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Estimation of the Correlation Coefficient for a Bivariate Normal

Distribution with Missing Data

Juthaphorn Sinsomboonthong*

ABSTRACT

This study proposes an estimator of the correlation coefficient for a bivariate normal distribution

with missing data, via the complete observation analysis method. Evaluation of the proposed estimator

(p y) in comparison with the Pearson correlation coefficient (f)P) was conducted using a simulation

study. It was found that, for a higher percentage of missing data in a large sample size, the absolute bias

of Py was less than that of Op when the population correlation coefficients (p) were not close to zero. In

addition, the mean square error of 0; was not different from that of Pp in each situation.
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INTRODUCTION

Missing data, which are almost always
found in research studies and caused by many
possible reasons, usually introduce bias and
inefficiency in parameter estimation (Little and
Rubin, 2002; Norazian et al., 2008). Hence, well-
designed data analysis is especially necessary.
Principally, although incomplete data may possibly
be analyzed using standard statistical methods
through which missing data are ignored, an
important limitation is that the methods are
specifically appropriate for studies which contain
small amounts of missing data. Moreover, standard
statistical approaches can also cause deficiencies
of data when incomplete cases are discarded. Data
deficiency always causes imprecision and also an
escalation in biases (Rao et al., 1999; Little and
Rubin, 2002). Acock (2005) mentioned that this
may further reduce or exaggerate statistical power.
Likewise, Rotnitzky and Wypij (1994), Roth et al.

(1996), Gorelick (2006) and Fitzmaurice (2008)
mentioned that these may possibly result in invalid
conclusions, since the degree of bias and the loss
of precision depend not only on the fraction of
complete cases and the pattern of missing data,
but also on differences between the complete and
incomplete cases, and the parameters of interest.

Recently, several authors have
investigated problems regarding the estimation of
the population correlation coefficient, p, for
samples from a bivariate normal distribution. The
maximum likelihood estimator of p for a bivariate
normal distribution was proposed by Dahiya and
Korwar (1980) for equal variances and an
incomplete dataset. Garren (1998) examined the
problem of maximum likelihood estimation for the
correlation coefficient and its asymptotic
properties in a bivariate normal model with
missing data. Mudelsee (2003) studied the Pearson
correlation coefficient with bootstrap confidence

intervals from a bivariate climate time series and
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unknown data distributions. In addition, the
performances of Pearson correlation coefficient
and Spearman correlation coefficient have been
further investigated by Huson ez al. (2007). They
found that the Pearson correlation coefficient is
in fact, for most practical purposes, an adequate
choice for the correlation coefficient investigation.
Moreover, the Pearson estimate was better than
the much more widely known Spearman estimate.
However, Neter et al. (1996) and Zimmerman et
al. (2003) mentioned that the Pearson correlation
coefficient was a biased estimator of the population
correlation coefficient for bivariate normal
populations. In addition, the bias decreased when
the sample size increased and it was zero when
the population correlation coefficients were zero
and one. Furthermore, Efron and Tibshirani (1993)
and Smith and Pontius (2006) have applied
Jackknife’s method (Quenouille, 1949, 1956;
Tukey, 1958) of bias reduction to the estimation
of parameters. The basic idea behind Jackknife’s
method lies in systematically recomputing
statistics by using samples that leave out one
observation at a time from the sample set. From
this new set of observations, an estimator can be
calculated.

Generally, in the current study,
incomplete data with bivariate normal distribution
were examined. The estimator of population
correlation coefficient was modified from Pearson
correlation coefficient, and Jackknife’s method
was applied for bias reduction.
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MATERIALS AND METHODS

The Pearson correlation coefficient
Consider the incomplete bivariate sample
from a bivariate normal distribution with mean
vector (U, W), a variance covariance matrix
PO10,

o

1

= » | and correlation coefficient
po102 Oz

Assume that r pairs of (X, X,) are
completely observed with bivariate normal
distribution, but the rest n — r observations of X,
are lost and there are only n — r observations (0 <
r<n) of X; collected (see Figure 1). All data pairs
are independent and identically distributed and
data are assumed to be missing completely at
random (Little and Rubin, 2002). In other words,
whether or not data are missing is independent of
both the observed and the unobserved values of
X and X,.

Based on the r data pairs, it is well-known
that the maximum likelihood estimator of p,
denoted by pp, is given by
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X| = —YXjand X; = — ¥ Xy,
I'j=1 I'j=1

(Neter et al., 1996; Anderson, 2003). This
estimator is often called the Pearson correlation
coefficient. It is a biased estimator of p (unless

Observations: 1 2
Variable 1: X1 X1
Variable 2: Xy1 X2

r r+1 eee N
Xy X1+l X1n
Xor

Figure 1 Monotone missing data pattern for a bivariate normal distribution.
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p =0 or 1), which is usually small when sample
size is large (Neter et al., 1996; Zimmerman et
al., 2003).

The Jackknife’s method of bias reduction

This section proposes the estimator of p
and applies the Jackknife’s method for bias
reduction of pp as follows:

1) Given a sample
X= (Xll’ X125 eee s X1 5 X215 X225 wen s X2r)
and an estimator

i(xlj‘i{)(xzj_iﬁ)
3(X) = Pp = \/ = (1)
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where X = ;Exlj and X, = ;Exzj,

= =l

2) The i Jackknife sample, X_;), consists of the
data set with the i observation removed.

Xy = X1 X125 e s Xpgic1) »
Xi(i1) » -+ » Xr »
X215 X225 e 5 X2(i])
X2(i41) » +++ Xor )

fori=1,2,...,1.

3) (X is the i Jackknife
replication of 8(X) and
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X iy = —— Y Xh:
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fori=1,2,...,1.

4) Calculate the pseudo values in the form of J;

where J; = rd(X) - (- DX ;)

= TFA)P -(r-1 f)P(—i)'
5) The proposed estimator of p is given by p;

where p; = léJi
rici
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= IPp — Epp(,i)

=
pp and Pp () are given by the format of equation
(1) and (2) respectively.

RESULTS

In order to empirically evaluate the
validity and reliability of the proposed estimator,
a simulation study was conducted. In the study,
populations of (X, X,) at a size of N = 100,000
were generated in the form of a bivariate normal
distribution with u; =2, u, =3, 012 =4 and 0% =
9. Correlation coefficients of (X;, X,) at -0.9,
-0.8,...,0,0.1,0.2, ..., 0.9 with the sample sizes
of n =20, 30 and 60 were conducted using a simple
random sampling with replacement method with
2,000-times repetitions, and missing data were set
at 10, 20 and 30 percentage of the total cases, thus
creating 171 situations for the simulation study.
Then, absolute bias and mean square error (MSE)
comparisons of p; and Pp were empirically
performed.

The simulation results presented in
Figure 2 reveal the absolute biases of p; and Pp.
When the sample size and percentage of the
missing data were 20 and 10%, respectively, the
absolute bias of p; was less than that of pp for
the population correlation coefficients (p) which
fell between 0.1 and 0.2. For 20% missing data
and the sample size of 20, the absolute bias of
was less than that of pp when population
correlation coefficients were not about zero.



n =20, 10% Missing data
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n =20, 20% Missing data
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n=20, 30% Missing data
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Figure 2 Comparison of absolute biases for p; and pp when n = 20, 30 and 60.

Likewise, the absolute bias of p; was less than
that of Pp for population correlation coefficients
which were not between -0.5 and -0.1 when the
percentage of missing data was 30% and the
sample size was 20. In addition, the absolute bias
of P; was less than that of pp when the sample
size was greater than 20 and the percentage of
missing data was greater than 10% for population
correlation coefficients which were not close to
zero. Moreover, the absolute biases of p; and pp
were less than 0.004 and 0.014, respectively, for
sample sizes of 30 and 60. Thus, the absolute bias
of Pp seemed to be greater than that of p; when

sample sizes were 30 and 60. With a data loss of
10%, the absolute bias of p; was less than that of
Pp at all levels of population correlation
coefficient for n = 30, whereas for n = 60, the
absolute bias of Py was less than that of pp when
the population correlation coefficients were
positive. Moreover, the absolute biases of 0; and
Pp seemed to decrease whenever the sample size
increased.

Figure 3 indicates that the mean square
error of P; seems to have no difference from that
of Pp in each situation for this study. Furthermore,
the mean square errors of P; and Pp seem to
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Figure 3 Mean square errors of Py and pp when n = 20, 30 and 60.

decrease whenever the sample size increased
whatever the percentages of missing data. The
ranges of the mean square errors of p; and Pp
were found to be narrower when the sample size
was larger, with 20% and 30% missing data.

This simulation study found that the
performance of p; was better than that of pp for
sample sizes of 30 and 60 with a higher percentage
of missing data and the population correlation
coefficients were not close to zero.

DISCUSSION

The simulation results indicated that Pp
seemed to be a biased estimator as Neter et al.
(1996) and Zimmerman et al. (2003) mentioned.
Hence, the bias of Pp can be reduced by Jackknife’
s method as reported (Efron and Tibshirani, 1993;
Smith and Pontius, 2006). Moreover, the bias of
the proposed estimator reduced to zero for a large
sample size. These findings can be applied in
research, in education, psychology, medicine and

other fields. Jackknife’s method can be applied
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in the elimination of biases in the correlation
coefficient estimation for incomplete samples from
bivariate normal populations. In addition, it is
possible to calculate the proposed estimator
without difficulty by computer programming.

CONCLUSION

This paper proposed an estimator of the
correlation coefficient for a bivariate normal
distribution when observations are missing from
one of the variables. The proposed estimator (Py)
was derived from the Pearson correlation
coefficient (Pp) and based on the analysis of
complete cases. The results of the simulation study
indicated that the absolute bias of p; was less than
that of Pp when the sample size was large for
higher percentages of missing data and the
population correlation coefficients were not close
to zero. Furthermore, the absolute bias of f) j was
less than 0.004 for sample sizes of 30 and 60 with
whatever percentage of missing data. In addition,
the mean square error of P; seemed to be no
different from that of Pp in each situation for this
simulation study.
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