

Sequence Analysis of the *16SrRNA-rps12* Inverted Repeat Region in Chloroplast DNA of a *Dendrobium* Orchid

Benjawan Lertwiriyawong¹, Kisana Phinija² and Pattana Srifah Huehne^{1,2*}

ABSTRACT

The *16S* ribosomal RNA (*16SrRNA*)-ribosomal protein *S12* (*rps12*) DNA located in the inverted repeat regions (IRs) of chloroplast DNA (cpDNA) can be used as an efficient targeting region for plastid vector construction in plastid transformation systems. Thus, the *16S rRNA-rps12* cpDNA sequence of *Dendrobium* Jacquelyn Thomas 'UH44-50' was cloned and analyzed. The 3,782 base pair (bp) *16SrRNA-rps12* DNA sequence isolated from this *Dendrobium* cultivar was 97% similar to the related *Phalaenopsis aphrodites* (AY916449) and *Oncidium* Gower Ramsey (GQ324949) cpDNA. It was composed of the highly conserved sequence of 1,427 bp *16SrRNA* at the 5'-end, 99 bp of *rps12* at the 3'-end and 72 bp of the transfer RNA Valine (GAC) (*trnV*^(GAC)). Nevertheless, the most variable regions were located in a 1,955 bp long spacer between the 3'-end *trnV*^(GAC) and the 5'-end *rps12*. Apart from *Phalaenopsis* and *Oncidium* cpDNAs, the *16SrRNA-rps12* alignment of the *Dendrobium* nucleotide with nine other published sequences showed that this cpDNA region was unpredictably more homologous to *Phoenix dactylifera*, *Liriodendron tulipifera* and *Drimys granadensis* cpDNAs than those of grasses, including *Oryza japonica*, *Triticum aestivum* and *Zea mays*. The conserved and variable regions in the *16SrRNA-rps12* fragments of all twelve different species were located exactly in the same positions and orientation. Therefore, the highly conserved flanking regions of *16S rRNA-rps12* *Dendrobium* cpDNA have potential to be an appropriate homologous sequence for plastid transformation in orchids.

Keywords: chloroplast DNA, inverted repeat, cpDNA spacer, *Dendrobium*, *16SrRNA*

INTRODUCTION

The plastid organelles generally contain circular double-stranded genomes 120-160 kilobases (kb) in size, having around 150 genes (Bock, 2001) with multiple copies (10,000 cpDNA copies or 100 chloroplast per cell and each chloroplast has 100 copies of its genetic material) in one cell (Bendich, 1987). Recently, only two complete orchid chloroplast genomes of

Phalaenopsis aphrodites subsp. *formosana* (148 kb; Accession no. AY916449) and *Oncidium* Gower Ramsey (146 kb; Accession no. GQ324949) were available in the Genbank Database. Their encoding sequences and the structure of both orchid cp genomes were comparable in two 25 kb inverted repeats (IRa and IRb), an 85-86 kb large, single-copy region (LSC) and an 11-12 kb small, single-copy region (SSC) (Chang *et al.*, 2006; Wu *et al.*, 2010).

¹ Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.

² Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand.

* Corresponding author, e-mail: fscipns@ku.ac.th

The plastid transformation has been described to eliminate many concerns of nuclear transformation (Bogorad, 2000; Maliga, 2002). This has been widely accepted because the plastid transformation is not only an environmentally friendly approach but it also results in containment of foreign genes and hyper expression. Due to the high copy number of plastids in one cell, the level of transgene expression and transcript accumulation was about 100-fold higher in transplastomic plants than in nuclear transgenic plants (Guda *et al.*, 2000).

To achieve the plastid transformation, a cassette of transgenes in the plastid expression vector must consist of a chloroplast homologous sequence for the appliance to target the foreign gene into the precise location of the plastid genome. Thus, two chloroplast homologous sequences flanking *16SrRNA* and the transfer RNA Isoleucine (*trnI*) DNA in the IR region were first proposed by Svab *et al.* (1990) for stable plastid transformation in tobacco. Later on, Zoubenko *et al.* (1994) established the pPRV (plastid repeat vector) transformation vector with highly efficient targeting of the *trnV^{GAC}-rps12* region of tobacco chloroplast DNA. Another example for the pPRV vector family included pSBL-CTV2 targeting insertion in the *trnI-trnA* (transfer RNA Alanine) intergenic region and pRB vector targeting the *trnI-trnG* (transfer RNA Glycine) region (Maliga, 2002).

Due to the lack of knowledge of orchid plastid transformation, in the present study, the *16SrRNA-rps12* fragment from *Dendrobium* orchids was the first target region for cassette vector construction in plastid transformation technology. *Dendrobium* orchids belong to the Epidendroideae subfamily (Epidendroids). They are the most widespread orchids in Thailand. (Boonkorkaew, 2010). However, there are no *Dendrobium* cpDNA sequence data available for access in the database. The present study investigated the use of gene cloning and sequence

analysis of the *16SrRNA-rps12* region of *Dendrobium* cpDNA, compared with *Phalaenopsis* and *Oncidium* orchid cpDNAs and nine other related cpDNA representatives from monocotyledonous and dicotyledonous plants, to clarify the conserved flanking region and genetic diversity based on nucleotide sequences in the *16SrRNA-rps12* region.

MATERIALS AND METHODS

DNA extraction

Total DNAs were extracted from samples of 200 mg of young leaves from *Dendrobium* Jacquelyn Thomas 'UH44-50' (*Dendrobium gouldii* × *Dendrobium phalaenopsis* 'Lyon's Light No.1') by the CTAB method (Murray and Thomson 1980). Briefly pre-warmed (60 °C) DNA extraction buffer (100 mM Tris-HCl, pH 8.0, 500 mM NaCl, 50 mM EDTA, 10 mM β-mercaptoethanol) was added to ground samples at a ratio of 1:2 (leaf tissue to buffer on a w/v basis), homogenized by vortex and incubated at 60 °C for 30 min. Then, 500 µL of chloroform:isoamyl alcohol mixture (24:1) was added and mixed for 30 sec. Starch and other cell debris were pelleted by 12,000×g centrifugation for 8 min at 4 °C and the supernatant was transferred to a new tube, to which 0.6 volume of 4M potassium acetate (pH 4.8) and twice the volume of absolute ethanol were added. The contents were mixed well by inversion and chilled on ice for 10 min, followed with precipitation by 12,000×g centrifugation for 8 min at 4 °C. The pellet was washed with 500 µL 70% ethanol and then 30 µL sterilized water was added to suspend the DNA.

Amplification of the *16SrRNA-rps12* inverted repeat region

The *16SrRNA-rps12* IRs regions of the cpDNA were amplified as two separate fragments, *16SrRNA-trnV* and *trnV-rps12*, from the total DNA extracted from the *Dendrobium* sample. The PCR

amplification of the 5'-*16SrRNA-trnV* fragment was performed with *i*-TaqTM DNA polymerase (iNtRON Biotechnology, Inc.) using 1529R primer 5'-GCG TGA AGA AGT GTC AAA CC-3' (Rudnay *et al.*, 2002) and *trnV*144 primer 5'-AGG GAT ATA ACT CAG CGG TAG AG-3'. For the 3'-*16SrRNA-rps12* fragment, 1325-16S primer 5'-CTC AGC CTA CGG GGT ATT AGC A-3' and *rps12* primer 5'-GAT ATC TCA CAC CGG CGG GTA AAT CC-3' were employed. The thermal cycling programs started with preheating at 94 °C for 1 min, followed by 35 cycles of 94 °C for 1 min, 60 °C for 1 min and 72 °C for 2.5 min and then a final extension at 72 °C for 15 min using a Mastercycler Gradient Eppendorf Thermocycler (USA). The PCR products were analyzed by 1% agarose gel electrophoresis, purified and then cloned into pGEM-T[®] (Promega).

Sequence analysis

DNA sequencing was performed on positive clones by Macrogen Inc. (Korea). To

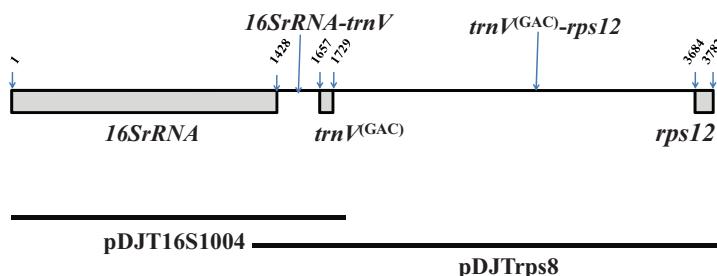
identify the sequence, DNA sequences were analyzed by the BLASTN 2.2.24 computer software (Stephen *et al.*, 1997). The alignment was performed using the multiple alignment computer software, ClustalW2 (Thompson *et al.*, 1994). Eleven *16SrRNA-rps12* sequences located in the IR region of the complete cpDNAs were randomly selected from two orchids, four monocotyledonous plants (consisting of one palm and three grasses) and five dicotyledonous plants (consisting of three shrubs and two perennial herbaceous plants) as shown in Table 1. The 11 sequences were extracted from the GenBank database and aligned with that of the *Dendrobium* sample to generate genetic relationship clusters. The phylogenetic tree was constructed by the neighbor-joining (NJ) method (Saitou and Nei, 1987) with 1,000 bootstrap replicates by the MEGA4 computer software (Tamura *et al.*, 2007). The raw sequence data of the *Oncidium* and *Phalaenopsis* IR regions were extracted (Table 2) to obtain information on the length of the intergenic spacer (IGS).

Table 1 Twelve sources of *16SrDNA-rps12* cpDNAs used in this study.

Plant Species/common name	Native	Accession #	Size (bp)	Spacer (bp)
1. <i>Dendrobium</i> Jacquelyn 'UH44-50'/-	<i>Den. gouldii</i> x <i>Den. phalaenopsis</i>	HQ540308	3,782	28/1957
2. <i>Phalaenopsis</i> Aphrodite/Moth orchids	Taiwan	AY916449	3,672	36/1935
3. <i>Oncidium</i> Gower Ramsey/-	<i>O. Goldiana</i> x <i>O. Guinea Gold</i>	GQ324949	3,722	31/1890
4. <i>Phoenix dactylifera</i> / true date palm	West Asia	GU811709.2	3,696	27/1908
5. <i>Liriodendron tulipifera</i> / tulip poplar	North America	DQ899947.1	3,668	31/1921
6. <i>Drimys granadensis</i> / <i>Tasmannia aromatica</i>	Australia	DQ887676.1	3,479	28/1965
7. <i>Nicotiana tabacum</i> / Tobacco	America	Z00044.2	3,440	27/1952
8. <i>Ranunculus macranthus</i> / buttercup	North America	DQ359689.1	3,693	27/1941
9. <i>Oryza japonica</i> / Japanese rice	Japan	AY522330.1	3,559	27/1969
10. <i>Triticum aestivum</i> / common wheat	Turkey	AB042240.3	3,555	30/1963
11. <i>Zea mays</i> /maize, corn	Mexico	X86563.2	3,593	31/1928
12. <i>Arabidopsis thaliana</i> / thale cress	Europe, Asia	AP000423.1	3,752	27/1925

Table 2 Total intergenic spacer (IGS) regions in inverted repeat b (IRb) region of *Oncidium* and *Phalaenopsis* cpDNA.

Gene	Oncidium (GQ324949)		Phalaenopsis (AY916449)	
	Gene Position	Spacer (bp)	Gene Position	Spacer (bp)
<i>rps19</i>	82544- 82822	123	86240- 86518	124
<i>trnH</i>	82945- 83019	44	86642- 86715	44
<i>rpl2</i>	83063- 84548	19	86759- 88244	19
<i>rpl23</i>	84567- 84848	166	88263- 88544	166
<i>trnI^(CAU)</i>	85014- 85087	69	88710- 88783	69
<i>ycf2</i>	85156- 91821	1009	88852- 95724	958
<i>trnL^(CAA)</i>	92830- 92908	1119	96682- 96762	575
<i>ndhB</i>	94027- 96251	371	97337- 99365	333
<i>rps12</i>	99117-101007	1890	102851-104786	1935
<i>trnV^(GAC)</i>	99095- 99166	234	102858-102929	239
<i>rrn16S</i>	99400-100889	381	103168-104657	303
<i>trnI^(GAU)</i>	101270-102282	1381	104960-105975	1065
<i>trnA^(UGC)</i>	102269-103135	146	106039-106913	164
<i>rrn23</i>	103281-106087	99	107059-109865	99
<i>rrn4.5</i>	106186-106288	213	109964-110066	-
<i>rrn5</i>	106501-106621	235	-	-
<i>trnR^(ACG)</i>	106856-106929	-	110635-110708	-


ndh = NADH-plastoquinone oxidoreductase; *rpl* = ribosomal protein L; *rps* = ribosomal protein S; *rrn* = ribosomal RNA; *trn* = transfer RNA; *ycf* = conserved hypothetical protein *ycf2*

RESULTS

16SrRNA-rps12 gene cloning

Two PCR products, 1.8 and 2.5 kb, were obtained from the amplification of the *16SrRNA-rps12* cpDNA isolated from the *Dendrobium* sample. The *16SrRNA-trnV* 1.8 kb fragment, the

5'-end of the target DNA, was generated by 1529R and *trnV*144 primers and cloned into pDJT16S1004. The second amplified DNA fragment of the *trnV^(GAC)-rps12* spacers region (2.5 kb) was generated by the 1325-16S and *rps12* primers. After gene cloning, a positive clone was obtained as pDJTrps8 (Figure 1).

Figure 1 Map of overlapping *16SrRNA-trnV* (pDJT16S1004) and *trnV^(GAC)-rps12* (pDJTrps8) cpDNA fragments that were used to determine the complete sequence of *Dendrobium* *16SrRNA-rps12* cpDNA which consisted of three coding sequences of *16SrRNA*, *trnV^(GAC)* and *rps12* and two noncoding sequences of *16SrRN-trnV^(GAC)* and the *trnV^(GAC)-rps12* spacer.

The assembly of both overlapping sequences in pDJT16S1004 and pDJTrps8 was 3,782 bp in length, consisting of 1,427 bp partial *16SrRNA*, 229 bp *16SrRNA-trnV^(GAC)* spacer and 72 bp *trnV^(GAC)*, 1,955 bp *trnV^(GAC)-rps12* spacer and 99 bp partial *rps12* of the inverted repeat region (IR) chloroplast genome (Figure 2). Nevertheless, the IR regions of these orchids contained the longest IGS DNA fragment, *trnV^(GAC)-rps12* spacer, with a range of 1890 - 1,955 bp in length (Table 2). The total 3,782 bp *16SrRNA-trnV^(GAC)-rps12* cpDNA isolated from the *Dendrobium* sample was deposited in the GenBank database under the accession number HQ540308.

Sequence comparison of the *16SrRNA-rps12* IR region of cpDNAs among three orchid genera

Comparing the nucleotide sequences of the *Dendrobium* *16SrRNA-rps12* IR region with those of published complete cpDNA of *Phalaenopsis* and *Oncidium* samples revealed 97% nucleotide identity (without gap) homologous to the nucleotide in the *16SrRNA-rps12* IR region of the *Oncidium* and *Phalaenopsis* cpDNAs. The nucleotide alignment of the *Dendrobium*, *Oncidium* and *Phalaenopsis* *16SrRNA-rps12* cpDNAs showed clearly that both the 5'-end 1,427 bp *16SrRNA* and the 3'-end 99 bp *rps12* of the *16SrRNA-rps12* were highly conserved sequences and identical. On the other hand, the most variable regions, with 90–96% similarity to the *Oncidium* and *Phalaenopsis* cpDNAs, were located in a 1,955 bp *trnV^(GAC)-rps12* spacer between the 1729 and 3683 nucleotide position of the *Dendrobium* cpDNA (Table 3). Five large gaps of 19–81 bp deletion (81, 41, 20, 19 and 42 bp) were disclosed in this spacer among the three orchid cpDNAs and a gap as small as 4–5 bp was placed in the *16SrRNA-trnV^(GAC)* spacer (1428 to 1656 nucleotide position) as shown in Figure 3.

Phylogenetic analysis

The genetic relationships between the

nucleotide sequence of *Dendrobium 16SrRNA-rps12* and the other eleven *16SrRNA-rps12* cpDNAs available in the GenBank database are listed in Table 1 and indicated that, beside the orchids, the *Dendrobium* sequence had 95, 94 and 94% nucleotides identical to those of *Phoenix dactylifera* (true date palm) and *Liriodendron tulipifera* and *Drimys granadensis*, (ornamental shrubs), respectively (Figure 4). The monocotyledonous grass plants, *Oryza japonica*, *Triticum aestivum* and *Zea mays*, and the dicotyledonous plants, consisting of *Nicotiana tabacum*, *Ranunculus macranthus* and *Arabidopsis thaliana*, had less sequences identical, with 91.5% on average. The topology of the phylogenetic tree was well supported, with three main group divisions. The members of each group were the five dicotyledonous plants, except for the date palm, three orchids and the three grasses with the exclusions having bootstrap values of 91, 100 and 100%, respectively (Figure 4). However, the bootstrap value of the subclade constructed between *Dendrobium-Phalaenopsis* and *Triticum-Oryza* was slightly lower at 49% when phylogenetic analyses in the gap sites were excluded and 1,000 repeat cycles for bootstrapping analyses were performed.

Based on an overall observation of the alignments of the total twelve *16SrRNA-rps12* cpDNAs, the pattern of nucleotide-conserved regions performed in Figure 3 was the same for all three orchids. Only sequences in the 1,955 bp *trnV^(GAC)-rps12* spacer were highly divergent, with several gaps (Table 3 and Figure 3). The most variable region was located exactly in the same region as the 1,955 bp *trnV^(GAC)-rps12* spacers between the 1729 to 3683 nucleotide position of the *Dendrobium* cpDNA, but differed in size and had larger numbers. Apart from the grass group, the two *trnV^(GAC)-rps12* spacers of *N. tabacum* and *D. granadensis* presented the largest gap (greater than 200 bp) at different positions. The cluster patterns constructed using the two spacer nucleotide sequences were slightly different in

1 tagccctgcc ttccggcatcc ccctccttgc ggttaaggta acgacttcgg gcatggccag
 61 ctccccatagt gtgacggggcg gtgtgtacaa ggccgggaa cgaattcacc gccgtatggc
 121 tgaccggcga ttactagcga ttccggcttc atgcaggcga gttgcagcct gcaatccgaa
 181 ctgaggacgg gttttggagt tagctcaccc tcgcgggatc gecaccctt gtcgggcca
 241 ttgttagcacg tgggtcgccc agggcataag gggcatgatg acttgacgatc atcctcacct
 301 tcctccggct tatcaccggc agtctgtca ggggtccaaa ctaatggtg gcaactaaac
 361 acgagggtg cgctcggtc gggacttaac ccaacaccc acggcacgag ctgacgacag
 421 ccatgacca cctgtgtccg cggtccggaa ggacccctc ttttcaaga ggattcacgg
 481 catgtcaagc cctggtaagg ttcttcgctt tgcatcgaat taaaccacat gctccaccgc
 541 ttgtgcgggc ccccgtaat tccttgagt ttcatctt cgaacgtact ccccaaggcgg
 601 gatacttaac gctttagcta cagactgca cgggtcgata cgacacagc ctagtatcca
 661 tcgtttaggg cttaggactac tgggttatct aatccatctt gctcccttag ctggctctc 1..1427
 721 tcagtgtcaag tgcggccca gcagagtgtt ttcgggtt gtttcttc cgatctctac <*16SrRNA*>
 781 gcatttcacc gtcacccgg aaattccctc tgccctacc gtactccagc ttggtagttt
 841 ccacccgcgtc tccagggttg agccctggga tttgacggcg gacttgaaaa gcccacccata
 901 gacgcttac gcccaatcat tccggataac gcttgcattc tctgtcttac cgccggctgt
 961 ggcacagagt tagccgatgc ttattcctca gataccgtca ttgcttcttcc tccgagaaaa
 1021 gaagttcacg acccggtggc ttcttaccc tccggccat tgcgtcgta ggcttcgccc
 1081 cattggggaa aattcccccac tgcgtccctcc cgttaggagtc tggccgtgt ctcagtc
 1141 gtgtggctga tcatcttcc ggaccagacta ctgatcatcg ctttggtaag tattggcc
 1201 accaacttagc taatcagacg cgacccctc ctggggcgga ttcccttcc tgccttc
 1261 cctacgggtt attagcaacc gtttcagtt gtttccccc tcccaagggc aggttcttac
 1321 gcgttactca cccgtccgccc actggaaaca ccacttcccg tccgacttgc atgtgttaag
 1381 catgcccaca gcttcatcc tgagccagga tcgaaactctc catgagatcc atagttgcatt
 1441 tacttatagc ttcccttgc tgcataaaag ctgattcgat attgtcttc attccaaaggc 1428..1656
 1501 cgaaggcttgc tatccatgcg ctccatatta gcctggagtt cgcccccagc aatataggca <*16SrRNA-trnV*>
 1561 tcccttccat atcacgtcaa tcccaacaagc ctcttaccca ttctcgatc atccggccgg
 1621 gggagcaatg ccaaataaaaaaa aactcccat tgggtttagg gataatcagg ctcgaactga 1657..1728
 1681 tgacttccac cacgtcaagg tgacactcta ccgtcgatgtt atatcccttc ccggtcccat <*trnV^{GAC}*>
 1741 cgagaaatag aactaactaa tcctaaggca aagggtcgag aaactaaacg ccactattcc
 1801 tgaacaactt ggagccgggc ctctttcg cactattatg ttatggatag tcaaataatg
 1861 ggaaaaatgg gattccatttgc tcaactgctc ctatcgaaa taggattgac tacggattcg
 1921 agccatagca catggattcc taaaatccgt tttcccgatc taaatcgaaac agttttaca
 1981 tgaagaagat tttttcagc atgctctatt cgaggctgtt aggagaagaa ccgactcggt
 2041 attgtaaaaaaa aaaaagatgtt gaaacggaaac caagtcaga tgatataat cacccttct
 2101 tcttcgcaca agatcttac taccatttcc gaaggaactg gagctacttt tctttccat
 2161 ttccatttca gagttccat gtgtttccac gccccttct taggaacaca tacaataaaaa
 2221 aaggataacg gtaacccccc cattaactac ttaatttca ttatgtttaat gaatagtaat
 2281 agaaatacat gtcctactga gacagagaca gaatttgtaa ctgtctatcc tcttcgcttag
 2341 caggcaaga tggacccccc tggagagact gattcattcg gatcgacatg agggtccaaac
 2401 tccatttgc tgcacatccatc catgtgtat atttgcacca gttgacccctt tgccttct
 2461 catggtacaa cccttccccc gcggggcccc tttttccctc ggtccacaga gacaaaatata
 2521 aggactgggtt ccaacagttc atcacggaaag aaaggactcg ccggccggg atcgctact 1729..3683
 2581 aataactaaaaaa ctaagactat aagactaata taactaatct aatttagaaat aattctaata <*trnV-rns12*>
 2641 attagataat tagaataatct aagaatttgc atataataat aatagaataa tacataatag
 2701 aaaagatata atagaaaaaaa actgtctttt ctgtataactt tcccccgggtt cgttgctacc
 2761 ggcgccttac gcaatcgatc ggtatcatata gattcaaca caacataggat catcgaaagg
 2821 atctcgacg actcacccaa gcacggaaacg caggatctt cagaaaatgg attccatattt <*Spacer*>

2881 gaagagtgc taaccgcatt gataagctca cactaaccgg tccattttgg atccaaattcg
 2941 ggattttcct taggaagtat cgggaaggaa ttggaatgtt agaatatcgat ttccatcaga
 3001 agaaaagggtt ctcttattgtt tcaaacgcata tacctatggg atagaggagg agaaaaaccc
 3061 gaagatttca catagttactt ttgatcaaaa aagaaatctg atttcttcg tacccttcgc
 3121 tcgatgagaa aatgggttcg attctacagg atcaacaac ctatggact tcaggaatgt
 3181 tggaggaa tggaaataaa atcgaaatgtt aagaaaaatc caaaagaaag aagaaaacaa
 3241 aaaaaaaaaaag aagtaaatctt aaaaagaaat agaaaaagaa agtagaaatg agaagagccc
 3301 agattccaga tgaacaaattt caaactcgaa aaggatattt ctggttctcg aagaatgagg
 3361 ggcaaggaa ttgatcgaga gaagatctt ttttcttctt ataaatttagaa gatcgttatt
 3421 tgctccgcattt aggtttggta aaaaagaaat ttttcttctt tgatcataaa tggaaatgtt
 3481 tcaattggaa catgaaaacg tgaatgtt aatgttggatggtt acttttcggg acggaggatgt
 3541 agaaggagg agattctcgaa acgaaagaaaa ggttccaaattt acttcgaaag aattgttac
 3601 ggagccgtat gaggtgaaaa ttcgttgc ggttctgtt agtgcacgtt aggggttactt
3661 atctgtcaac ttttccacta tcaccccaa aaaaaccaac tctgccttac gtaaaggatgtc 3684..3782
3721 cagagtacga ttaacctctg gatttgcattt cactgcttac atacctggta ttggccataaa <rps12>
 3781 tt

Figure 2 Nucleotide sequence of the 3,782 bp *16SrRNA-rps12* inverted repeat region of *Dendrobium* chloroplast DNA. This IR region encoded a partial *16S rRNA* (1..1490) at the 5'-end, complete *trnV^{GAC}* (1657..1728) and a partial *rps12* (3684..3782) at the 3'-end. There are two spacers, *16SrRNA-trnV* spacer (1428..1656) and *trnV-rps12* spacer (1729..3683) that were located in between each gene. All genes are indicated as bold letters.

Table 3 Percent similarity of genes and intergenic spacer (IGS) in *16S-rps12* cpDNA regions resulting from *Dendrobium*, *Oncidium* and *Phalaenopsis* cpDNA comparison.

Pair-wise	Gene and IGS/size (bp)					
	<i>16S-rps12</i> (3782)	<i>16S*</i> (1427)	<i>16S-IGS</i> (195)	<i>trnV</i> (106)	<i>trnV-IGS</i> (1955)	<i>rps12*</i> (99)
<i>Dendrobium/Oncidium</i>	97	99	97	100	92	100
<i>Dendrobium/Phalaenopsis</i>	97	99	98	100	90	100
<i>Oncidium/Phalaenopsis</i>	95	99	98	100	96	100

*= Partial gene sequence.

topology (Figure 4). The phylogenetic tree based on the 1,955 bp *trnV^(GAC)-rps12* spacers defined the genetic relationship between members of each cluster better than the phylogenetic tree created by the 229 bp *16SrRNA-trnV^(GAC)* spacer sequences and was supported well by the whole length of the 3,782 bp *16SrRNA-rps12* tree with better confidence values for the bootstrap values of over 70%.

DISCUSSION

In the present study, the sequence conservation and diversity in the IR region at the *16SrRNA-rps12* position were investigated by comparing the nucleotide sequences of the cloned *16SrRNA-rps12* *Dendrobium* cpDNA with the same cpDNA region of *Phalaenopsis*, *Oncidium* and nine other closely related sequences extracted from the GenBank database. The *16SrRNA-rps12* cpDNA isolated from the *Dendrobium* sample was

(A)

16SrRNA-trnV^(GAC) Spacer* (229 bp)*Small gap (4-5 bp)**

<i>Dendrobium</i>	CGAAGGCTTGATCCAT---	GCCTTCATATTAGCCTGGAGATTCGCTCCCAGCAATATA	1556
<i>Phalaenopsis</i>	CGAAGGCTTGATCCATCCATGCGCTTCATATTAGCCTGGAGATTCGCTCCCAGCAATATA		1560
<i>Oncidium</i>	CGAAGGCTTGATCCATCCATGCGCTTTATATTAGCCTGGAGATTCGCTCCCAGCAATATA		1560
	*****	*****	*****

<i>Dendrobium</i>	GCCATCCCTACCCATCACGTCAATCCCACAAGCCTTCTTCTGCACTATTATGTTATGGATAGT	1611	
<i>Phalaenopsis</i>	GCCATCCCTACCCATCACGTCAATCCCACAAGCCTTCTTCTGCACTATTATGTTATGGATAGT		1620
<i>Oncidium</i>	GCCATCCCTACCCATCACGTCAATCCCACAAGCCTTCTTCTGCACTATTATGTTATGGATAGT		1615
	*****	*****	*****

(B)

trnV^(GAC)-rps12 Spacer* (1,955 bp)*Gap 1 (81 bp)**

<i>Dendrobium</i>	CACTATTCTGAAACAACCTGGAGGCCCTCTTCGCACTATTATGTTATGGATAGT	1851	
<i>Phalaenopsis</i>	CACTATTCTGAAACAACCTGGAGGCCCTCTTCGCACTATTATGTTATGGATAGT		1860
<i>Oncidium</i>	CACTATT-----		1802

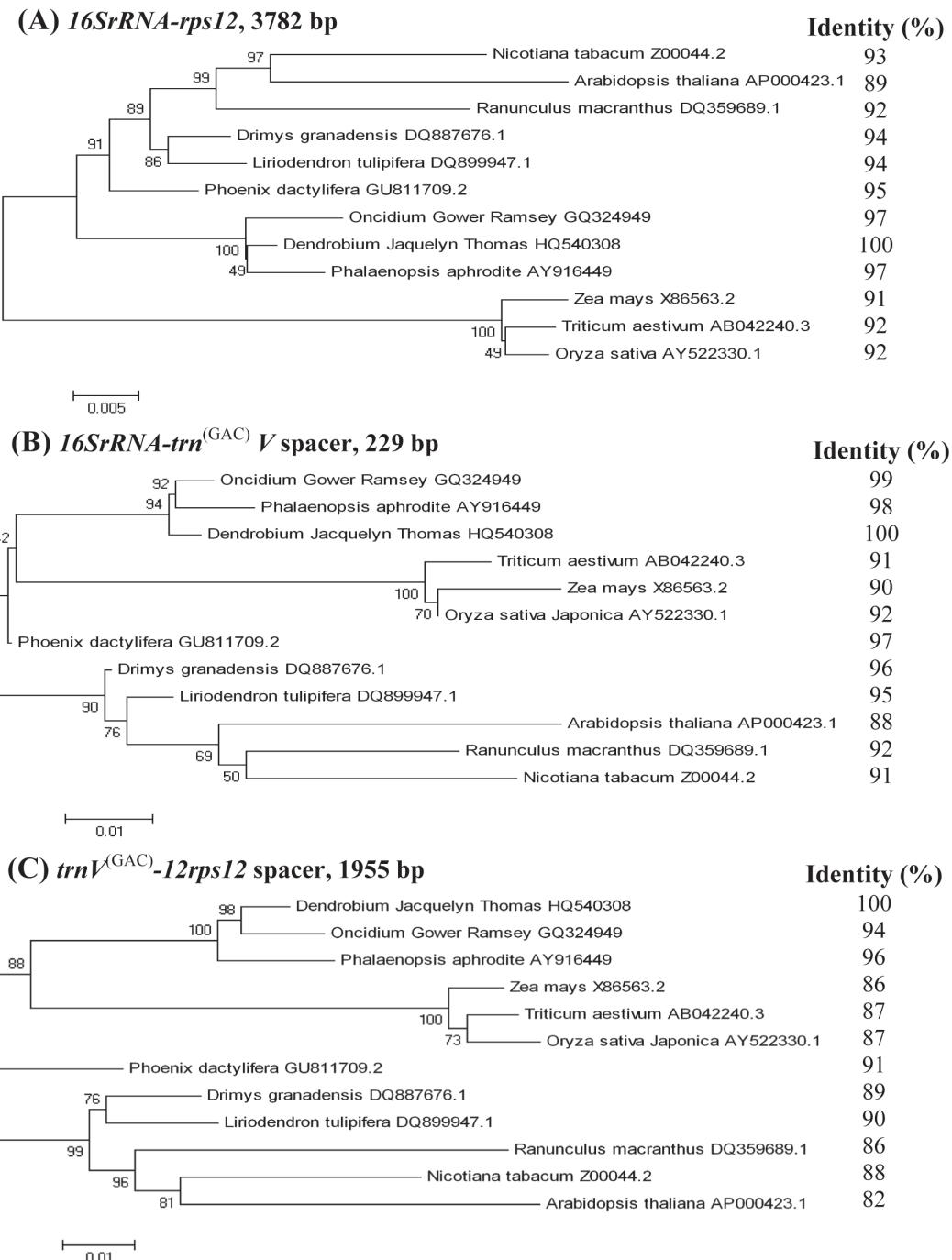
<i>Dendrobium</i>	CAAATAATGGAAAAATTGGATTCATTGTCAACTGCTCTATCGGAAATAGGATTGACT	1911	
<i>Phalaenopsis</i>	CAAATAATGGAAAAATTGGATTCATTGTCAACTGCTCTATCGGAAATAGGATTGACT		1920
<i>Oncidium</i>	-----GTCAACTGCTCTATCGGAAACAGGATTGACT		1834
	*****	*****	*****

Gap 2 (41 bp)

<i>Dendrobium</i>	GGAACACATACAATAAAA-----	AAGGATAACGGTAACCCC	2238
<i>Phalaenopsis</i>	G-----	AAGGATAACG-----CCC	2225
<i>Oncidium</i>	GGAACACATACAATAAAAATCTTAGAACACATACAATAAAAAGGATAACG-----CCC		2189
	*	*****	***

Gap 3 (20 bp)

<i>Dendrobium</i>	ACTAAGACTATAAGACTAATATAACTAATCTAATTAGAATAATTCTAATAATTAGATAA	2649	
<i>Phalaenopsis</i>	ACTAAGACTATAAGACTAATATAACTAATCTAATTAGAATT-----		2613
<i>Oncidium</i>	ACTAAGACTATAAGACTAATAGAACTAATCTAATTAGAATAATTCTGAATAAT-----		2593
	*****	*****	*


Gap 4 (19 bp)

<i>Dendrobium</i>	TAATAGAAAAGAACTGTCTTTCTGTATACTTCCCCGGTCCGGTACCGCG-CCCT	2767	
<i>Phalaenopsis</i>	GAATAGAAAAGAACTGTCTTTCTGT-----		2694
<i>Oncidium</i>	TAATAGAAAAGAACTGTCTTTCTT-----CCCCGGTCCGGTACCGCGGCCCT		2696
	*****	*****	***

Gap 5 (42 bp)

<i>Dendrobium</i>	AAAAAAAAA--AGAAGTAAATCTAAAAGAAATAGAAAAGAAAAGTAGAAGATAGAAGAG	3297	
<i>Phalaenopsis</i>	-----AAAAGTAGAAGATAGAAGAG		3188
<i>Oncidium</i>	AAAAAGAAAGAAGTAATCTAAAATAATCTAAAAAAAGTAGAAGATAGAAGAG		3236
	*****	*****	

Figure 3 Nucleotide alignments of the most variable regions located in the *16SrRNA-rps12* IR cpDNAs of the three orchids, *Dendrobium* Jacqueline 'UH44-50' (HQ540308), *Phalaenopsis* *aphrodite* subsp. *formosana* (AY916449) and *Oncidium* Gower Ramsey (GQ324949). (A) 229 bp *16SrRNA-trnV^(GAC)* spacer; and (B) 1,955 bp *trnV^(GAC)-rps12* spacer. * = identical nucleotides represented and - = absence of nucleotide (gap).

Figure 4 Neighbor-joining phylogenetic analysis based on the nucleotide variation of the *16SrRNA-rps12* IR region in the chloroplast genome of *Dendrobium* compared with the eleven reported complete cp genomes in GenBank: (A) 3,782 bp *16SrRNA-trnV* phylogenetic relationship; (B) 229 bp *16SrRNA-trnV^(GAC)* spacer phylogenetic tree; and (C) 1,955bp *trnV^(GAC)-rps12* spacer phylogenetic tree. The clustering was performed with 1,000 replicates for bootstrapping analysis using the MEGA4 computer software, excluding gap scoring.

found to be the longest fragment (3,782 bp). It had almost the same length as that of the *Arabidopsis* cpDNA fragment, while the lengths of the *Phalaenopsis* and *Oncidium* cpDNAs were 3,672 and 3,722 bp, respectively. In contrast, the cpDNAs of tobacco and the three grasses (rice, maize and wheat) were much shorter than that of the *Dendrobium* sample (Table 1). This result was supported by Chang *et al.* (2006) who reported that the IR sequences of the grasses are much shorter than those of *Phalaenopsis* sp. and tobacco.

The cloned *16SrRNA-rpn12* *Dendrobium* cpDNA covered three conserved coding sequences of partial *16SrRNA* (5'-flanking region), *trnV^(GAC)* and partial *rps12* (3'-flanking region), and two variable noncoding sequences of *16SrRNA-trnV^(GAC)* and the *trnV^(GAC)-rpn12* spacer. The overall *Dendrobium*, *Oncidium* and *Phalaenopsis* features in gene organization, position and orientation had the same pattern along the *16SrRNA-rpn12* regions. By comparing total intergenic spacers in the IR region with raw sequences between *Oncidium* and *Phalaenopsis* cpDNA, the *trnV^(GAC)-rpn12* spacer was found to be the longest. The difference in size between these cpDNA regions occurred mainly in the 1,955 *trnV^(GAC)-rpn12* *Dendrobium* spacer that correlated with a number of nucleotide insertions and deletions in this spacer.

Several large gaps in this spacer were concurrent with the nucleotide variation in the spacers of all *trnV^(GAC)-rpn12* cpDNAs from the twelve plant genera used in the present study (Table 3). *Dendrobium* (Subfamily Epidendroideae / Tribe Epidendreae / Subtribe Dendrobiinae) had a growth habit similar to that of *Oncidium* (Epidendroideae / Cymbidieae / Oncidiinae) to a greater extent than to *Phalaenopsis* (Epidendroideae / Vandae / Aeridinae). The sequence of *Dendrobium 16S-rps12* (either the full-length or the *trnV^(GAC)-rps12* fragment) was more closely related to *Oncidium* than to *Phalaenopsis*. This may have been due to the fact that both of the

genera *Dendrobium* and *Oncidium* are of sympodial growth while the genus *Phalaenopsis* has monopodial growth. The reed-stem habit is thought to be ancestral within the epidendroids (Dressler, 1993).

Comparing the phylogenetic tree structures generated by full-length sequences (3,782 bp), the *16SrRNA-trnV^(GAC)* spacer (299 bp) and the *trnV^(GAC)-rpn12* spacer (1,955 bp) of the twelve cpDNAs, the tree could be best classified into three main clusters (orchids, grasses and eudicots), related to their genetic relationships by the NJ method (Figure 4). The highly conserved sequences at the 5'end (*16SrRNA* region) and the 3'end (*rps12* region) of the flanking region among the three orchid genera (*Dendrobium*, *Oncidium* and *Phalaenopsis*) and the other nine representatives of monocotyledonous and dicotyledonous cpDNA were evidently established at both ends of all fragments. Therefore, the use of the *16SrRNA-rps12* fragment of *Dendrobium* cpDNA as the homologous sequences for the plastid vector cassette showed great potential for orchid plastid transformation. Many reports have shown that the tobacco-specific plastid vector could be achieved for potato (Sikdar *et al.*, 1998) and tomato (Ruf *et al.*, 2001); therefore it is not necessary to construct a specific plastid transformation vector (Maliga, 2002).

In addition, the 1,955 *trnV^(GAC)-rpn12* spacer phylogenetic tree topology presented the best clusters. Each cluster of the *trnV^(GAC)-rpn12* spacer phylogenetic tree was stable with high bootstrapping values (greater than 70%) and were simply distinguished by the percentage of nucleotide identity. Moreover, the Orchidaceous members (*Dendrobium*, *Oncidium* and *Phalaenopsis*) and the Gramineae or Poaceae grasses (rice, maize and corn) were split into more closely related clusters within the monocotyledonous plants (including the true date palm, *Phoenix dactylifera*) and some trees (the tulip poplar and *Tasmannia aromatica*), rather than

with herbaceous plants, such as tobacco and *Arabidopsis* sp. (Figure 4C). The present study supported the *Amborella*-*Nymphaea* / *Amborella*-basal hypotheses proposed by Goremykin *et al.* (2003) and Soltis and Soltis (2004) that the *Amborella* dicotyledonous plant is not a sister to the remaining flowering plants, and the *Oncidium* monocotyledonous plant could occupy the *Amborella* position in the phylogenetic tree. The root of angiosperm phylogeny was at the basal monocot-dicot split and that the grasses (Poaceae) were the deepest branch in the phylogeny of the angiosperms (Goremykin *et al.*, 2003). However, the gene and intron content are highly conserved among the early diverging angiosperms and basal eudicots, and lineage-specific correlation was detected between rates of nucleotide substitutions and genomic rearrangements (Jansen *et al.*, 2007).

In the present report, the conserved genetic variation based on base deletion and insertion was demonstrated to be found commonly in the *trnV*^(GAC)-*rps12* spacer of both monocotyledonous and dicotyledonous plants. The appropriately designed nucleotide sequence as a barcode (300–800 bp) in this spacer could be a high potential chloroplast marker if it is easy to perform and can resolve higher-level relationships with high levels of confidence at the intra- and inter-specific level. Several noncoding cpDNA fragments have been established for phylogenetic analysis and genetic identification as plant DNA barcoding, such as the transfer RNA *Leucine* (*trnL*) intron and the transfer RNA *Leucine-Phenylalanine* (*trnL-F*) spacer (Taberlet *et al.*, 1991), and the transfer RNA *Lysine* (*trnK*) introns (Johnson and Soltis, 1994; van den Berg *et al.*, 2009). However, the molecular genetic classifications in some groups of orchids are still limited and uncertain. Further studies are required to determine the genetic relationships in various plant species if the gaps are to be included for multiple alignment and bootstrapping analyses.

CONCLUSION

The highly conserved region at both ends of cloned *16S rRNA*-*rps12* *Dendrobium* orchid cpDNA will be advantageous as a source of informative data for orchid plastid vector construction. Meanwhile, the orchid cpDNA spacer between *trnV*^(GAC) and *rps12*, containing the most variation in nucleotide sequencing, has great potential as an excellent effective cpDNA marker for complex orchid classification.

ACKNOWLEDGEMENTS

This study was supported by the Golden Jubilee Program, Thai Research Fund (TRF) contract no. BGJ458009, Chulabhorn Research Institute (CRI) and the Center for Advanced Studies in Tropical Natural Resources, Kasetsart University, Thailand.

LITERATURE CITED

- Bendich A.J. 1987. Why do chloroplasts and mitochondria contain so many copies of their genome? **BioEssays** 6: 279–282.
- Bock, R. 2001. Transgenic plastids in basic research and plant biotechnology. **J. Mol. Biol.** 312: 425–438.
- Bogorad, L. 2000. Engineering chloroplasts: An alternative site for foreign genes, proteins, reactions and products. **Trends Biotechnol.** 18: 257–263.
- Boonkorkaew, P. 2010. **List of Biodiversity Resource: Thai Orchid Database.** Biodiversity Resource Inventory Development Project, Biodiversity-based Economics Development Office (Public Organization), Bangkok.
- Chang, C., I. Pin, T. Chow, H. Chen, W. Chen, C. Cheng, C. Lin, S. Liu, C. Chang and S. Chaw. 2006. The chloroplast genome of *Phalaenopsis aphrodites* (Orchidaceae): Comparative

- analysis of evolutionary rate with that of grasses and its phylogenetic implications. **Mol. Biol. Evol.** 23: 279–291.
- Dressler, R.L. 1993. **Phylogeny and Classification of the Orchid Family.** Cambridge University Press. Port Melbourne, Australia. 314 pp.
- Jansen, R.K., Z. Cai, L.A. Raubeson, H. Daniell, C.W. dePamphilis, J. Leebens-Mack, K.F. Müller, M. Guisinger-Bellian, R.C. Haberle, A.K. Hansen, T.W. Chumley, S. Lee, R. Peery, J.R. McNeal, J.V. Kuehl and J.L. Boore. 2007. Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. **Proc. Natl. Acad. Sci. USA** 104: 19369–19374.
- Johnson, L.A. and D.E. Soltis. 1994. *matK* DNA sequences and phylogenetic reconstruction in *Saxifragaceae sensu stricto*. **Syst. Bot.** 19: 143–156.
- Goremykin, V.V., K.I. Hirsch-Ernst, S. Wölfel and F.H. Hellwig. 2003. Analysis of the *Amborella trichopoda* chloroplast genome sequence suggests that *Amborella* is not a basal angiosperm. **Mol. Biol. Evol.** 20: 1499–1505.
- Guda, C., S.B. Lee and H. Daniell. 2000. Stable expression of a biodegradable protein-based polymer in tobacco chloroplasts. **Plant Cell Rep.** 19: 257–262.
- Maliga, P. 2002. Engineering the plastid genome of higher plants. **Curr. Opin. Plant Biol.** 5: 164–172.
- Murray, M.G. and W.F. Thompson. 1980. Rapid isolation of high molecular weight plant DNA. **Nucleic Acids Res.** 8: 4321–4326.
- Ruf, S., M. Hermann, I.J. Berger, H. Carrer and R. Bock. 2001. Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. **Nat. Biotechnol.** 19: 870–875.
- Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. **Mol. Biol. Evol.** 4: 406–425.
- Sikdar, S.R., G. Serino, S. Chaudhuri and P. Maliga. 1998. Plastid transformation in *Arabidopsis thaliana*. **Plant Cell Repr.** 18: 20–24.
- Soltis, D.E. and P.S. Soltis. 2004. *Amborella* not a “basal angiosperm”? Not so fast. **AM. J. Bot.** 91: 997–1001.
- Stephen, F.A., T.L. Madden, A.A. Schäffer, J. Zhang, Z. Zhang, W. Miller and D.J. Lipman. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. **Nucleic Acids Res.** 25: 3389–3402.
- Svab Z., P. Hajdukiewicz and P. Maliga. 1990. Stable transformation of plastid in higher plants. **Proc. Natl. Acad. Sci. USA** 90: 913–917.
- Taberlet, P., L. Gielly, G. Patou and J. Bouvet. 1991. Universal primers for amplification of three noncoding regions of chloroplast DNA. **Pl. Mol. Biol.** 17: 1105–1109.
- Tamura, K., J. Dudley, M. Nei and S. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. **Mol. Biol. Evol.** 24: 1596–1599.
- Thompson, J.D., D.G. Higgins and T.J. Gibson. 1994. CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. **Nucleic Acids Res.** 22: 4673–4680.
- van den Berg, C., W.E. Higgins, R.L. Dressler, W.M. Whitten, M.A. Soto-Arenas and M.W. Chase. 2009. A phylogenetic study of Laeliinae (Orchidaceae) based on combined nuclear and plastid DNA sequences. **Ann. Bot.** 104: 417–430.
- Wu, F.H., M.T. Chan, D.C. Liao, C.T. Hsu, Y.W. Lee, H. Daniell, M.R. Duvall and C.S. Lin. 2010. Complete chloroplast genome of *Oncidium Gower Ramsey* and evaluation of molecular markers for identification and breeding in Oncidiinae. **BMC Plant Biol.** 10: 68 (doi: 10.1186/1471-2229-10-68).
- Zoubenko, O.V., L.A. Allison, Z. Svab and P. Maliga. 1994. Efficient targeting of foreign genes into the tobacco plastid genome. **Nucleic Acids Res.** 22: 3819–3824.