,   Ω( ) , indirectly

by realizing that the Hamiltonian βH is derived

from a two-particle model system, in which the

particle of the second fictitious particle has been

eliminated. This two-particle model system can

be described by the following Hamiltonian

(Equation 7):
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where: M and 
r
Y  refer to the mass and the position

of the fictitious particle.

The Hamiltonian can be rewritten as

Equation 8:
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where the following new variables have been

introduced;
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Equation 8 represents two harmonic oscillators,

one of reduced mass µ and frequency
ν µ ω    = =( )K K m/ 2 , and the other of total mass

m0 and zero frequency. Using the well-known

result for the two harmonic oscillators (Feynman

and Hibbs, 1995), with the boundary conditions
r r
r r0   1( ) = , 

r r
r rN   2( ) = , 

r r
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r r
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the classical Hamiltonian can be written down

easily as Equation 9:
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Transforming Equation 9 back to the original

coordinates 
r r
X Y1 1,  and 

r r
X Y2 2,  and setting 

r r
Y Y1 2=

results in Equation 10:
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Now, the polymer propagator can be derived by

integrating the exponential of Equation 10 with

respect to the variable 
r
Y2  (Equation 11):
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where A is a prefactor constant and Equation 12:
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Once the polymer propagator is obtained,

all the statistical properties of the polymer can be

directly evaluated. Some physical quantities are

calculated in the next section.

RESULTS AND DISCUSSION

The mean squared end-to-end displace-

ment of a chain can be calculated by Equation 13:
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This produces the result in Equation 14:
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Substituting m and ω2 into Equation 14 produces

Equation 15:
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Therefore, the mean squared end-to-end

displacement of a polymer in a random medium

depends on the correlation length, the fluctuation

magnitude and the density of the random medium.

Consider now the case where the

fluctuation magnitude is known. In this case, an

exact result can be obtained. For example, if the

fluctuation magnitude f(ξ) is taken to be of the

form 
∆

πξ2 3 2( ) / , where ∆ is a parameter, and if the

density ρ is not too high, but the correlation length

ξ is very large, then Equation 15 can be

approximated as Equation 16:
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This indicates that a polymer in a random

medium with long-range correlation behaves like

a free chain, which is in good agreement with

Shiferaw and Goldschmidt (2000). This behavior

can be understood, by considering the nature of

the random potential that satisfies the long-range

correlation. The random potential is smooth and

slowly varying (Shiferaw and Goldschmidt, 2000),

so the medium does not have much of an effect on

the behavior of the polymer. Such a polymer

behaves like a free chain.

For the case of finite correlation length,

the result in Equation 15 is also dependent on the

parameter Ω. If the parameter Ω is equal to zero,

Equation 15 will be reduced to Equation 1.

However, for the case where Ω is not zero, the

mean squared end-to-end displacement is still

dependent on the density of the random medium.

For example, in Figure 1, 
r r
X X2 1

2
−( )  is plotted

as a function of ρ. The parameters are b = 1, ξ =

1000, N = 1000, ∆ = 0.1 and Ω = 0.5. In this case,

it was found that the mean squared end-to-end

displacement decreased when the density

increased. This behavior corresponds to Dua and

Cherayil (1998). This effect can be understood if

the conformation of the polymer is viewed as the

locus of a particle executing random walk motion

in a medium consisting of a random arrangement

of obstacles that reflect the trajectory of the

particle. If the obstacles are sufficiently far apart

(the density of the medium is low), the obstacles

merely add the same elements of stochasticity to

the particle. But at a smaller distance of separation

(the density of the medium is high), the obstacles

can cause the particle to suffer multiple reflections

that will reduce the particle’s mean displacement

in the medium. So, in a medium where the density

of obstacles is high, the mean displacement of the

walk is smaller than in other media where the

obstacle density is low.

CONCLUSION

A model of an isolated polymer chain in

a random medium was studied and the model was

extended using a Gaussian correlation function to

develop a more complicated model, which could

be reduced to the original model using the

Gaussian correlation function, when the parameter

Ω approached zero. The model was solved in three

spatial dimensions using the path-integral method.

The analytical expressions for the polymer

propagator and the mean squared end-to-end

Figure 1 Plot of 
r r
X X2 1

2
−( )  as a function of ρ. The parameters are b = 1, ξ = 1000, N = 1000, ∆ = 0.1

and Ω = 0.5.
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displacement of a chain were derived, respectively.

It was shown that the properties of the polymer

depended on the correlation length, the fluctuation

magnitude and the density of the random medium.

For example, with long-range correlation and the

density being not too high, the polymer behaved

like a free chain (as if there were no random

medium), which was in good agreement with

Shiferaw and Goldschmidt (2000). However, the

mean squared end-to-end displacement was also

dependent on the density of the random medium.

For the case where the parameter Ω = 0.5, it was

found that when the density increased, the mean

squared displacement decreased. This behavior

corresponded to Dua and Cherayil (1998). The

results from this model were reduced to the results

from the model using a Gaussian correlation

function when the parameter Ω approached zero.
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