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Estimation of the Correlation Coefficient for a Bivariate Normal
Distribution with Missing Data
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ABSTRACT

This study proposes an estimator of the correlation coefficient for a bivariate normal distribution

with missing data, via the complete observation analysis method. Evaluation of the proposed estimator

( ρ̂J ) in comparison with the Pearson correlation coefficient ( ρ̂P ) was conducted using a simulation

study. It was found that, for a higher percentage of missing data in a large sample size, the absolute bias

of ρ̂J  was less than that of ρ̂P  when the population correlation coefficients (ρ) were not close to zero. In

addition, the mean square error of ρ̂J  was not different from that of ρ̂P  in each situation.
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INTRODUCTION

Missing data, which are almost always

found in research studies and caused by many

possible reasons, usually introduce bias and

inefficiency in parameter estimation (Little and

Rubin, 2002; Norazian et al., 2008). Hence, well-

designed data analysis is especially necessary.

Principally, although incomplete data may possibly

be analyzed using standard statistical methods

through which missing data are ignored, an

important limitation is that the methods are

specifically appropriate for studies which contain

small amounts of missing data. Moreover, standard

statistical approaches can also cause deficiencies

of data when incomplete cases are discarded. Data

deficiency always causes imprecision and also an

escalation in biases (Rao et al., 1999; Little and

Rubin, 2002). Acock (2005) mentioned that this

may further reduce or exaggerate statistical power.

Likewise, Rotnitzky and Wypij (1994), Roth et al.

(1996), Gorelick (2006) and Fitzmaurice (2008)

mentioned that these may possibly result in invalid

conclusions, since the degree of bias and the loss

of precision depend not only on the fraction of

complete cases and the pattern of missing data,

but also on differences between the complete and

incomplete cases, and the parameters of interest.

Recently, several authors have

investigated problems regarding the estimation of

the population correlation coefficient, ρ, for

samples from a bivariate normal distribution. The

maximum likelihood estimator of ρ for a bivariate

normal distribution was proposed by Dahiya and

Korwar (1980) for equal variances and an

incomplete dataset. Garren (1998) examined the

problem of maximum likelihood estimation for the

correlation coefficient and its asymptotic

properties in a bivariate normal model with

missing data. Mudelsee (2003) studied the Pearson

correlation coefficient with bootstrap confidence

intervals from a bivariate climate time series and
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unknown data distributions. In addition, the

performances of Pearson correlation coefficient

and Spearman correlation coefficient have been

further investigated by Huson et al. (2007). They

found that the Pearson correlation coefficient is

in fact, for most practical purposes, an adequate

choice for the correlation coefficient investigation.

Moreover, the Pearson estimate was better than

the much more widely known Spearman estimate.

However, Neter et al. (1996) and Zimmerman et

al. (2003) mentioned that the Pearson correlation

coefficient was a biased estimator of the population

correlation coefficient for bivariate normal

populations. In addition, the bias decreased when

the sample size increased and it was zero when

the population correlation coefficients were zero

and one. Furthermore, Efron and Tibshirani (1993)

and Smith and Pontius (2006) have applied

Jackknife’s method (Quenouille, 1949, 1956;

Tukey, 1958) of bias reduction to the estimation

of parameters. The basic idea behind Jackknife’s

method lies in systematically recomputing

statistics by using samples that leave out one

observation at a time from the sample set. From

this new set of observations, an estimator can be

calculated.

Generally, in the current study,

incomplete data with bivariate normal distribution

were examined. The estimator of population

correlation coefficient was modified from Pearson

correlation coefficient, and Jackknife’s method

was applied for bias reduction.

MATERIALS AND METHODS

The Pearson correlation coefficient
Consider the incomplete bivariate sample

from a bivariate normal distribution with mean

vector (µ1, µ2), a variance covariance matrix
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Assume that r pairs of (X1, X2) are

completely observed with bivariate normal

distribution, but the rest n – r observations of X2

are lost and there are only n – r observations (0 <

r < n) of X1 collected (see Figure 1). All data pairs

are independent and identically distributed and

data are assumed to be missing completely at

random (Little and Rubin, 2002). In other words,

whether or not data are missing is independent of

both the observed and the unobserved values of

X1 and X2.

Based on the r data pairs, it is well-known

that the maximum likelihood estimator of ρ,

denoted by ρ̂P , is given by
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(Neter et al., 1996; Anderson, 2003). This

estimator is often called the Pearson correlation

coefficient. It is a biased estimator of ρ (unless

Figure 1 Monotone missing data pattern for a bivariate normal distribution.

Observations:    1        2      …    r     r+1     …  n 

Variable 1:        11x      12x     …   1rx     1,r 1x +    … 1nx

Variable 2:        21x     22x     …   2rx
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ρ = 0 or 1), which is usually small when sample

size is large (Neter et al., 1996; Zimmerman et

al., 2003).

The Jackknife’s method of bias reduction
This section proposes the estimator of ρ

and applies the Jackknife’s method for bias

reduction of ρ̂P  as follows:

1)  Given a sample

X = (x11,  x12 , ... , x1r , x21 , x22 , ... , x2r )

and an estimator

δ(X) = ˆ
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2)  The ith Jackknife sample, X(–i), consists of the

data set with the ith observation removed.

X(–i) = (x11 , x12 , ... , x1(i–1) ,

 x1(i+1) , ... , x1r ,

 x21 , x22 , ... , x2(i–1)

 x2(i+1) , ... , x2r )

for  i = 1, 2, …, r.

3)  δ(X(–i)) is the ith Jackknife

replication of δ(X) and

δ(X(–i)) = ρ̂P (–i)
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for  i = 1, 2, …, r.

4)  Calculate the pseudo values in the form of Ji

where Ji = rδ(X) – (r – 1)δ(X(–i))

= r ρ̂P  – (r – 1) ρ̂P (–i).

5)  The proposed estimator of ρ is given by ρ̂J

where ρ̂J  = 1

1r
Ji

i

r

=
∑

= 
1

1
1r

r rP P i
i

r
ˆ – ( – )ˆ

(– )ρ ρ    [ ]∑
=

= 
1 1

11r
r

r
P P i

i

r

i

r
ˆ –

– ˆ
(– )ρ ρ  

  

r ==
∑∑

= r
r

P P i
i

r
ˆ –

– ˆ
(– )ρ ρ  

  

r

1

1=
∑

ρ̂P  and ρ̂P (–i) are given by the format of equation

(1) and (2) respectively.

RESULTS

In order to empirically evaluate the

validity and reliability of the proposed estimator,

a simulation study was conducted. In the study,

populations of (X1, X2) at a size of N = 100,000

were generated in the form of a bivariate normal

distribution with µ1 = 2, µ2 = 3, σ1
2  = 4 and σ2

2  =

9. Correlation coefficients of (X1, X2) at  -0.9,

-0.8, …, 0, 0.1, 0.2, …, 0.9  with the sample sizes

of n = 20, 30 and 60 were conducted using a simple

random sampling with replacement method with

2,000-times repetitions, and missing data were set

at 10, 20 and 30 percentage of the total cases, thus

creating 171 situations for the simulation study.

Then, absolute bias and mean square error (MSE)

comparisons of ρ̂J  and ρ̂P  were empirically

performed.

The simulation results presented in

Figure 2 reveal the absolute biases of ρ̂J  and ρ̂P .

When the sample size and percentage of the

missing data were 20 and 10%, respectively, the

absolute bias of ρ̂J  was less than that of ρ̂P  for

the population correlation coefficients (ρ) which

fell between 0.1 and 0.2. For 20% missing data

and the sample size of 20, the absolute bias of ρ̂J

was less than that of ρ̂P  when population

correlation coefficients were not about zero.
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Figure 2 Comparison of absolute biases for ρ̂J  and ρ̂P  when n = 20, 30 and 60.

n = 20,  10% Missing data
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n = 30,  10% Missing data
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n = 30,  20% Missing data
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n = 30,  30% Missing data
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n = 60,  10% Missing data
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n = 60,  20% Missing data
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n = 60,  30% Missing data
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Likewise, the absolute bias of ρ̂J  was less than

that of ρ̂P  for population correlation coefficients

which were not between -0.5 and -0.1 when the

percentage of missing data was 30% and the

sample size was 20. In addition, the absolute bias

of ρ̂J  was less than that of ρ̂P  when the sample

size was greater than 20 and the percentage of

missing data was greater than 10% for population

correlation coefficients which were not close to

zero. Moreover, the absolute biases of ρ̂J  and ρ̂P

were less than 0.004 and 0.014, respectively, for

sample sizes of 30 and 60. Thus, the absolute bias

of ρ̂P  seemed to be greater than that of ρ̂J  when

sample sizes were 30 and 60. With a data loss of

10%, the absolute bias of ρ̂J  was less than that of
ρ̂P  at all levels of population correlation

coefficient for n = 30, whereas for n = 60, the

absolute bias of ρ̂J  was less than that of ρ̂P  when

the population correlation coefficients were

positive. Moreover, the absolute biases of ρ̂J  and
ρ̂P   seemed to decrease whenever the sample size

increased.

Figure 3 indicates that the mean square

error of ρ̂J  seems to have no difference from that

of ρ̂P  in each situation for this study. Furthermore,

the mean square errors of ρ̂J  and ρ̂P  seem to
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decrease whenever the sample size increased

whatever the percentages of missing data. The

ranges of the mean square errors of ρ̂J  and ρ̂P

were found to be narrower when the sample size

was larger, with 20% and 30% missing data.

This simulation study found that the

performance of ρ̂J  was better than that of ρ̂P  for

sample sizes of 30 and 60 with a higher percentage

of missing data and the population correlation

coefficients were not close to zero.

Figure 3 Mean square errors of ρ̂J  and ρ̂P  when  n = 20, 30 and 60.

n = 20,  10% Missing data
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DISCUSSION

The simulation results indicated that ρ̂P

seemed to be a biased estimator as Neter et al.

(1996) and Zimmerman et al. (2003) mentioned.

Hence, the bias of ρ̂P  can be reduced by Jackknife’

s method as reported (Efron and Tibshirani, 1993;

Smith and Pontius, 2006). Moreover, the bias of

the proposed estimator reduced to zero for a large

sample size. These findings can be applied in

research, in education, psychology, medicine and

other fields.  Jackknife’s method can be applied



Kasetsart J. (Nat. Sci.) 45(4) 741

in the elimination of biases in the correlation

coefficient estimation for incomplete samples from

bivariate normal populations. In addition, it is

possible to calculate the proposed estimator

without difficulty by computer programming.

CONCLUSION

This paper proposed an estimator of the

correlation coefficient for a bivariate normal

distribution when observations are missing from

one of the variables. The proposed estimator ( ρ̂J )

was derived from the Pearson correlation

coefficient ( ρ̂P ) and based on the analysis of

complete cases. The results of the simulation study

indicated that the absolute bias of ρ̂J  was less than

that of ρ̂P  when the sample size was large for

higher percentages of missing data and the

population correlation coefficients were not close

to zero. Furthermore, the absolute bias of ρ̂J  was

less than 0.004 for sample sizes of 30 and 60 with

whatever percentage of missing data. In addition,

the mean square error of ρ̂J  seemed to be no

different from that of ρ̂P  in each situation for this

simulation study.

ACKNOWLEDGEMENTS

The author would like to thank the

Department of Statistics, Faculty of Science,

Kasetsart University for financial support and

necessary facilities during the research.

LITERATURE CITED

Acock, A.C. 2005. Working with missing values.

Journal of Marriage and Family  67:

1012–1028.

Anderson, T.W. 2003. An Introduction to
Multivariate Statistical Analysis. 3rd ed.

Wiley. New Jersey. 721 pp.

Dahiya, R.C. and R.M. Korwar. 1980. Maximum

likelihood estimates for a bivariate normal

distribution with missing data. The Annals
of Statistics  8: 687–692.

Efron, B. and R.J Tibshirani. 1993. An
Introduction to the Bootstrap. Chapman&

Hall/CRC. USA. 452 pp.

Fitzmaurice, G. 2008. Missing data: Implications

for analysis. Nutrition  24: 200–202.

Garren, S.T. 1998. Maximum likelihood

estimation of the correlation coefficient in a

bivariate normal model with missing data.

Statistics & Probability Letters 38:

281–288.

Gorelick, M.H. 2006. Bias arising from missing

data in predictive models. Journal of Clinical
Epidemiology  59: 1115–1123.

Huson, L.W., Biostatistics Group and F.H. La-

Roche. 2007. Performance of some correlation

coefficients when applied to zero-clustered

data. Journal of Modern Applied Statistical
Method 6: 530–536.

Little, R.J.A. and D.B. Rubin. 2002. Statistical
Analysis with Missing Data. Wiley. New

Jersey. 409 pp.

Mudelsee, M. 2003. Estimating Pearson’s

correlation coefficient with bootstrap

confidence interval from serially dependent

time series. Math. Geol.  35: 651–665.

Neter, J., M.H. Kutner, C.J. Nachtsheim and W.

Wasserman. 1996. Applied Linear Statistical
Models. 4th ed. Irwin. Chicago. 1,423 pp.

Norazian, M.N., Y.A. Shukri, R.N. Azam and

A.M.M. Al Bakri. 2008. Estimation of missing

values in air pollution data using single

imputation techniques. ScienceAsia  34:

341–345.

Quenouille, M.H. 1949. Approximate test of

correlation in time-series. Journal of the
Royal Statistical Society. Series B
(Methodological)  11: 68–84.

Quenouille, M.H. 1956. Notes on bias in

estimation. Biometrika  43: 353–360.

Rao, C.R., H. Toutenburg and A. Fieger. 1999.

Linear Models: Least Squares and



742 Kasetsart J. (Nat. Sci.) 45(4)

Alternatives. 2nd ed. Springer-Verlag. New

York. 442 pp.

Roth, P.L., J.E. Campion and S.D. Jones. 1996.

The Impact of four missing data techniques

on validity estimates in human resource

management. Journal of Business and
Psychology  11: 101–112.

Rotnitzky, A. and D. Wypij. 1994. A Note on the

biased of estimators with missing data.

Biometrics  50: 1 163–1170.

Smith, C.D. and J.S. Pontius. 2006. Jackknife

estimator of species richness with S-PLUS.

Journal of Statistical Software 15: 1–12.

Tukey, J.W. 1958. Bias and confidence in not-quite

large samples. Annals of Mathematical
Statistics 29: 614–623.

Zimmerman, D.W., B.D. Zumbo and R.H.

Williams. 2003. Bias in estimation and

hypothesis testing of correlation. Psicológica
24: 133–158.


