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The community structure of arbuscular mycorrhizal fungi (AMF) is wide in terms of composition
and distribution and can be influenced by the host plant. The aim of this research was to compare the
diversity of AMF communities associated with cultivated (Solanum betaceum) and wild tree tomato
(Solanum cajanumensis) species. Roots of both species were collected from two sampling sites in
Southern Ecuador. The microscopic analysis revealed a heavy colonization by AMF in the roots
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of both species. An 18S rDNA barcoding analysis was conducted on DNA samples isolated from
root tissue to determine the AMF community composition. Sequences from the partial 18S rDNA
Cultivated species region were used to reconstruct operational taxonomic units (OTUs) using the UPARSE algorithm

Solanum species, with a similarity cut-off of 97%. In total, seven OTUs were retrieved from both species. A higher

Wild species number of Glomeromycota OTUs were associated with the wild Solanum host and two out of seven
OTUs were shared between both Solanum species. Based on the phylogenetic relationships observed
among family-specific OTUs, it was speculated that the wild individuals of S. cajanumensis could
constitute a natural reservoir of AMF, potentially transferable to the cultivated tree tomato species

as part of a crop management strategy.

Introduction

The ecological importance and physiological plant and soil
benefits of arbuscular mycorrhizal fungi (AMF) are recognized,
particularly they are an important component of natural and
agricultural ecosystems (Smith and Read, 2008). AMF are obligated
symbionts that belong to the phylum Glomeromycota (Schiifller
et al., 2001). The mycorrhizal symbiosis can benefit the host plants
in several ways, for example, enhancing uptake of mineral nutrients
(especially phosphate), improving water status, protecting against
microbial pathogens (Smith and Read, 2008; Wehner et al., 2010)
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and facilitating the formation and maintenance of soil structure and
dynamics (Van Der Heijden et al., 2000).

In addition, the differences in community composition of AMF
may have different effects in plants, and play a potential role in
determining plant diversity, ecosystem variability and productivity
(Lee et al., 2013) that has been evidenced in experimental greenhouse
studies (Van Der Heijden et al., 1998; Grandillo et al., 2011) and in
natural ecosystems (Barness, 1975; Newsham et al., 1995).

In particular, wild plants may differ from cultivated plants in
their response to AMF and pathogens, as they were not selected to
maximize yield under optimal conditions. The species richness and
diversity of AMF differ among ecosystems, which usually are greater
in natural ecosystems compared to agricultural ecosystems (Wang
et al., 2013). In fact, natural selection may favor individuals with
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different responses to AMF and pathogens than agriculturally selected
plants. For example, one of the few wild plants investigated, Vulpia
ciliata, was protected by AMF from fungal pathogens in the field
(Newsham et al., 1994; 1995).

Particularly in Ecuador, the cultivated species called “tree tomato”
or “tamarillo” (Solanum betaceum Cav.) (Bohs, 1995), is a small tree
native to the Andean region in South America (Bohs, 1991; Bohs
and Nelson 1997; Sinton et al., 2002) that produces fruits of a high
commercial value. In fact, New Zealand is the main producer of
this fruit (Prohens and Nuez, 2001) but its production is also locally
important for farmers in Ecuador, Colombia and Peru (Acosta-
Quezada et al., 2015). Due to an increase in the demand of the fruit
by local consumers, cultivation of tree tomato has increased in
Ecuador since the 1980°s (Mertz et al., 2010). One wild relative
to tree tomato is Solanum cajanumensis Kunth, also known as
“casana” and can be found in Colombia, Ecuador and Peru from
1,500 to 3,000 meters above sea level (m asl) (Maguire, 1966).
Putative wild subpopulations are small, occurring in restricted areas
in Ecuador. Wild representatives display a rich genetic variation and
are instrumental for the genetic improvement of many economically
important traits (Rick, 1987). On the other hand, the cultivated tree
tomato has reduced genetic variation (Grandillo et al., 2011).

Given that there are few reports of AMF association in the
rhizosphere of Solanum (Diop et al., 2003; Dennett et al., 2011)
as wild species, it is becoming increasingly important to gain
a better understanding of mycorrhizal diversity in S. cajanumensis
and S. betaceum. For example, AMF association in S. khasianum,
S. sisymbriifolium and S. torvum were investigated for the first time
by Songachan and Kayang (2012), with the numbers of AMF species
isolated and identified from the rhizosphere soil being 12, 11 and 11,
respectively.

Furthermore, identifying and exploiting diversity of the AMF
present in wild tomato species could be crucial for the improvement
of production traits in cultivated tree tomato, (Grandillo et al., 2011)
considering the potential transfer of these AMF and the desired
benefits of improved pathogen resistance and tolerance to abiotic
stress (Jacott et al., 2017).

The aim of the present study was to investigate the molecular
diversity of AMF associated with cultivated and wild relative tree
tomato plants. Therefore, DNA from plant roots was isolated and
amplified using specific primer combinations known to detect families
of the Glomeromycota phylum. Used primers target the nuclear IDNA
coding for the small subunit rRNA gen (18S rDNA). To the authors’
knowledge, this is the first report showing the community composition
of the AMF associated with S. cajanumensis and S. betaceum plants
near the center of the Ecuadorian Andes.

Material and Methods

Study site and root sampling

Root samples were collected from Solanum betaceum individuals
planted at the research station of Universidad Técnica Particular de

Loja located in Zamora-Huayco, Loja Province, Ecuador (4°0” S and
79°10° W; 2160 m asl) corresponding to the Southern Andes montane
humid shrub forest formation (Sierra, 1999) with an average annual
temperature of 15°C and an annual rainfall of 780 mm (Acosta-
Quezada et al., 2011). Sampling of Solanum cajanumensis was carried
out from standing individuals in a protected area in Santiago, Loja
Province, Ecuador (3°47’ S and 79°16° W; 2735 m asl) corresponding
to a secondary forest with a mean annual temperature of 13°C and an
annual rainfall of 850 mm. The study was carried out at two sites in the
south of Ecuador during June 2007.

At both study sites, 10 sampling plots (10 m x 10 m) were selected,
from which five single standing plants in each were randomly selected
and their fine roots were sampled. From each plant individual,
five parts of the roots were selected for the analysis. Overall,
25 samples were analyzed from each study site.

Root preparation and microscopy

Roots were washed under running tap water to remove attached
soil and kept at -80°C for subsequent microscopic and molecular
studies. Five randomly selected root fragments of approximately
5 cm were selected per plant, providing a total of 50 root fragments
analyzed. The 50 fragments were later split in two parts for the
analyses: one half (2.5 cm lengths) was used to determine the
percentage of AMF colonization and the other half was kept at -80°C
for subsequent molecular analysis.

To determine the frequency of AMF colonization, roots were
cleaned and stained with methyl blue following the method proposed
by Grace and Stribley (1991). Stained root samples were analyzed
under a light microscope with magnification of 400x and the
colonization percentage was calculated according to Giovannetti and
Mosse (1980) using Equation 1:

Number of colonized segments , 0

Root colonization % = -
Total number of examined segments

Statistical analysis

Data analysis was performed using the statistical software R
version 1.1.447 (R Core Team, 2019). An independent two sample
t test analysis was carried out to test statistical significances in
mycorrhizal root colonization between S. cajanumensis and
S. betaceum. The data were expressed as mean + SD.

Molecular characterization

Five root pieces of 2.5 cm per each plant individual were used
for DNA extraction. The DNA was extracted using a DNeasy Plant
Mini Kit (Qiagen; Hilden, Germany) following the manufacturer’s
instructions. A fragment of 800 bp of 18S rDNA of the AMF genome
was amplified using polymerase chain reaction (PCR) using different
primer combinations in the nested PCRs: Glomus Group A: first
SSU128 / SSU15361IH, second SSU300 / GLOM1310rc; Glomus
Group B: first SSU 817 / NS8, second SSU817 / LETC1670rc;
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Acaulosporaceae: first SSU 817/NS8, second SSU817/ACAU1660rc;
and Archaeosporales: first SSU817 / SSU1536IH, second SSU 817 /
ARCH1375rc. Each primer combination had been optimized to target
a different group of Glomeromycota (Table 1). The PCR conditions
were: initial denaturation at 94°C for 3 min; 35 cycles, each cycle
consisting of one step of denaturation at 94°C for 30 s; annealing
between 40°C and 60°C for 45 s depending on the primer; and
extension at 72°C for 1 min. A final extension at 72°C for 7 min was
performed to guarantee the synthesis of unfinished PCR products.
The reaction mixture consisted of 1.5 mM MgCl,, 200 pM of each
dNTP, 0.5 pmol/uL of each primer, 10% bovine serum albumin
(BSA-SIGMA; Hamburg, Germany) with a final concentration of
60 pmol/pL (Iotti and Zambonelli, 2006) 1 U GoTaq® DNA
polymerase (Promega; Mannheim, Germany), and 2 pL of DNA in
a final volume of 20 pL. The success of each PCR was tested in
0.7% agarose stained in a solution of 0.5 mg mL™" ethidium bromide.

The PCR products were cloned using the PCR® 2.1-TOPO® vector
system (Invitrogen; Carlsbad, USA). Up to 30 clones per plant were
selected for colony-PCR assay with the GoTaqg® DNA Polymerase
(5U RI-1; Promega; Mannheim, Germany) and modified M13F
and M13R primers (Stockinger et al., 2010) The DNA fragments
amplified from selected colonies were then subjected to restriction
fragment length polymorphism (RFLP) analysis to differentiate
between clones. RFLP was performed as described by Kriiger et al.
(2009). Clones showing distinctive restriction patterns were afterward
purified following the S.N.A.P.™ miniprep kit (Invitrogen; Carlsbad,
USA) protocol and finally were sequenced by Macrogen (Seoul,
Korea) using the universal primers M13F and M13R. The sequence
chromatograms, editing and generating of consensus sequences from
matching forward and reverse sequencing reads per each clone were
performed using the Sequencer software version 4.6 (Gene Codes;
Ann Arbor, MI, USA).

Operational taxonomic units delimitation and phylogenetic analysis

Sequenced data were analyzed with the UPARSE algorithm
implemented in USEARCH (Edgar, 2013). Briefly, quality filtered per
clone consensus sequences (see above) were pooled in a per sample
multifasta file (Solanum betaceum and Solanum cajanumensis) and
treated as sequence reads. Reads were then sorted by decreasing

Table 1 Glomeromycota group, primer names, sequences and references

abundance using the ‘sort by size’ command with the —minsize 2 option
to discard singletons. OTUs were defined for each sample at a 97%
similarity cut-off with the ‘cluster otus’ command with abundance-
sorted reads as input. Chimera OTUs were automatically discarded by
the ‘cluster_otus’ command. Finally, taxonomy assignment for each
OTU was performed using the Glomeromycota phylogeny database
(http://www.amf-phylogeny.com; Redecker et al., 2013). To ensure
the identity of mycorrhizal OTUs, these OTUs were compared against
the NCBI nucleotide database (www.ncbi.nlm.nih.gov) using BLAST
(Altschul et al., 1997). A consensus sequence of each OTU was
submitted to GenBank (accession numbers MF784401-MF784407).

Identical OTUs in both species were found by performing an
all-versus-all global alignment of the OTU representative sequences
with the ‘needleall’ command which is an implementation of the
Needleman-Wunsch global alignment algorithm distributed as part of
the EMBOSS toolkit (Rice et al., 2000).

OTU sequences were aligned using the ‘L-INS-I” strategy as
implemented in MAFFT v6.620b (Katoh and Toh, 2008) including the
closest sequence matches obtained from the NCBI database (National
Center for Biotechnology Information, GenBank) using BLAST
(Kozakov et al., 2006) and consensus sequences from Kriiger et al.
(2012). A second alignment was produced using the first alignment,
which was subsequently corrected manually by excluding ambiguous
regions. The final multiple alignment matrix comprised 30 sequences
and a total length of 694 bp.

The phylogenetic reconstruction was performed using a Bayesian
approach based on Markov chain Monte Carlo (B/MCMC) and
a maximum parsimony (MP) analysis. The B/MCMC analyses
were conducted for each alignment using the ‘MrBayes program
(Huelsenbeck and Rannala 2004). The procedure used the most
complex substitution model available (GTR+I+G), including two
runs each involving four incrementally heated Markov chains over
4,000,000 generations and using random starting trees (Whelan et al.,
2001; Douady et al., 2003; Huelsenbeck and Rannala, 2004). Trees
were sampled every 100 generations resulting in 40,000 trees from
which the last 24,000 were used to compute a 50% majority-rule
consensus tree, enabling the use of Bayesian posterior probabilities
as node support. Stationarity of the process and effective sample size
values were checked visually using the software Tracer 1.5 (Drummond
and Rambaut, 2007).

Fungal group Primer Sequence (5'- 3") Reference

Glomus Group A SSU128 GGA TAA CCG TGG TAATTC TAG Haug et al., 2010
SSU15361H RTT GYA ATG CYC TAT CCC CA Borneman and Hartin, 2000
SSU300 CAT TCA AAT TTC TGC CCT ATC A Haug et al., 2010
GLOM1310 rc TAA CAATGT TAG RCC TAG CT after Redecker, 2000

Glomus Group B SSU817 TTA GCA TGG AAT AAT RRA ATA GGA Borneman and Hartin, 2000
NS8 TCC GCA GGT TCA CCT ACG GA White et al., 1990
LETC1670rc ACT CAC CGA TCG CCG ATC after Redecker, 2000

Acaulosporaceae ACAU1660rc CCG ATC CGA GAG TCT CA after Redecker, 2000

Archaeosporales ARCHI1375R TCAAAC TTC CGT TGG CTA RTC GCR C Russell et al., 2002




570

MP analysis for each alignment was calculated using the MEGA
software, V. 7.0.21 (Kumar et al., 2016). Heuristic searches with
1,000 random taxon addition replicates were conducted using the
tree-bisection-reconnection method with search level 1 (Molina
et al., 2017). Clade support was inferred from bootstrapping
(Felsenstein, 1985) performed based on 1,000 pseudoreplicates with
the same settings as for the heuristic search. Only clades that received
bootstrap support of greater than or equal to 70% in the MP or
posterior probabilities of greater than or equal to 0.90 in the MrBayes
analysis were considered to be well supported (Molina et al., 2017).
Phylogenetic trees were drawn using the FigTree software (http://tree.
bio.ed.ac.uk/software/figtree/) and statistically well supported clades
containing the calculated OTUs were marked in the final tree.

Richness estimation of arbuscular mycorrhizal fungi operational
taxonomic units

Potential richness and inventory completeness of Solanum
cajanumensis and Solanum betaceum AMF OTUs were evaluated
using the program EstimateS version 8.2.0 (Colwell et al., 2012).
Individual-based species accumulation curves were calculated for
each Solanum species. The obtained curves describing their 95%
confidence intervals were fitted to a Clench curve (Soberén and
Llorente, 1993) using Statistica version 7.0.61.0 (StatSoft; Tulsa, OK,
USA) following Jimenez and Hortal (2003). The asymptote of each
curve was calculated as the fraction a / b, where a and b are the two
parameters of the Clench curve. The sampling effort needed to record
95% of the estimated proportion of OTUs for each Solanum species
was calculated according to Jimenez and Hortal (2003).

Results
Frequency of mycorrhizal colonization
Microscopic analysis of the root samples of S. cajanumensis

showed notably higher root colonization than for S. betaceum, with
88.2% and 68.8%, respectively.
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The results of the independent two sample t test analysis
showed statistically significant differences among mycorrhizal
root colonization of both plant species (¢ = -10.44; df = 48; p <0.001).
The mean for mycorrhizal root colonization of Solanum betaceum
was 68.8+7.21 and for Solanum cajanumensis was 88.2+5.84.

Molecular identification and phylogenetic analysis

In total, 82 DNA fragments were amplified solely for the primer
sets Glomus Group B and Acaulospora between both Solanum
species. The PCR products were cloned and for each amplified
fragment up to six clones were analyzed. One or two clones for each
restriction pattern were sequenced. Overall, 121 sequences (694 bp
in length) were obtained from both plants. RFLP was performed to
detect sequence variability in the clones; 91 sequences were removed
after redundancy filtering based on RFLP and sequence quality
analysis and finally 30 sequences were obtained of AMF isolated from
the two plant species (Table 2). These sequences were then used as
input for the UPARSE software to delineate OTUs. The USEARCH
algorithm found seven OTUs that were later taxonomically annotated
as members of the Glomeromycota phylum.

OTU 1 included seven sequences belonging to the Glomus
genera in S. cajanumensis being the OTU with the highest number of
sequences in wild Solanum species. From the seven OTUs, only OTU
5 and OUT 7 (Scutellospora sp.1 and Acaulospora sp.2 respectively)
were found in both plant species. Three OTUs (1, 2 and 4) were found
in the wild tomato species S. cajanumensis while only two OTUs
(3 and 6) were unique to S. betaceum (Table 2). The phylogenetic
analysis of the seven OTU sequences showed that the OTUs were not
segregated at the family level based on their origin (wild or cultivated
tomato) but rather mixed with each other (Fig. 1). The two OTUs
shared by both Solanum species (OTU 5 and OTU 7) were clustered
closely to Gigasporaceae and Acaulospora sp., respectively. Three
singleton sequences were removed from the analysis due to low
sequence similarity to any other sequence in the dataset.

Table 2 Information on number of clones of each operational taxonomic unit (OTU; 17 and 13 in S. cajanumensis and S. betaceum, respectively), where sizes of

OTUs shared between species are highlighted in bold and the genera assigned to each OTU are based on comparison with the closest sequence in NCBI

Host Plant
OTUs ID Genus Accession number Solanum cajanumensis Solanum betaceum Identity (%)
OTU 1 Glomus MF784401 7 0 99.85
OTU 2 Acaulospora sp.1 MEF784404 2 0 97.32
OTU 3 Rhizophagus MF784405 0 2 99.79
OTU 4 Claroideoglomus MF784403 2 0 100
OTUS Scutellospora sp.1 MEF784402 2 7 100
OTU 6 Scutellospora sp.2 MEF784406 0 2 99.67
OTU 7 Acaulospora sp.2 MF784407 4 2 100
Total 17 13
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Fig. 1 Phylogenetic relationships among identified operational taxonomic units defined by the UPARSE software corresponding to a partial region of 694 bp
of 18S rDNA gene from S. cajanumensis and S. betaceum including closest sequence matches obtained from the NCBI database (> 97% percent identity)
and consensus sequences from Kriiger et al. (2012). The phylogenetic tree was calculated using a Bayesian approach. Each OTU id is followed by plant species
S. betaceum, S. cajanumensis or both and the corresponding accession number from NCBI. A sequence of Endogone pisiformis X58724 was used to root the tree.
Numbers above nodes show the Bayesian posterior probabilities.



572 O. Vivanco Galvan et al. / Agr. Nat. Resour. 54 (2020) 567-574

Richness and similarity of arbuscular mycorrhizal fungi operational
taxonomic units

The accumulation curves of the AMF OTUs indicated an inventory
completeness of 42.7% on S. cajanumensis and 34.5% on S. betaceum
(Fig. 2). In total, 7 Glomeromycota OTUs were obtained and the
non-saturated accumulation of fungal OTUs suggested that more
locally distributed rare species may be present at the sites sampled
in the current study. Richness between OTUs of S. cajanumensis and
S. betaceum was considered significantly different when the 95%
confidence intervals of the corresponding accumulation curves did not

overlap.
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Fig. 2 Rarefaction curves of arbuscular mycorrhizal fungi (AMF) operational
taxonomic unit (OTU) richness in Solanum cajanumensis (Sc) and Solanum
betaceum (Sb)

Discussion

The roots of the investigated Solanum species were frequently
colonized by AMF (68.8% and 88.2% for S. betaceum and
S. cajanumensis, respectively). Information on the occurrence
of associations of AMF in members of the Solanaceae is very
limited. Only 25 solanaceous plant species have been assessed for
their mycorrhizal status (Wang and Qiu, 2006; Reddy et al., 2007;
Thangavelu and Tamiselvi, 2010). The extent of fungal colonization
by AMF and the percentage of root length with different structures of
AMEF varied significantly between species (Muthukumar and Sathya,
2017).

The current results were consistent with others indicating
a medium-to-high AMF colonization in members of the Solanum
genera: Capsicum frutescens, Lycopersicon esculetum and Solanum
tuberosum having colonization percentages of 42%, 50% and 44%,
respectively (Tawaraya, 2003). Songachan and Kayang (2012)
determined the colonization levels for Solanum khasianum, Solanum
sisymbriifolium and Solanum torvum as 39%, 42% and 36%,
respectively. In addition, Muthukumar and Sathya (2017) determined
the total colonization percentage, ranging between 34% for Solanum
trilobatum and 81.15% for Solanum viarum among 20 root samples.
These values might suggest that lower colonization of S. betaceum,
compared to S. cajanumensis is a consequence of cropping practices

or a lower dependence of S. betaceum on AMF; however more
information is needed to establish an explanation for such differences.

The highest number of sequences in the reconstructed OTUs
corresponded to the genus Glomus, a frequent Glomeraceae group
found in various habitats (Stirmer and Siqueira 2011; Gai et al.,
2012; Chaiyasen et al., 2014) and plant species (Shi et al., 2006;
Kramadibrata et al., 2007; Wang et al., 2013).

In the current investigation, Glomus from the family Glomeraceae
and Acaulospora from the family Acaulosporaceae were the most
frequent AMF identified in S. cajanumensis species. For S. betaceum,
Scutellospora from the family Gigasporaceae was the most frequent
AMF. Studies in the same genus Solanum, for example Solanum
tuberosum, have reported Acaulospora as the dominant genus in
AMF communities associated with potato plantations in the Andes of
Ecuador, Peru and Bolivia (Senés-Guerrero and Schiifiler, 2016) and
Songachan and Kayang (2012) reported that Glomus and Acaulospora
were the most frequent AMF in Solanum khasianum, Solanum
sisymbriifolium and Solanum torvum. The current study used the
partial 18S rDNA region because it is the only gene with broad taxon
sampling in Glomeromycota (Redecker and Raab 2006). However,
considering the available primers when the current study was carried
out, several Glomeromycota groups may be underrepresented
compared with actual studies (Kriiger et al., 2012).

The molecular characterization of AMF associated with both S.
betaceum and S. cajanumensis revealed a higher diversity of fungal
species associated with the wild species compared to the cultivated
one. A higher number of AMF species was associated to wild plants
rather than field crops, with 35 and 22 AMF species isolated in each
plant type, respectively (Gai et al., 2000; 2004). Ohsowski et al. (2014)
showed that natural, undisturbed systems and wild plants are associated
with more uncultured AMF than disturbed systems and cultivars.

The interpretation of OTU diversity must be done with caution,
especially due to the limited number of recovered sequences. However,
it is speculated based on the current study that the OTUs found in the
wild species could colonize the cultivated species as well, based on
their phylogenetical proximity (Fig. 1). This opens an interesting
opportunity for using the roots or rhizosphere soil of S. cajanumensis
as natural reservoirs of AMF that could improve agronomic parameters
in S. betaceum in highly disturbed agroecosystems as has been
observed to benefit other species (Marx et al., 2002). Sangabriel-
Conde et al. (2015) suggested similar management practices in
maize based on using nested PCR and observing that regarding
AMF rDNA, there was a higher number of Glomeromycota OTUs
in four landrace species compared to a domesticated hybrid.

The accumulation curves of AMF OTUs in the current study
indicated a low inventory completeness in both species, as well the
non-saturated accumulation of fungal OTUs, suggesting that more
locally-distributed species may be present at sites in the current
study. In order to assess this richness, comparison with other sites
are necessary in conjunction with intensifying the sampling effort.
Further studies will confirm whether the AMF diversity detected on
S. cajanumensis is compatible with S. betaceum, as well the benefits
of such associations to improve desired agronomic traits.
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