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structure are crucial information for the conservation plan of this species. The genetic
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in the Gulf of Thailand. In total, 178 fish were collected from six locations in the Gulf.
Keywords: Based on the 320 bp sequences of the mitochondrial control region of the 55 haplotypes
Blue-spotted mudskipper, observed, the most common was in 88 fish from all locations. Total haplotype diversity and

Control region,

Gonetic diversity, nucleotide diversity values (mean + SD) were 2 = 0.751 + 0.036 and © = 0.0069 + 0.0001,

Gene flow, respectively. There was a significant (p = 0.011) difference in © between inner and outer

Gulf of Thailand Gulf samples. Although the analysis of molecular variance suggested the absence of genetic
structuring within the Gulf, two clear groups of haplotypes were evident in the median-
joining network of haplotypes. Group I included haplotypes from all locations and group
II was identified by haplotypes with an additional adenine at the 16078" position based on
the mitochondrial genome sequence of B. boddarti (Accession no. KF87427). The results
of the nonmetric multidimensional scaling and Bayesian assignment test were indicative
of genetic divergence between the inner and outer Gulf, suggesting that despite the high
potential for dispersal of planktonic larvae, water currents may act as a physical barrier
to gene flow in the study area. The observed signals of population divergence between
B. boddarti from the inner and outer Gulf of Thailand may account for the presence of
this oceanographical barrier. Mismatch distributions, based on the observed number of
differences among haplotype pairs, produced a unimodal distribution with a peak close to
the y-axis, suggesting recent demographic expansion. The results could augment future
study with baseline information on the maternal genetic variation and structure of the blue-
spotted mudskipper, B. boddarti, populations in the Gulf of Thailand.
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Introduction

The blue-spotted mudskipper, Boleophthalmus boddarti
(Pallas 1770) (Actynopterygii, Gobiidae), is a benthic fish
species widely distributed in the Indo-West Pacific region
(Murdy, 1989). It can be commonly found in shallow-water
mangrove habitats and mudfiat areas, being part of the group
of fish commonly referred to as ‘mudskippers’ (Murdy, 1989).
In the Gulf of Thailand, B. boddarti is a common fish, found
along the coast, especially in mangrove and mudfiat habitats
(Murdy, 1989; Darumas, 1997). The Gulf of Thailand is
bordered by Malaysia, Thailand, Cambodia and Vietnam,
with the southern part of the Gulf connecting to the South
China Sea. The surface area of the Gulf is approximately
35,000 km? and can be divided from the north to the south
into the upper Gulf (or inner Gulf), the central Gulf and
the lower Gulf (Sripoonpan and Saramul, 2021). In this study,
the central and lower Gulf are referred to as the outer Gulf
of Thailand.

Mudskippers are ecologically important elements of
mangrove ecosystems (Clayton and Vaughan, 1988; Al-
Khayat and Jones, 1999) and have been used as environmental
bioindicators for coastal water (Ansari et al., 2014). Recently,
the populations of many mudskipper species were threatened
by the high demand of mudskipper fish for human consumption
in many eastern Asian countries and their use as ingredient for
traditional medicine, especially in India and China (Banerjee
et al., 1997), determined a high degree of exploitation of
natural populations as well as aquaculture farming (Polgar and
Lim, 2011). The habitat loss due to the decline of mangrove
forests that occurred in the 20™ century (Luther and Greenberg,
2009; Polidoro et al., 2010) can also play an important role
in the sustainability of their populations. The reduction of
these areas was caused by anthropogenic activities, such as
deforestation, pollution and coastal development (Polidoro
et al., 2010). In recent decades, the Thai mangrove arca
underwent a reduction of approximately 50% (Huitric et al.,
2002). Since mangrove forests are known to be the elective
habitat for B. boddarti, their reduction could have effect on
fish populations, particularly on the genetic structure of the
species. Another factor that plays an important role in shaping
the genetic structure of B. boddarti is its life cycle, with adults
that rarely migrate after settling on suitable habitats (Murdy,
1989). This feature suggests that this species’ potential for
dispersal depends almost exclusively on the planktonic larval
stage (Chen et al., 2015). Therefore, the loss of habitat and
oceanographic factors could have stronger effects on the

diversity and structure of the species, compared with other
marine fishes. The knowledge of a species’ genetic structure
and the level of population genetic variability is fundamental
for the management of natural resources and to plan effective
and long-term measures (Avise, 1994). Studies on the genetic
diversity and structure of mudskipper populations have focused
mostly on Boleophthalmus pectinirostris (Kanemori et al.,
2006; Liu et al., 2009; Chen et al., 2015) and Periophthalmus
spp. (Mukai and Sugimoto, 2006; He et al., 2015; Nabilsyafig
et al., 2019; Tan et al., 2020). For B. boddarti, relatively little
information is available on its genetic diversity and structure.
Only one study on genetic variation and diversity between
B. boddarti, and B. dussumeiri from the Vellar estuary
mangrove, India has been reported that random amplified
polymorphic DNA genetic markers were used and showed
that the value (mean = SD) for genetic diversity in B. boddarti
(H =0.0116 + 0.0066) was higher than that in B. dussumeiri
(H=10.0056 + 0.0024) (Ramanadevi et al., 2013).

The aim of the current study was to investigate the genetic
diversity of B. boddarti populations in the Gulf of Thailand
using sequences of a portion of the mitochondrial control
region and to discuss the factors affecting the genetic diversity
and structure of the species in the Gulf of Thailand in terms of
habitat loss and larval dispersal capability.

Materials and Methods

Ethics statements

Animal care and all experimental procedures were approved
by the Chulalongkorn University Animal Care and Use
Committee (CU-ACUC), Chulalongkorn University, Bangkok,
Thailand (Approval no.1423011).

Samples and sampling sites

The distinct characteristic of the species is the iridescent
blue spots on their brown body skin, dorsal fins, especially on
the latero-ventral origin of pectoral fins and identification was
based on the Murdy (1989) taxonomic revision. Tissue samples
(fin clips) of 178 blue-spotted mudskippers were collected from
six locations in the Gulf of Thailand. Geographical samples
were grouped into two main areas, namely the inner Gulf of
Thailand [Chachoengsao (CH, n = 39), Samut Songkhram
(SS, n =25), and Phetchaburi (PB, n = 22)] and the outer Gulf
of Thailand [Rayong (RY, n = 32), Nakhon Si Thammarat
(NK, n = 36), and Pattani (PT, n = 24)] (Fig. 1). Fish were
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captured by local fishers using traps or hand nets. Fin clips
of approximately 2 mg were taken from the pectoral fin. Prior to
taking the fin clip, each fish was shocked into unconsciousness
by immersion in seawater mixed with ice 1:1 (weight per
volume, w/v). The fin clips were preserved in absolute ethanol
and kept at -20°C.

Extraction of genomic DNA and polymerase chain reaction

The extraction of genomic DNA from the fin clips was
carried out using a modified salting out procedure (Miller
et al., 1988). Successively, individual DNA pellets were re-
suspended in 25 pL of Tris-EDTA (ethylenediaminetetraacetic
acid) buffer (10 mM Tris-HCI pH 8.0, 1 mM EDTA pH 8.0).

The 20 pL polymerase chain reaction (PCR) solution
consisted of 10 pL. KAPA Taq ready mix (KAPABIOSYSTEM,
USA), 7.4 uL distilled water, 0.4 pmol of both forward and
reverse primers (B.boddNCR-F [5'-CAC GAA CCC ATT CAA
ACA AG-3"] and B.boddNCR-R [5'-AGT TTA CGA GTT TAG
GGG GG-3"], designed by the authors), and 10-20 ng template
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Fig. 1 Six sampling sites of Boleophtalmus boddarti in Gulf of Thailand,
where inner Gulf sites are CH = Chachoengsao, SS = Samut Songkhram
and PB = Phetchaburi, outer Gulf sites are RY = Rayong, NK = Nakhon
Si Thammarat and PT = Pattani and four main rivers in the inner Gulf are
BPR = Bang-Pakong River, CPR = Chao-Phraya River, TCR = Tha-Chin
River and MKR = Mae-Klong River

DNA. The PCR reactions were carried out using a PTC-200
thermocycler (Bio-Rad, USA) under the following conditions:
95°C for 3 min, followed by 35 cycles of 95°C for 30 s, 58°C
for 45 s and 72°C for 45 s and finally at 72°C for 7 min.
Each PCR product was run through 1.0% (w/v) agarose gel
electrophoresis, stained with ethidium bromide and visualized
under an ultraviolet transilluminator.

DNA sequencing

The PCR products were purified using polyethylene
glycol (PEG) precipitation (Paithankar and Prasad, 1991) and
sequenced using the dideoxyterminal method (Sanger et al.,
1977) with a BigDye™ Terminator v3.1 Cycle Sequencing Kit
(Thermo Fisher Scientific, USA). Sequencing reactions were
carried out under the following condition: 96°C for 2 min,
followed by 30 cycles at 96°C for 10 s, 50°C for 5 s and 60°C
for 2 min and were finally cooled at 20°C for 20 min.

Data analysis

Sequences were aligned using ClustalX v.1.83 (Thompson
et al., 1997) and corrected visually. The correct taxonomic
assignment of fin clips to B. boddarti was assessed by
comparing the obtained sequences with those available on
GenBank, using the BLAST tool (https://ncbi.nlm.nih.gov/).
Haplotype frequencies, haplotype diversity (%) and nucleotide
diversity (m) were calculated using DnaSP v.5.10 (Librado
and Rozas, 2009). Differences between the total haplotype
and nucleotide diversity indices calculated for samples of the
inner and outer Gulf were assessed based on a t-test on arcsine
square-root-transformed values (Archie, 1985). Two-tailed
t-tests were used because there was no expected direction of
differences in the haplotype or nucleotide diversity values. The
median-joining network of haplotypes was generated using
NETWORK v. 5.0.0.1 (Bandelt et al., 1999). The pairwise
genetic differentiation between populations was calculated
based on the fixation index (Fy;), using Arlequin v. 3.5.1.2
(Excoffier and Lischer, 2010). Based on these estimates,
sampling locations were ordinated in a bi-dimensional space
using nonmetric multidimensional scaling because it may show
patterns of genetic relatedness not evidenced by traditional
cluster analyses, when neither dichotomic structure nor
phylogenetic inference are required (Guiller et al., 1998).

Analysis of molecular variance (Excoffier et al., 1992)
was used to examine the partitioning of genetic variance
into: 1) within local samples, 2) among local samples within
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groups and 3) between groups. It was hypothesized that
the populations consisted of two groups according to the
geography of the Gulf, namely the inner Gulf (CH, SS
and PB) and the outer Gulf of Thailand (RY, NK and PT).
The significance of ®-statistics values was assessed based
on permutation tests with 10,000 replicates, as implemented
in Arlequin (Excoffier and Lischer, 2010).

BAPSv. 5.2 (Corander et al., 2003; Corander and Marttinen,
2006) was used to detect hidden population substructuring by
clustering genetically-similar sampled individuals into groups,
hereafter called ‘haplogroups’. BAPS adopts a Bayesian
approach with a stochastic optimization algorithm for analyzing
models of population structure, which greatly improves the
speed of the analysis compared to traditional MCMC-based
algorithms (Corander and Marttinen, 2006). When testing
for population clusters, five replicates were run for each
value of k (the maximum number of haplogroups) up to k =
9. In addition, the number of reference individuals nri = 500
was used and the admixture analysis was repeated 500 times
per individual.

Population history was inferred based on mismatch
distribution analysis (Rogers and Harpending, 1992) of the
total data set, as implemented in Arlequin. The data fit with
the expected models of demographic (Rogers and Harpending,
1992) and spatial expansions (Excoffier, 2004) was evaluated
based on a bootstrap approach (Schneider and Excoffier, 1999),
using the sum of squared deviations between the observed
and the expected mismatch distributions. In addition, the
raggedness index (r; Harpending, 1994) and Fj statistics of
Fu (1997) were computed to assess population expansion and
tested with coalescent simulations with 10,000 replicates, as
implemented in DnaSp.

Results

In total, 178 sequences of the mitochondrial control region,
aligned and trimmed to 320 bp, corresponded to 55 haplotypes
(GenBank accession numbers KY560833-KY561011). The
most common haplotype (H1) was shared by all local samples,
whereas 45 haplotypes (81.8%) were location-private. The
insertion of an adenine at the 16078" base position, based on
the mitochondrial genome sequence of B. boddarti (Accession
no. KF87427), was observed in 14 haplotypes, of which 12
(H25, H29, H30, H32, H34, H37, H39, H40, H42, H44, H49,
H50) were unique. The insertion of an adenine was found in
individuals from RY, NK and PT, which were located in the
outer Gulf of Thailand (Table 1).

Table 1 Haplotypes of partial mtDNA control region detected in Boleophtalmus boddarti from six locations within Gulf of Thailand, where sshaded cells show haplotypes with additional adenine

at 16078™ position of sequence
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Values (mean + SD) for the haplotype diversity and
nucleotide diversity ranged from 4 = 0.540 + 0.117 (for SS)
to 0.830 + 0.068 (for PT) and © = 0.0029 + 0.0023 (for SS) to
0.0094 + 0.0056 (for RY), respectively. The total haplotype
diversity and nucleotide diversity were # = 0.751 = 0.036 and
= 0.0069 = 0.0001, respectively (Table 2). The total values
of haplotype diversity did not significantly differ between
the inner and outer Gulf of Thailand based on a t-test (p =
0.538), whereas those of nucleotide diversity did (p = 0.011).
This suggested that the genetic diversity within each of
the two areas was different at the nucleotide level.
The occurrence of the insertion of an adenine at the 16078
position of the sequences in individuals of group II may
have accounted for the difference between the two values of
nucleotide diversity.

The analysis of molecular variance showed that there was
no significant differentiation between samples from the inner
(CH, SS, PB) and outer Gulf of Thailand (RY, NK, PT), (®¢;
= 0.046, p > 0.05). On the other hand, there were significant
molecular variances for the ‘within local samples’ and ‘among
local samples within group’ components (Table 3).
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Nonmetric multidimensional scaling of pairwise Fg; values
separated the inner and outer sampling locations of B. boddarti
along the vertical axis (Fig. 2). The very low value of stress index
(< 0.001) indicated that relative distances among samples on the
plot accurately represented the levels of their genetic divergence.
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Fig. 2 Nonmetric multidimensional scaling plot of Boleophtalmus
boddarti samples based on pairwise Fg; values, where dashed line
indicates separation of inner Gulf samples (CH = Chachoengsao, SS =
Samut Songkhram and PB = Phetchaburi) from outer Gulf samples (RY =
Rayong, NK = Nakhon Si Thammarat and PT = Pattani) along vertical axis

Table 2 Estimates of genetic diversity in six Boleophtalmus boddarti locations in Gulf of Thailand

Sampling site Code n Nh h (£ SD) n (= SD)
Inner Gulf of Thailand

Chachoengsao CH 39 17 0.781+0.005 0.0045+0.0008
Samut Songkram SS 25 7 0.540+0.117 0.0029+0.0023
Phetchaburi PB 22 8 0.788+0.068 0.0049+0.0034
Total 86 27 0.732+0.052 0.0045+0.0006
Outer Gulf of Thailand

Rayong RY 32 16 0.811+0.071 0.0094+0.0056
Nakhon Si Thammarat NK 36 12 0.656+0.088 0.0073+0.0046
Pattani PT 24 10 0.830+0.068 0.0089+0.0054
Total 92 32 0.764+0.047 0.0086+0.0009
All locations 178 55 0.751+0.036 0.0069+0.0001

n = sample size; Nh = number of haplotypes; 4 = haplotype diversity; © = nucleotide diversity

Table 3 Analysis of molecular variance based on control region haplotypes among two groups of Boleophtalmus boddarti collected from inner Gulf and

outer Gulf of Thailand

Source of variation df Variance component  Percentage of variation D-statistic p-value
Between groups 1 0.05400 4.64 D =0.046 0.087
Among local samples within groups 4 0.04460 3.80 DOy = 0.040 0.004
Within local samples 172 1.06547 91.56 Oy =0.084 <0.001

df = degrees of freedom
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The median-joining network of haplotypes could be split
into two groups, based on the absence (group I) or insertion
(group II) of an adenine at the 16078" position. In addition,
group I had a clear star-phylogeny, with the most common
haplotype (H1) connected by one or two mutations to other
low-frequency or unique haplotypes (Fig. 3). In group II, there
were 14 haplotypes, of which two were shared (H24 and H25)
and 12 were unique haplotypes (H26, H30, H31, H33, H35,
H38, H40, H41, H43, H45, H50, H51), as shown in Table 1.
All haplotypes found in the group had the adenine insertion
and were present only in the samples located in the outer
Gulf of Thailand (Fig 3).

The Bayesian assignment test revealed the presence of
two haplogroups (HGs) with maximum value of associated
posterior probability (PP = 1). No instances of uncertain
assignment were detected. HGs had different abundances in the
six locations considered (Fig 4). HG1 was the most frequent,
being represented in all regions, whereas HG2 was present in
the three locations from the outer Gulf of Thailand (RY, NK,
PT) and in a small portion for the PB location (Fig. 4).

The mismatch distribution deviated significantly from the
model of Rogers and Harpending (1992) of recent demographic
expansion; on the other hand, it fitted the curve relative to the
model of spatial expansion (Fig. 5). Furthermore, the highly
significant value of the Fu (1997) index was consistent with
population expansion (Fg=-71.683, p <0.001).
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(O The Inner Gulf of Thailand

[ The Outer Gulf of Thailand

@ Median vectors

~~~~~

Group 1T

Fig. 3 Median joining network of partial control region haplotypes
for Boleophtalmus boddarti in Gulf of Thailand, where haplotypes are
represented as circles, area of each circle is proportional to the number
of individuals exhibiting that haplotype, each line represents a mutational
step, whereas transversal bars represent additional mutational steps,
gray circles represent median vectors and the two groups are defined on
the basis of the insertion of an adenine at 16078™ position of sequences
of group II
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Fig. 4 Results of Bayesian assignment analysis for sequences of control
region in 178 individuals of Boleophtalmus boddarti, where pie charts
show pooled individuals in respective six locations ( CH = Chachoengsao,
SS = Samut Songkhram and PB = Phetchaburi, RY = Rayong,
NK = Nakhon Si Thammarat and PT = Pattani), ggray shows proportion
of haplogroup I and black shows proportion of haplogroup II
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Fig.5 Frequency distributions of number of pairwise nucleotide
differences (mismatch) between CR haplotypes for total dataset for
Boleophtalmus boddarti, where solid and dotted lines are theoretical
distributions under assumptions of spatial and temporal demographic
expansions, respectively, and SSD is sum of squared deviations
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Discussion

The analysis of the 178 sequences of the mitochondrial
control region in B. boddarti provided a contribution to the
understanding of the species’ genetic structure in the Gulf of
Thailand. The high number of unique haplotypes within each
sampling location suggested the occurrence of a degree of
genetic diversity within that area, consistent with the results
reported for the closely related species B. pectinirostris, through
the analysis of cytochrome b (Kanemori et al., 2006)and the
control region (Chen et al., 2015). In addition, the current
results indicated that B. boddarti in the Gulf of Thailand was
characterized by moderate-to-high levels of genetic variability,
as shown by the haplotype diversity values. The total value of
haplotype diversity (7 = 0.751 £ 0.036) was lower than that
found in the congeneric B. pectinirostris, which had a mean =+
SD value of & = 0.965 + 0.006 (Chen et al., 2015). However,
it was slightly higher than that reported for Periophthalmus
novemradiatus of h = 0.613 (Tan et al., 2020). The total values
of nucleotide diversity in B. boddarti and B. pectinirostris were
similar, being © = 0.0069 + 0.0001 and = = 0.0064 + 0.0002,
respectively (Chen et al., 2015). These values were higher than
that for P novemradiatus of m = 0.0020 (Tan et al., 2020)

In the current investigation, the genetic diversity values of
the B. boddarti samples from the inner Gulf of Thailand, namely
Samut Songkhram (SS), Phetchaburi (PB) and Chachoengsao
(CH), were slightly lower than those of the samples from the
outer Gulf (Rayong (RY), Nakhon Si Thammarat (NK), Pattani
(PT)). The lowest mean + SD genetic diversity was in the
SS population (2 = 0.540 = 0.117 and © = 0.0029 + 0.0023)
(Table 2). A decline in the population size due to the
anthropogenic disturbance occurring in this area may have
accounted for the low genetic diversity (Bank et al., 2013).
However, other local factors such as pollution, habitat loss
and restricted gene flow may have contributed to that result
(Kanemori et al., 2006; Takegaki, 2008; Chen et al., 2015).
Other investigations on marine animals have reported that some
of the effects of water pollution are reductions in the genetic
diversity and the effective population size, such as in the
mussel Mytilus galloprovincialis (Ma et al., 2000), the barnacle
Balanus glandula (Ma et al., 2000), the sandhopper, Talitrus
saltator (Ungherese et al., 2010) and the crab Pachygrapsus
marmoratus (Fratini et al., 2008). Anthropogenic impacts on
the coastal environments within the inner Gulf of Thailand have
been increasing over the past two decades, due to the growing
development of industrialization and other economic activities
(Wattayakorn, 2006). The high degree of anthropogenic

disturbance can heavily affect coastal environments and reduce
intertidal habitats for marine species, especially mangrove
areas (Cheevaporn and Menasveta, 2003).

The expectation of effective gene flow due to larval
dispersal in B. boddarti was corroborated by the hierarchical
analysis of genetic structure, which showed the absence of
deep structuring in the Gulf of Thailand, despite the patchy
distribution of mangrove habitats in the study area. The lack of
genetic structuring was reported for other marine organisms in
the Gulf of Thailand, such as ornate threadfin bream (Supmee
et al., 2021), cobia (Phinchongsakuldit et al., 2013) and green
mussel (Prakoon et al., 2010). These studies suggested that
dispersal ability, water current and the lack of strong physical
barrier in the area may have accounted for their findings. Adult
mudskippers hardly migrate after settling on suitable habitats
(Murdy, 1989; Hong et al., 2007); hence, the planktonic larvae
play a major role in producing gene flow (Chen et al., 2015).
However, the presence of group II in the haplotype network
(Fig. 3) and the differences in proportions of individuals for the
two haplogroups based on the Bayesian assignment analysis
(Fig. 4) suggested the occurrence of genetic divergence
between the inner and outer Gulf. The dispersal ability of
fish larvae is not only dependent on the duration of their
planktonic stage, because other factors such as the habitat type
and water currents may have important effects (Shanks, 2009).
For example, in red lionfish (Pterois volitans) and vagabond
butterflyfish (Chaetodon vagabundus), despite their similar
lengths of the planktonic larval stage (25-40 d and 29-48
d, respectively) their dispersal distances are different, being
48.5 km in the former and 100-500 m in the latter (Shanks,
2009). Although the length of the planktonic larval stage of
B. boddarti is still unknown, if it is assumed to be similar to
that of the congeneric B. pectinirostris (30-42 d, according to
Zhang et al., 1989 and Chen et al., 2015), the dispersal distance
of B. boddarti larvae should vary from 100 m to 48.5 km. Since
no deep genetic structure of B. boddarti population was found
in the current study, it could be argued that its larvae could
have the ability to disperse throughout the area of the Gulf
with the largest geographical distance between populations
approximately 600 km. The ability of the mudskipper larvae
to disperse through long distances was also suggested in P.
novemradiatus (> 1,600 km) by Tan et al. (2020). Nevertheless,
oceanographic characteristics can influence the dispersal
ability of B. boddarti, as observed for many marine fish species
(Giovannotti et al., 2009; McManus and Woodson, 2012).
From this perspective, it is noteworthy that the surface waters
of the inner Gulf of Thailand are strongly influenced by the
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outflow of Bang-Pakong, Chao-Phraya, Tha-Chin and Mae-
Klong Rivers (Fig. 1). In the Gulf, these four major rivers
create complex gyre patterns (Sojisuporn et al., 2010). In
particular, a year-round stable gyre is present within the inner
Gulf. This gyre, which moves counterclockwise from April
to September and clockwise from October to March, could
determine a high degree of larval retention within the inner part
of the Gulf; therefore reducing genetic connectivity between
this area and the outer parts of the Gulf.

Haplotypes, having the adenine insertion at the 16078™
position, were found in individuals from RY, NK and PT that
are the three more external locations (Fig. 1 and Table 1).
According to Zhang et al. (2016) who reported on the complete
sequence of the mtDNA genome of B. boddarti from Malaysia,
the sequence of the mitochondrial control region consists
of an additional adenine at the same position (Accession
No. KF874277). This observation suggested that most of
the individuals containing the sequence with the additional
adenine are located in the southern part of the Gulf and down
to the Malay Peninsula. However, these haplotypes were also
found on the samples from the easternmost sample (RY) in the
current study. Therefore, the possibility of gene flow must be
considered between RY and the southern populations of NK
and PT. There are two possible ways for recruitment from the
southern to the eastern populations. First, the currents in the
Gulf of Thailand move from south to east in May to September
(Sojisuporn et al., 2010), which includes the spawning season
of mudskippers from August to October (Quang et al., 2016).
Second, the planktonic larvae of the fish may be transported
in ship ballast water, for vessels moving from the Songkla
port (in the southern part of the Gulf) to the Map Ta Put and
Laem Chabang ports (in the eastern part of the Gulf). Larval
dispersal mediated by ballast water was observed in round goby
Neogobius melanostomus (Gollasch et al., 2000; Hensler and
Jude, 2007). The lack of haplotypes with the additional adenine
base in the inner Gulf of Thailand suggested there were low
levels of gene flow between individuals from the inner Gulf of
Thailand and those outside the area. Surface water circulation
in the inner Gulf could represent an oceanographical barrier to
gene flow between the areas.

The pattern of high haplotype diversity and low nucleotide
diversity observed in B. boddarti in the Gulf of Thailand
suggested that the large number of closely-related haplotypes,
which were separated by only a few mutations, might have
accumulated by the rapid expansion of populations after
the effect of population bottlenecking (Grant and Bowen,
1998) and low effective population size (Stepien, 1999).

The F statistics of Fu (1997) and the mismatch distribution
suggested that recent spatial expansion had occurred. Habitat
availability as a consequence of sea-level rise after the last
glaciations may account for this result (Janko et al., 2007;
Voris, 2000; Ho et al., 2015).

In conclusion, the current results did not show deep genetic
structuring of the species in the study area. However, they
revealed lower genetic diversity in the inner Gulf populations
and highlighted the occurrence of genetic divergence between
the inner and outer Gulf populations via the presence of
unique haplotypes clustering as group II for the outer Gulf
populations (Fig. 3) and the differences in proportions of
individuals of the two haplogroups in the populations based on
the Bayesian assignment analysis (Fig. 4). These results could
provide baseline information for future study on the maternal
genetic variation and structure of blue-spotted mudskipper,
Boleophtalmus boddarti populations in the Gulf of Thailand.
From a conservation perspective, the absence of pronounced
genetic structuring of the blue-spotted mudskipper shown in
the current study suggested that B. boddarti in the Gulf of
Thailand can be managed as a single population. However,
if the genetic structuring is not detected, further investigation
is needed using other genetic markers, such as other genes in
the Mt DNA or microsatellites, to consolidate the results or to
improve understanding on the genetic structure of the species.
Since the adults of B. boddarti rarely migrate, the preservation
of its habitat must be of concern in terms of both habitat loss
and pollution, especially in the inner Gulf of Thailand, where
lower genetic diversity was identified and anthropogenic
disturbance continues to increase rapidly.
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