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The foliar application of micronutrients directly affects quality and yield. A pot experiment was 
used to investigate the effect of different concentrations of zinc (Zn) on the physiological and 
phytochemical traits of marigold (Calendula officinalis). Treatments consisted of five different 
concentrations of zinc nitrate (0 mg/L as the control; 0.5 mg/L; 1 mg/L; 1.5 mg/L; 2 mg/L) in four 
replications. The foliar application of the different concentrations of Zn was performed in two stages,  
with the first stage at 2–4 leaves and the second stage at the time of budding. The results indicated that  
different concentrations of Zn significantly affected the physiological and phytochemical parameters of 
marigold. The best Zn concentration for fresh weight traits, chlorophyll index, chlorophyll a, chlorophyll 
b, total carotenoid and β-carotene, was the fourth treatment (1.5 mg/L) of Zn. However, for the lycopene, 
anthocyanin, total phenol and total flavonoid traits, the highest measured value was related to the fifth 
treatment (2 mg/L). Finally, the best antioxidant activity in both assays applied was observed in the 
third treatment (1 mg/L). Therefore, application of appropriate concentrations of Zn can improve the 
physiological and phytochemical traits of pot marigold flowers.
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Introduction

	 Calendula officinalis L., commonly known as marigold, is an 
ancient medicinal herb belonging to the Compositae family and in folk 
and aromatherapy medicine it has been used for fever, skin disorders, 
conjunctivitis (pink eye) and poor vision, irregular menstrual cycle, 
varicose veins, mouth and throat soreness, hemorrhoids and muscle spasms 
(Bisset and Wichtl, 1994). Calendula officinalis grows as a native and  
naturalized plant across Europe and North America (Verma et al., 2018).  
The yellow-orange-red flowers of Calendula are used as a herbal medicine 
and spice with dried and fresh flowers of marigold being used in lotions, 
tinctures, liniments, ointments masks and creams (Leach, 2008). The 
biological activities of Calendula are related to the existence of several major 
classes of natural compounds such as phenolics (flavonoids, anthocyanins, 
tannins), terpenoids (carotenoids, triterpene alcohols, essential oils), 
triterpenyl alcohols, steroids, triterpenoid aglycone, polysaccharides 
and mucilage (Vidal-Ollivier et al., 1989). Previous researchers reported 

that Calendula flowers contained quercetin-3-O-rutinoside, quercetin 
3-O-glucoside, quercetin, isorhamnetin-3-O-rutinosylrhamnoside and 
isorhamnetin-3-O-glucosylglucoside (Bilia et al., 2000).
	 Zinc (Zn) is considered as a multipurpose trace mineral that plays 
a critical role in many important metabolic pathways (Aravind and 
Prasad, 2005a; Song et al., 2015). Zn is a vital co-factor for various 
enzymes such as carbonic anhydrase, dehydrogenases, peroxidases 
and oxidases (Aravind and Prasad, 2003; 2005b). In addition,  
Zn contributes to the formation of chlorophyll by involvement in the 
regulation of cytoplasmic levels of elements. Zn can also improve the  
synthesis of chloroplast pigments such as carotenoids and chlorophyll,  
eventually proving useful for the photosynthetic system of plants 
(Aravind and Prasad, 2004; Song et al., 2015). In many plant species,  
Zn plays an essential role as a regulatory cofactor of several enzymes or  
structural components that catalyze an extensive range of phytochemical  
pathways. These roles include structural stability to cell membranes, 
antioxidant defense system, protein metabolism, mediator of cellular 
signaling, pollen formation, regulator of gene expression and the resistance  
to infection by certain pathogens (Foster and Chu, 2014; Fung and  
Gildengorin, 2015). Therefore, the presence of sufficient concentrations of  
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Zn in plants is essential for the proper functioning of plant cell systems.
	 The Zn assimilation network comprises the harmonized activities  
of Zn absorption, translocation, trafficking, chelation and sequestration, 
supplying a sufficient amount of Zn to different types of plant cells, 
at all stages of growth and under various environmental conditions 
(Clemens, 2001; Assunção et al., 2010). However, Zn is an essential 
nutrient, it can be toxic to plants when present in excessive amounts. 
Thus, plants control Zn homeostasis using a firmly regulated network 
in which the coordinated expression of Zn transporters plays the  
main role in Zn inception from the soil, in mobilization between organs  
and tissues and in intracellular sequestration (Clemens, 2001; Clemens 
et al., 2002; Assunção et al., 2010). Zn deficiency in plants is mostly 
adjusted by the application of Zn to soils. Sulphate-containing fertilizers 
such as ZnSO4 is used widely as a source of elemental Zn, due to it 
being very soluble in water and existing in both granular and crystalline 
structures (Mortvedt and Gilkes, 1993). Zn deficiency is a global and 
well-documented problem in plants and can lead to decreases in yield and 
nutritional quality (Chaudhry and Loneragan, 1970; Henriques et al., 2012; 
Kabir et al., 2014). When facing a shortage in Zn supply, plants adapt by 
enhancing Zn acquisition. Fewer studies have investigated the effect of Zn 
fertilizer on medicinal herbs. Calendula officinalis as a medicinal herb have 
many applications in the pharmaceutical and food industry. The aim of this 
study was to investigate the effect of different concentrations of Zn fertilizer 
on the physiological and phytochemical properties of pot marigold.

Material and Methods

Plant materials

	 An orange marigold cultivar (Calendula officinalis) was used, as it is 
one of the leading commercial cultivars in the world. The seeds were first 
cultivated in transplant culture trays (with a mixture of pit moss and perlite 
at a ratio of 70:30). The seedlings were then transferred to the main pots 
(size 16) 1 mt later (at the four-leaf stage), with one plant to a pot. The plants 
were grown under natural light (800 µmol/m2/s) in the greenhouse (26/21°C 
day/night temperature and 55% relative humidity). During the experiment, 
each pot was fertigated by hand using a standard nutrient solution (a 
complete fertilizer containing N:P:K at 20:20:20 + trace element (TE) + 
amino acid) for 90 d. Each pot was fertigated every other day with 200 mL 
of nutrient solution. Urea fertilizer was also applied (0.5 g/L) every 2 wk.

Experimental site and design

	 The pot experiment was conducted in 2018 in a north-south direction. 
The experimental site was located in the research greenhouses of  
Urmia University, Urmia, Iran (44.97°E, 37.65°N at 1,365 m above mean  
sea level). The treatments consisted of five different concentrations of  
zinc nitrate (0 mg/L as the control; 0.5 mg/L; 1 mg/L; 1.5 mg/L; 2 mg/L) 
in four replications. Foliar application of different concentrations of Zn was 
performed in two stages, with the first at 2–4 leaves and the second at the 
time of budding.

Physiological parameters

	 Chlorophyll index
	 Three leaves (1, 2 and 2 leaflets) were selected and measured using 
a SPAD instrument (Minolta; Japan) and their mean was recorded as the 
chlorophyll index.

	 Fresh and dry weight of flowers
	 After harvesting the flowers, their fresh and dry weights were weighed 
to an accuracy of 0.001 g.

	 Diameter of flower and peduncle
	 The diameter of flowers was measured using a ruler and the diameter of 
peduncle was measured using a pair of digital calipers.

Phytochemical parameters

	 Extract preparation from plant samples
	 Dried plant samples were used for extraction. A sample of 0.2 g of the 
petals was powdered and poured with 5mL methanol 80% into a conical 
centrifuge tube (Falcon). The specimens were then placed in an ultrasonic 
apparatus at 30°C for 30 min for extraction. Samples were used for 
phytochemical measurements after filtration (Alirezalu et al., 2018).

Measurement of total phenol content

	 The phenolic contents were measured using Folin-Ciocalteu reagent.  
A sample of 100 µL of the extract was diluted to 1 mL (diluted 10-fold). 
Then, 1.6 mL of deionized water was added to 200 mL of diluted sample. 
Next, 200 µL of the Folin-Ciocalteu reagent was added to the mixture and 
after 5 min, 2 mL of 7% sodium carbonate was added and the mixture was 
finally made up to 5 mL with deionized water. Then, the samples were 
incubated at laboratory temperature for 35–45 min. Finally, the absorbance 
of each sample was read at 765 nm using a spectrophotometer. The standard 
curve was plotted based on gallic acid (GAE) and the results were reported 
as milligrams of gallic acid per gram on a dry weight (DW) basis (Shameh 
et al., 2019).

Measurement of total flavonoid content

	 AlCl3 reagent was used to evaluate the total flavonoid content. Initially, 
500 µL of each extract was added with 1.5 mL of 80% methanol, 100 µL 
of 10% AlCl3 solution, 100 µL of 1 M CH3CO2K solution and 3.8 mL of 
distilled water. The absorbance of the mixture was read at 380 nm after  
40 min. Quercetin was used to draw the standard curve. The total flavonoid 
content of each extract was reported based on milligrams quercetin per 
gram DW of plant (Moshari-Nasirkandi et al., 2020).

Measurement of total anthocyanin content

	 A sample of 0.1 g was crushed in Chinese mortar with 10 mL of acidic 
methanol (pure methanol and pure hydrochloric acid at a volume ratio of 
99:1, respectively) and the extract was poured into a tube and placed in the 
dark for 24 hr at 25°C. Then, the extract was centrifuged for 10 min at 4,000 
revolutions per minute (rpm) and the absorbance of the supernatant was 
read using a spectrophotometer at a wavelength of 550 nm. The extinction 
coefficient equation of ε = 33,000/mol/cm was used to calculate the 
anthocyanin concentration (Gholizadeh-Moghadam et al., 2019). Finally, 
the concentration of anthocyanin was calculated according to the relation of 
(A= εbc), where A is the sample absorption, b is the cell width and c is the 
concentration of the desired solution measured in micromoles per gram of 
petal fresh weight (FW).
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Measurement of lycopene content

	 Lycopene was measured using a spectrophotometer based on the method 
of Shameh et al. (2019). A sample of 2.5 g was weighed into an Erlenmeyer 
flask, 4 mL of deionized water was added and stirred for 1 min using a 
magnetic stirrer. Then, 50 mL of mixture (absolute ethanol:hexane:acetone 
in the ratio 2:1:1, respectively) was added and was stirred for 10 min on a 
magnetic stirrer. Then, after adding 7.5 mL of deionized water, the mixture 
was stirred for another 5 min until the two separate layers had formed. Next, 
the upper yellow layer containing lycopene was carefully separated and its 
absorbance was read at 520 nm using a spectrophotometer.

Measurement of antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl assay

	 An amount of 5 µL of the sample methanol extract (5 times diluted) 
was poured into a tube and 2,000 µL of pre-prepared 2,2-diphenyl-1-
picrylhydrazyl assay (DPPH) solution was added. The resulting solution 
was shaken and kept at room temperature for 35 min and the absorbance 
was read at 516 nm using a spectrophotometer. To prepare the blank, 50 µL 
of 80% ethanol was used instead of the extract (Shaghaghi et al., 2019) The 
calculation is shown in Equation (1):

 	
DPPHsc% = ×100

(Abe control)t = 35 min – (Abe sample)t = 35 min

(Abe control)t = 35 min    (1)

	 where Abs control = the absorption rate of the blank and Abs sample = 
the absorption rate of the sample.

Measurement of antioxidant activity using ferric reducing antioxidant 
power assay

	 The diluted extracts of the samples were mixed with 3 mL of fresh 
ferric reducing antioxidant power (FRAP) reagent (300 mM sodium 
acetate buffer with 3.6 acidity, ferric-tripyridyl-S-triazine 2 and ferric acid). 
The resulting mixture was placed in a water bath for 30 min at 37°C and 
its absorbance was read at 593 nm using a spectrophotometer. Iron sulfate 
was used to draw the standard curve and the results were expressed in 
micromoles of Fe per gram DW (Alirezalu et al., 2020).

Measurement of chlorophyll a, b, carotenoid and β-carotene contents

	 Measurement was done according to Licententhaler (1987). A sample 
of 0.1 g of leaf tissue (fully developed leaves) was crushed and lysed in a 
Chinese mortar with 5 mL of 100% acetone to form a uniform mass, with 
the grinding and crushing of the leaf tissue being done in liquid nitrogen 
and at a low light intensity. A sample of 0.5 mL of the mixture was removed 
and 2.5 mL of distilled water was added. The samples were centrifuged at 
2,500 rpm for 10 min. After centrifugation, the supernatant was separated 
and its absorbance was read at 663, 645 and 470 nm (A663, A645, A470) 
using a spectrophotometer. Finally, using the following Equation 2–5, the 
contents of chlorophyll a, b, total carotenoid and β-carotene of samples were 

obtained (Lichtenthaler, 1987):

	 Ca = 12.7 (A663) – 2.69 (A645)	 (2)
	 Cb = 22.9 (A645) – 4.68 (A663)	 (3)
	 Total carotenoids = 1,000 A470 – 2.270 Ca – 81.4 Cb / 227	 (4)
	 β-Carotene = 0.854 A479 – 0.312 A645 + 0.039 A663 – 0.005	 (5)

Statistical analysis

	 Data were analyzed using analysis of variance facilitated by the SAS 
9.13 software (SAS Institute, 2008). Comparisons of means was done using 
Duncan’s new multiple range test. 

Results

	 The analysis of variance of different morphological, physiological and 
phytochemical parameters in marigold grown under different concentrations 
of Zn demonstrated that the treatment effects were highly significant (p < 
0.01) in all traits except flower diameter.

Fresh and dry weight of flowers

	 The results showed that the effect of different concentrations of Zn 
on flower fresh weight and dry weight were highly significant (p < 0.01), 
as shown in Table 1. The highest fresh weight was observed in the fourth 
treatment (9.66 g) and the lowest fresh weight (5.43 g) in the fifth treatment 
(Fig. 1A). The different Zn concentrations had no significant effect on 
flower fresh weight though with increasing Zn concentration, the flower 
fresh weight of marigold decreased. The highest flower dry weight (0.86 g) 
was observed in the control treatment and the lowest dry weight (0.55 g) in 
the fifth treatment. However, there was no significant difference between 
the control and the fourth treatment (Fig. 1B).

Diameter of flower and peduncle

	 The data analysis (Table 1) showed that there were no significant 
differences among the different concentrations of Zn in flower diameter, 
but a highly significant (p < 0.01) difference was observed in the peduncle 
diameter. There were no significant differences among the first to fourth 
treatments in peduncle diameter. The lowest peduncle diameter (3.81 mm) 
was obtained in the fifth treatment (Fig. 1C).

Chlorophyll index

	 Data analysis (Table 1) revealed that the effect of different concentrations 
of Zn on chlorophyll index was significant (p < 0.01). Different concentrations 
of Zn, up to the fourth treatment had an increasing effect on the chlorophyll 
index and this decreased with increasing Zn concentration in the fifth 
treatment. The highest chlorophyll index (53.03) was observed in the fourth 
treatment and the lowest chlorophyll index (48.23) was in the control treatment  
(Fig. 1D).

Table 1	 Results of analysis of variance (F-value) of morphological parameters of marigold
Source of Variation df Fresh weight Dry weight Flower diameter Peduncle diameter Chlorophyll index
Zinc 4 9.003** 0.045** 0.321ns 0.248** 11.559**
Error 10 0.074 0.001 0.092 0.038 0.32
CV 3.626 4.335 3.512 4.541 1.108

** = significant at p < 0.01; ns = not significant; CV = Coefficient of variation
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Fig. 1	 Effect of different concentrations of zinc on marigold: (A) fresh weight; (B) dry weight; (C) peduncle diameter; (D) chlorophyll index, where different 
lowercase letters above bars indicate highly significant (p < 0.01) difference. Error bars represent SD.

Chlorophyll a and b contents

	 Data analysis (Table 2) showed that there was a significant (p < 0.01) 
difference between different concentrations of Zn in terms of the 
chlorophyll a, b and carotenoids contents. Different concentrations of 
Zn, from the first to the fourth treatment, had an additive effect on the 
chlorophyll a and b contents, but in the fifth treatment the amount of 
chlorophyll a decreased. The highest chlorophyll a content (16 mg/g 
FW) was observed in the fourth treatment and the lowest chlorophyll 
a content (6.55 mg/g FW) was in the control treatment (Fig. 2A).  
In addition, the highest chlorophyll b content (6.283 mg/g FW) was 
observed in the fourth treatment and the lowest chlorophyll b content (3.34 
mg/g FW) was in the control treatment (Fig. 2B).

Carotenoid contents

	 Data analysis (Table 2) showed that there was a significant (p < 0.01) 
difference between the different concentrations of Zn in terms of the 
carotenoids content. The highest carotenoid content (15.44 mg/g FW) was 
observed in the fourth treatment and the lowest (7.17 mg/g FW) was in the 
fifth treatment (Fig. 2C).

β-carotene content

	 Data analysis (Table 2) showed that there was a significant (p < 0.01) 
difference between the different concentrations of Zn for the beta-carotene 
content. The highest beta-carotene content (13.12 µg/g FW) was observed 
in the fourth treatment and the lowest (6.05 µg/g FW) was in the fifth 
treatment (Fig. 2D).

Lycopene content

	 The results of the analysis of variance in Table 2 showed that there was 
a significant (p < 0.01) difference between the different concentrations of 
Zn in terms of the lycopene content at 0.01 level. The highest amount of 
lycopene was observed in the fifth treatment (6.44 µg/g FW) and the lowest 
(2.98 µg/g FW) was in the third treatment (Fig. 3A).

Anthocyanin content

	 The results of the analysis of variance in Table 3 showed that there was 
a significant (p < 0.01) difference between the different concentrations of 
Zn in terms of the anthocyanin content. The highest amount of anthocyanin 
(144.97 μmol/g FW) was observed in the fifth treatment and the lowest 
amount (129.19 μmol/g FW) was in the fourth treatment (Fig. 3B).

Total phenol content

	 The effect of different concentrations of Zn on phenol content was 
significant (p < 0.01), as shown in Table 3. The control, second, third and 
fourth treatments were not significantly different. The highest amount  
of phenol (46.78 mg GAE/g DW) was recorded in the fifth treatment  
(Fig. 3C).

Total flavonoid content

	 The results of data analysis (Table 3) showed that there was a significant 
(p < 0.01) difference between the different concentrations of Zn in the 
flavonoid content. The highest flavonoid content (8.84 mg quercetin/g DW) 
was observed in the third treatment and the lowest (6.07 mg quercetin/g 
DW) was in the second treatment. However, there were no significant 
differences among the third, fourth and fifth treatments (Fig. 3D).
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Table 2	 Results of analysis of variance (F-value) of physiological and phytochemical parameters of marigold
Source of Variation df Chlorophyll a Chlorophyll b Carotenoids Beta-carotene Lycopene
Zinc 4 43.695** 3.946** 33.879** 24.646** 6.072**
Error 10 0.047 0.012 0.003 0.002 0.005
CV 1.983 2.386 0.517 0.522 1.555

** = significant at p < 0.01; df = degree of freedom; CV = Coefficient of variation

Fig. 2	 Effect of different concentrations of zinc on marigold: (A) chlorophyll a content; (B) chlorophyll b content; (C) carotenoid content; (D) β-carotene content, 
where different lowercase letters above bars indicate highly significant (p < 0.01) difference. Error bars represent SD.

Fig. 3	 Effect of different concentrations of zinc on marigold: (A) lycopene content; (B) anthocyanin content; (C) total phenol content and (D) total flavonoid 
content, where different lowercase letters above bars indicate highly significant (p < 0.01) difference. Error bars represent SD.
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Fig. 4	 Effect of different concentrations of zinc on antioxidant activity of marigold: (A) ferric reducing antioxidant power (FRAP); (B) 2,2-diphenyl-1-
picrylhydrazyl (DPPH) assay, where different lowercase letters above bars indicate highly significant (p < 0.01) difference. Error bars represent SD.

Table 3	 Results of analysis of variance (F-value)of phytochemical parameters of marigold
Source of Variation df Total anthocyanin Total phenol Total flavonoids Antioxidant Activity 

(FRAP)
Antioxidant activity 

(DPPH)
Zinc 4 4294.7** 51.225** 6.278** 11506.7** 607.68**
Error 10 454.11 1.919 1.919 116.432 26.936
CV 12.07 3.504 3.504 4.3 16.31

FRAP = ferric ion reducing antioxidant power; DPPH = 2, 2-diphenyl-1-picrylhydrazyl
** = significant at p < 0.01; df = degree of freedom; CV = Coefficient of variation

Antioxidant activity using ferric ion reducing antioxidant power assay

	 The effect of different concentrations of Zn treatment on antioxidant 
activity was significant (p < 0.01), as shown in Table 3. The highest 
activity of antioxidant (309.56 µmol Fe++/g DW) was observed in the third 
treatment and the lowest (184.81 µmol Fe++/g DW) in the control treatment. 
There was no significant difference between the third and fifth treatments 
(Fig. 4A).

Antioxidant activity by 2,2-diphenyl-1-picrylhydrazyl assay 

	 The results of data analysis in Table 3 showed that there were 
significant (p < 0.01) differences among the different concentrations of Zn 
in terms of the DPPH antioxidant activity. The highest antioxidant activity 
(49.06%) was observed in the third treatment and the lowest (9.74%) was in 
the control treatment (Fig. 4B).

Discussion

	 Researchers have noted that Zn is an important element in plant 
development and can affect flowering (Butnariu et al., 2008; Srivastava 
and Singh, 2009; Hada et al. 2014; Nasiri and Najafi, 2015), which was 
confirmed by the current results. Srivastava and Singh (2009) indicated that 
a foliar application of Zn at various levels (100 g, 200 g, 300 g) significantly 
induced flowering intensity. As mentioned above, Zn caused an increase 
in the fresh and dry weights and similar results were reported by Younis 
et al. (2013), who argued that using essential micronutrients such as Zn 
resulted in improved dry and fresh weights in flowers. The current results 
also indicated that Zn could increase the length of the flower and peduncle 
in agreement with Nahed and Balbaa (2007) who reported similar results 
in their study on Salvia. In addition, Bashir et al. (2013) reported that the 
application of microelements on plants enhanced the stalk length.

	 The current word indicated that a foliar application of Zn fertilizer 
improved growth and photosynthetic characteristics. The biosynthesis 
of photosynthetic pigments such as chlorophyll is enhanced by Zn as a 
micronutrient acting as a co-factor with and as a catalytic agent of various 
enzymes for the normal development of pigment synthesis (Balashouri, 
1995). Furthermore, Zn is known to have a stabilizing and protective 
effect on cell membranes; improving the integrity of cell membranes may 
be useful for the photosynthetic system of plants (Cakmak, 2010). In the 
current study, the chlorophyll index increased following Zn applications. 
In contrast, Hu and Sparks (1991) reported that Zn deficiency reduced the 
content of photosynthetic pigments in the leaves of Carya illinoensis, while, 
on the other hand, the use of exogenous Zn on the leaves of Lycopersicone 
sculentum increased the photosynthetic pigments in the leaves (Kaya and 
Higgs, 2002). Derakhshani et al. (2011) reported that an exogenous spray 
of Zn improved the chlorophyll index but their result was not significant. 
The contents of photosynthetic pigments in Triticum aestivum leaves 
revealed that these were enhanced as the levels of Zn in the soil were raised 
(Hemantaranjan and Garg, 1988) and the current results also reflected 
this. Radić et al. (2010) showed that there were significant decreases 
(30%) in photosynthetic pigments in plants exposed to Zn treatments 
compared with the control. The current data showed there was a significant  
(p < 0.01) difference between different concentrations of Zn in terms of 
the carotenoids content. Zhou et al. (2018) indicated that the contents of 
photosynthetic pigment (chlorophyll a, b and carotenoids) were increased 
following the application of various initial Zn concentrations. Prasad and 
Subbarayappa (2018) indicated that the lycopene content of the fruits 
increased with the increasing Zn levels, while Salam et al. (2010) clearly 
showed that Zn played an important role in increasing the lycopene content 
in fruit. Thus, the current results were in broad agreement with many other 
studies.
	 However, very few studies has been conducted on the effect of Zn 
fertilizer on the improvement of phenolic compounds. As sucrose has 
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a positive effect on the synthesis of phenolic compounds, Zn fertilizer 
increases the synthesis of phenolic compounds by optimally regulating 
photosynthesis and sugar accumulation (Solfanelli et al., 2006; Song et 
al., 2015). Chalcone synthase and chalcone isomerase are key enzymes 
involved in the biosynthetic pathway of phytochemical compounds 
such as flavonoids; the overexpression of the VvCHI and VvF3H genes 
increased flavonoid biosynthesis and production (Pelletier and Shirley, 
1996; Verhoeyen, 2001). Foliar application of Zn fertilizer to plants 
increases the expression of these genes and enzymes and has a positive 
effect on the concentration of flavonoids (Song et al., 2015). Phenylalanine 
ammonia-lyase (PAL) and chalcone synthase (CHS) are key enzymes in 
the initial stages of the phenylpropanoid and flavonoid pathways and it has 
been reported that the application of Zn fertilizer significantly enhanced 
the transcript abundance of PAL and CHS in some plant species (Ma et 
al., 2017). The current findings revealed that a foliar application of Zn 
could improve the transcription level of genes related to the biosynthesis 
of phenolic compounds as has been reported elsewhere (Ma et al., 2017). 
Furthermore, Marichali et al. (2014) showed that exposure to elevated Zn 
concentrations increased the total phenol content in all plant parts.
	 Zn can increase the antioxidant contents such as total phenol and total 
flavonoid; an exogenous spraying of Zn improved the antioxidant capacity 
(phenolic compounds, ascorbate, reduced glutathione) of wheat flag leaves 
(Ma et al., 2017). Based on the current results, the highest amount of 
anthocyanin (144.97 μmol/g FW) was observed in the fifth treatment. There 
was a high accumulation of phenolic compound such as anthocyanins in 
the petioles of Gossypium species; however, the plant anthocyanin content 
varied with different concentrations of Zn (Brown and Wilson, 1952). 
Superoxide dismutase and catalase are important enzymes as first-line 
defense antioxidants against reactive oxygen species (ROS) in plant tissues 
(Alscher et al., 2002). Zn application significantly enhanced the transcript 
abundance of both superoxide dismutase gene expression and the activity 
of superoxide dismutase in some plant species (Gao et al., 2009; Ma et al., 
2017). Hence, Zn application could improve the activity of scavenging 
ROS by inducing gene expressions of superoxide dismutase followed by 
improved antioxidant activity.
	 Few studies have investigated the effect of Zn fertilizer on medicinal 
herbs. The current results indicated that different concentrations of Zn 
had a significant effect on the morpho-physiological and phytochemical 
parameters of marigold. The best Zn concentration for fresh weight traits, 
chlorophyll index, chlorophyll a, chlorophyll b, carotenoid and β-carotene 
was the fourth treatment (1.5 mg/L) of Zn. However, the lycopene, 
anthocyanin, total phenol and total flavonoid traits had their highest 
measured values following the fifth treatment (2 mg/L). Finally, the best 
antioxidant activity using both methods was observed in the third treatment 
(1 mg/L). These combined results provide new data for the agri-food 
industry, but further research is necessary to gain more detail and a better 
understanding of the effects of Zn fertilizer.
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