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Isolated Polymer Chain in a Random Medium

Cherdsak Kunsombat

ABSTRACT

A model of an isolated polymer chain in a random medium was investigated. The model was

extended from a model using a Gaussian correlation function and was solved in three spatial dimensions

using the path-integral method. The polymer propagator and the mean squared end-to-end displacement

of a chain were derived, respectively. It was shown that the properties of a polymer depended on the

correlation length, the fluctuation magnitude and the density of the random medium. The results from

this model were reduced to the results from the model using the Gaussian correlation function when the

parameter Q approached zero.
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polymer propagator

INTRODUCTION

The problem of modeling a polymer in a
random medium has been solved extensively by
both analytical and numerical methods (Edwards
and Muthukumar, 1988; Thirumalai, 1988; Dua
and Cherayil, 1998; Goldschmidt, 2000; Shiferaw
and Goldschmidt, 2000, 2001; Kunsombat and Sa-
yakanit, 2004, 2005; Romiszowski and Sikoski,
2006; Monthus and Garel, 2006; Craig and
Edwards, 2007; Kolokolov and Korshunov, 2007;
Kunsombat, 2009). Kunsombat and Sa-yakanit
(2005) presented an exact solvable model of a
polymer chain in a random medium with long-
range quadratic correlation using a Gaussian
function (GF). Using the path-integral method, the
analytical results can be computed. For instance,
the mean squared end-to-end displacement is given
by Equation 1:
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where: & is the correlation length of a random
medium, f(§) is the fluctuation magnitude, b is the
Kuhn length, p is the density of random medium
and N is the number of links.

Equation 1 was in good agreement with
Shiferaw and Goldschmidt (2000) and
corresponded to Dua and Cherayil (1998). In the
current study, the model using a Gaussian function
(GF) was extended to a more complicated model
(EGF). However, the EGF model was reduced to
the GF model when the parameter Q approached
zero. The model was solved in three spatial
dimensions. The analytical expression for the
polymer propagator using the path-integral method
was studied. Consequently, the mean squared end-
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to-end displacement of a polymer was derived.
Finally, this result was compared with the result
from the GF model.

MATERIALS AND METHODS

Consider a flexible polymer chain of
length L (L = Nb) in a random medium having a
density p. This system is described by the
Hamiltonian (Equation 2):

BH = fdr (8);'(;)) ffdrdGW[X(T) X(0)]

2
where: W[f( (r)-X (o)] is the correlation function,
m = 3/b* and B = (KzT)™!, Kz is Boltzmann’s
constant and 7 is the absolute temperature.

In previous work, Kunsombat and Sa-
yakanit (2005) took the correlation function to be

of the form (Equation 3):
(X)-%(0))
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Substituting Equation 3 into Equation 2 produces
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Equation 4:
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where @? = @, and the constant part of
m

the Hamiltonian has been dropped, since it only
contributes an unimportant normalization factor.
Now, the Hamiltonian in Equation 4 can
be extended to a more complicated model, by
introducing the new Hamiltonian in Equation 5:

e
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where: Q is a parameter.

This model is identical to the model
disordered system used by Sa-yakanit (1974).
Moreover this model (Equation 5) can be reduced
to the model in Equation 4 for the limit Q — 0.
The physical meaning of this Hamiltonian is that
of a two-particle model system, in which one
parameter is coupled to a second fictitious particle,
where the position of the fictitious particle has been
eliminated.

The polymer propagator of such a system
can be expressed in path-integral representation
(Equation 6):

G(%,. %,: N, 9)=§D[f<r>]exp<—ﬁm ©

When the polymer propagator is calculated, all the
statistical properties of the polymer can be directly
evaluated. However, there are difficulties involved
in solving Equation 6, because of the presence of

\

(N . QN
a non-local term COSQ\E"T—UU /SmT in the

Hamiltonian. Therefore, it is more convenient to
obtain the propagator, G(f(z, )?, N, Q) , indirectly
by realizing that the Hamiltonian $H is derived
from a two-particle model system, in which the
particle of the second fictitious particle has been
eliminated. This two-particle model system can
be described by the following Hamiltonian
(Equation 7):

- - 1N - ks
BH(X, Y; K, M)=5 de[mX2(1:)+M Y2(r)
0
k(%) 7() ] )

where: M and Y refer to the mass and the position
of the fictitious particle.

The Hamiltonian can be rewritten as
Equation 8:

- v . -
ﬁH(f, R K, M)=5£d7[ufz(r)+Kf2(r)+m0 Rz(r):l

®)
where the following new variables have been
introduced;
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Mm0=m+Mand,u= mM

F=X-Y,R= ,
m+ M m+ M

Equation 8 represents two harmonic oscillators,
one of reduced mass u and frequency

K/.U(K = mw? ), and the other of total mass
mg and zero frequency. Using the well-known
result for the two harmonic oscillators (Feynman
and Hibbs, 1995), with the boundary conditions
7(0) = 7, F(N) = 7, R(0) = R, and R(N) = R,
the classical Hamiltonian can be written down
easily as Equation 9:

ﬁch(fz, 7 Ry, R v, M)=%[(;22 _H:lz)

mO(Rz‘kl )2
2N

Transforming Equation 9 back to the original

cos VN-2% T, ]+ )

coordinates )?l, )71 and )22, 172 and setting 171 =172
results in Equation 10:

BH (%, X, T =By v, M) = 5o (X247
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Now, the polymer propagator can be derived by
integrating the exponential of Equation 10 with
respect to the variable Y, (Equation 11):
G()?zs )?ﬁ N, Q) = dez exp(—ﬁHd)
=A exp( BH ocl)
where A is a prefactor constant and Equation 12:
2
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Once the polymer propagator is obtained,
all the statistical properties of the polymer can be
directly evaluated. Some physical quantities are
calculated in the next section.
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RESULTS AND DISCUSSION

The mean squared end-to-end displace-
ment of a chain can be calculated by Equation 13:

<(X2 Xl) >_

[dX%,d%,(%,-%,) G(%,.%,: N. Q)
JdX,dX,G(X,, X;; N, Q)

(13)
This produces the result in Equation 14:

e
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Substituting m and @? into Equation 14 produces
Equation 15:
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Therefore, the mean squared end-to-end
displacement of a polymer in a random medium
depends on the correlation length, the fluctuation
magnitude and the density of the random medium.

Consider now the case where the
fluctuation magnitude is known. In this case, an
exact result can be obtained. For example, if the

fluctuation magnitude f(&) is taken to be of the
A
form (n&z )3/2 , where A is a parameter, and if the

density pis not too high, but the correlation length
& is very large, then Equation 15 can be
approximated as Equation 16:

(%,-%)) = w2 (16)
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This indicates that a polymer in a random
medium with long-range correlation behaves like
a free chain, which is in good agreement with
Shiferaw and Goldschmidt (2000). This behavior
can be understood, by considering the nature of
the random potential that satisfies the long-range
correlation. The random potential is smooth and
slowly varying (Shiferaw and Goldschmidt, 2000),
so the medium does not have much of an effect on
the behavior of the polymer. Such a polymer
behaves like a free chain.

For the case of finite correlation length,
the result in Equation 15 is also dependent on the
parameter Q. If the parameter 2 is equal to zero,
Equation 15 will be reduced to Equation 1.
However, for the case where Q is not zero, the
mean squared end-to-end displacement is still
dependent on the density of the random medium.
For example, in Figure 1, <(f(2—f(1)2> is plotted
as a function of p. The parameters are b =1, § =
1000, N =1000, A =0.1 and © =0.5. In this case,
it was found that the mean squared end-to-end
displacement decreased when the density
increased. This behavior corresponds to Dua and
Cherayil (1998). This effect can be understood if
the conformation of the polymer is viewed as the

(&.-xJ)
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locus of a particle executing random walk motion
in a medium consisting of a random arrangement
of obstacles that reflect the trajectory of the
particle. If the obstacles are sufficiently far apart
(the density of the medium is low), the obstacles
merely add the same elements of stochasticity to
the particle. But at a smaller distance of separation
(the density of the medium is high), the obstacles
can cause the particle to suffer multiple reflections
that will reduce the particle’s mean displacement
in the medium. So, in a medium where the density
of obstacles is high, the mean displacement of the
walk is smaller than in other media where the
obstacle density is low.

CONCLUSION

A model of an isolated polymer chain in
arandom medium was studied and the model was
extended using a Gaussian correlation function to
develop a more complicated model, which could
be reduced to the original model using the
Gaussian correlation function, when the parameter
Q approached zero. The model was solved in three
spatial dimensions using the path-integral method.
The analytical expressions for the polymer
propagator and the mean squared end-to-end
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Figure 1 Plot of <(X2 —X1) > as a function of p. The parameters are b= 1, § = 1000, N = 1000, A=0.1

and Q =0.5.
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displacement of a chain were derived, respectively.
It was shown that the properties of the polymer
depended on the correlation length, the fluctuation
magnitude and the density of the random medium.
For example, with long-range correlation and the
density being not too high, the polymer behaved
like a free chain (as if there were no random
medium), which was in good agreement with
Shiferaw and Goldschmidt (2000). However, the
mean squared end-to-end displacement was also
dependent on the density of the random medium.
For the case where the parameter Q = 0.5, it was
found that when the density increased, the mean
squared displacement decreased. This behavior
corresponded to Dua and Cherayil (1998). The
results from this model were reduced to the results
from the model using a Gaussian correlation
function when the parameter €2 approached zero.
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