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Abstract

Corrugated boxes are the most important type of distribution packaging made from
natural resources. Optimization of the fiber used versus the strength requirement
is necessary. This research compared a regression model, a backpropagation neural
network (BPN) model and a radial basis function network (RBFN) model with traditional
models, namely, the Whitsitt model and the Markstrom model, in predicting the edgewise
compression strength (ECT) of corrugated fiberboard from related design factors. Three
types of modeling patterns were studied: a model for single wall board, a model for double
wall board and a model for both single and double wall boards. The results indicated that
the predictive models for both the single and double wall boards were comparable to
the other two in terms of prediction accuracy and were within an acceptable industrial
error range. The 16-12-1 BPN model and the polynomial regression model were the two
best choices for predicting the ECT of both single and double wall boards together in
one model. The BPN model had a mean absolute percentage error (MAPE) of 4.23%,
while the polynomial regression model had a MAPE of 5.14%. In addition, both models
identified the most influential design factors affecting ECT: the basis weight of paper
for the inner, middle and outer liners; the basis weight of the corrugated medium for
the flute connected to the outer liner; the edge length of the corrugated board;
and the height of the flute connected to the inner liner.

Introduction

an acceptable cost (Park and Kim, 2010). The strength of a corrugated
box is the main concern during the design and development

Corrugated boxes are used extensively as transport packaging  stage since it has a significant impact on stacking and space
due to their light weight, environmental acceptance and structural ~ management decisions during transportation and storage,

design flexibility, by addressing transportation needs with  especially for ease of handling of fragile goods (Whitsitt and
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The composition and strength of corrugated fiberboards
directly affect the strength of corrugated boxes and natural
fibers derived from renewable resources that are either virgin
or recycled can be mixed and converted into kraft liners for
corrugated fiberboards and corrugated boxes production
respectively (Archaviboonyobu et al., 2020). The ratio of
fiber contents compared to other additives affects the strength
of kraft liners and the final performance of corrugated boxes
(Archaviboonyobu et al., 2020). Therefore, the optimization
of the resources used versus the strength of the packaging
materials need to be investigated. At present, accurate
decision tools for packaging materials optimization are limited
(Archaviboonyobu et al., 2020). However, all manufacturers,
especially in the packaging and materials industries, have
identified the urgent need for proof of their compliance
with global guidelines under the circular economy concept
(Archaviboonyobu et al., 2020).

Many tests are available to measure the strength of a
corrugated fiberboard, including the edge crush test, the flat
crush test and bursting strength. However, the edgewise
compression strength (ECT) from an edge crust test has a
direct relationship with the strength of a corrugated fiberboard
and is commonly used as a major parameter to estimate the
box compression strength (BCT) which represents the total
strength of a corrugated box structure (McKee et al., 1963).
Consequently, an accurate ECT estimation of corrugated boards
from structural parameters, such as panel size, type of flute and
composition, as well as grammage of paper combination, is
advantageous for the design of corrugated boxes, ensuring
that they have enough compression strength to protect the
products within. This would allow designers to select the
proper structure of a corrugated fiberboard in a shorter time
and without performing costly strength analysis. Traditionally,
mathematical models have been applied to predict the ECT
of a corrugated fiberboard, using data from a ring crush test
(RCT) or the board’s components such as the basis weight of
the inner liner, medium and outer liner. For example, Whitsitt
(1990) described a mathematical model to predict the ECT of a
corrugated fiberboard, for a single wall board and for a double
wall board using Equations 1 and 2, respectively:

ECT = 0.8(L1+ tM + L2) + 2.1 (1)

where ECT is the edge crush test value or edgewise compression
strength, L1 is the ring crush value of the outer liner, t is the
take-up factor of the medium, M is the ring crush value of the
medium and L2 is the ring crush value of the inner liner.
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ECT = 0.8(L1 + tM1 +L2 + tM2 +L3) + 2.1 ©)

where ECT is the edge crush value, L1 is the ring crush
value of the outer liner, M1 and M2 are the ring crush values
of the flutes, L2 is the ring crush value of the middle layer liner
and L3 is the ring crush value of the inner liner.

Whitsitt’s model is very popular for determining the
strength of corrugated fiberboards in practice since it is linear
and straightforward to implement, although its limitation is that
the constants 0.8 and 2.1 are applied for all structures of single
wall and double wall board, respectively. Later, Markstrom
(1999) generalized Whitsitt’s model, as shown in Equation 3:

ECT=k(LI+tM+L2)+¢ 3)

where ECT is the edgewise compression strength, k and ¢
are specific constants of the flute, L1 is the ring crush value of
the outer liner, t is the take-up factor of the medium, M is the
ring crush value of the medium and L2 is the ring crush value
of the inner liner.

However, both models are only able to achieve low ECT
prediction accuracy, since they are linear in nature and only
take into account the take-up factor of the flute and the ring
crush values, which may not represent the true relationship
function. Less accurate models can pose a major problem
in practice. Frank (2014) asserted that the current predictive
models were acceptable; however, their performance was
at least 10 times less accurate than material models for
most other packaging. Furthermore, their scope was quite
narrow, focusing on a single wall or double wall only.
In fact, corrugated fiberboards have a complex composition.
Typically, the content of corrugated liners is composed of
virgin and recycled fibers as a skeleton matrix and starch-based
or inorganic-based substances as fillers or additives. Various
chemicals are also added to improve specific functionality of
the formed paper. The compression strength of the corrugated
fiberboards depends not only on the material composition
but also on the design of flute structure, the converting
process and storage environment (Pommier and Poustis,
1990; Srihirun, 2008; Nordstrand, 2004). Thus, ECT may be
considered nonlinear since several factors contribute to the
ultimate strength (Pommier and Poustis, 1990; Srihirun, 2008;
Nordstrand, 2004; Archaviboonyobu et al., 2020).

Regression, the most popular empirical model, is capable
of approximating the nonlinear relationship between several
independent variables (input) and a dependent variable
(output). The regression model’s parameters (regression
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coefficients) are calculated from the observed pairs of data
points (input-output) via least squares estimation. Regression
models are very straightforward to implement; nevertheless,
they require restrictive assumptions on the error terms, such as
normal random errors, constant error variance and the absence
of multicollinearity (Madu, 1990). Their performance also
depends on the proper selection of functional forms (Kutner et
al., 2008). In addition, high order regression tends to produce
approximation functions that oscillate widely and thus lead to
degraded prediction accuracy (Madu, 1990).

An alternative nonlinear empirical model is an artificial
neural network (ANN) model that requires no a priori functional
form or knowledge of the input-output relationship, does not
adhere to any statistical assumptions and can accommodate
several inputs and outputs. ANN models have been described in
detail by Fausett (1994). In summary, an ANN model develops
a map from the input variables to the output variables through
an iterative learning process. It consists of a large number of
processing elements (called artificial neurons) organized into a
sequence of layers with connections between layers. Associated
with each connection is a weight that represents the information
being used to approximate the relationship in the data. These
weights are iteratively adjusted by a learning process to optimal
values that produce the best fit of the predicted outputs over the
learning or training data. Input neurons receive the input data
and pass them on to the next layer. Each neuron in the hidden or
the output layer sums its input signals from the previous layer
weighted by the connection weights and applies an activation
function to determine its output signal. The ANN architecture
(the arrangement of neurons into layers and the connection
pattern within and between layers), a training or learning
algorithm, and an activation function are used to characterize
the ANN paradigm (Fausett, 1994). The current investigated
and described in detail a backpropagation network and a radial
basis function network.

A back propagation network (BPN) is a multi-layer neural
network that utilizes a gradient-descent training algorithm
with the aim of minimizing the total squared error of the
output computed by the network (Rumelhart et al., 1986).
The standard BPN training algorithm involves three stages:
the feedforward of the input training set, calculation and
backpropagation of error and adjustment of the weights.
At the onset of training, all weights are randomly initialized.
For a given set of inputs to the network, the output of
each neuron in the output layer is computed using a nonlinear
activation function and compared with the corresponding
target output response. The errors associated with the output
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layer are propagated backward to the hidden layer and
finally to the input layer to calculate the weight adjustments
between the output and hidden layers as well as between
the hidden and input layers. Finally, all weights in the network
are updated. This learning or training process is repeated
until the desired global error is achieved. Limitations
of a BPN are the difficulty in selecting its architecture
and training parameters such as the number of hidden layers
and hidden neurons (Chaveesuk and Smith, 2003; Paliwal
and Kumar, 2009).

A radial basis function network (RBFN) is a special case
of a feedforward multi-layer network with one hidden layer
(Moody and Darken, 1989; Poggio and Girosi, 1990; Haykin,
1999). Its architecture differs from a three-layer BPN as there
is no weight associated with the connections between the
input layer and the hidden or cluster layer. The input training
set is passed directly to hidden neurons which compute their
activation or output using the radial basis function called the
kernel function. This function produces a localized, bounded
and radially symmetric activation, that is, its maximum is
at the center and drops off rapidly to zero away from the
center. The connections between the hidden layer and output
layer are weighted in the same fashion as in the BPN model.
The activation of the output neuron can be computed by the
sum of the weighted activation of individual hidden neurons
or by the application of a nonlinear activation function. An
RBFN trains faster than a BPN; however, some discriminatory
information could be lost during the unsupervised training
phase (Hassoun, 1995).

The current study pioneered examination of the use of
regression, BPN and RBFN models for building a relationship
between the design factors of corrugated fiberboards and
the corresponding ECT; their accuracy was compared in
predicting the ECT for various corrugated cardboard design
configurations. Influential design factors were also identified
from the most accurate model to gain some insight into their
relationship.

Materials and Methods

Materials and properties

The corrugated fiberboards used were both single wall and
double wall boards; the paper composition of the boards are
listed in Table 1. All the corrugated fiberboards and liners were
made by SCG (Bangkok, Thailand). B-flute, C-flute and E-flute
corrugated fiberboards were used in the experiment.
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Table 1 Paper composition of selected corrugated fiberboards

Trade name' . Basis weight (g/m?)

(paper application)

CA (for flute) 105 125

KA (for liner) 125 150 185 230
KI (for liner) 125 150 185

KS (for liner) 170

Determination of edgewise compression strength values for
various combinations of design factors

The design factors considered were: the number of paper
layers in corrugated fiberboards, the paper type for liners and
flutes and the edge length and height of the board panels.
The edge lengths of test specimens were studied at 6 cm, 8
cm and 10 cm, while the heights of specimens were studied
at 2 cm, 3 cm and 4 cm. These dimension combinations
were in accordance with the ISO 3037:2013 international
standard test method (ISO, 2013). The boards were cut using
a Kongsberg X120 cutting table (Esko; Ghent, Belgium). The
ECT tests of the boards with different design combinations
were performed using a universal testing machine (Micro 350;
Testometric; Rochdale, UK), following ISO 3037:2013 (ISO,
2013). Each experiment was replicated 10 times.

Data preparation

The design factors in various combinations and their
corresponding ECT values were arranged into input-output
mapping, with 16 design factors as input variables and the
corresponding ECT value (in newtons) as an output variable.
For single wall board modeling, only 10 related design
factors were used as input variables. Table 2, Fig. 1 and
Fig. 2 describe all 16 input variables. An input-output data
sample was collected from the combinations studied based
on 10 replications.

Model building

Five modeling techniques were investigated consisting of
two traditional models (Whitsitt and Markstrom models) and
three alternative models (regression, BPN and RBFN models).
Since the latter three could incorporate as many input variables
as possible, they were used to construct: (1) a model to predict
only single wall board; (2) a model to predict only double wall
board; and (3) a model to predict both single wall and double
wall boards. The entire data for building each of the three
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patterns were randomly divided into two distinct datasets with
80% for a training set and 20% for a validation set. The training
set was used for model building, whereas the validation
data set was used to assess model prediction accuracy and
generalization capability.

Whitsitt models

The Whitsitt models were built separately for prediction
of a single wall or a double wall board. The data on the design
factors from the training data set were used to compute the
corresponding RCT values and then fitted to Equations (1) and
(2) for the prediction of single wall and double wall boards,
respectively.

Table 2 Description of input variables and their values

Input variable Description
Bl Paper type of liner 1
Gl Basis weight of paper for liner 1 (g/m?)
B2 Paper type of flute 1
G2 Basis weight of paper for flute 1 (g/m?)
B3 Paper type of liner 2
G3 Basis weight of paper for liner 2 (g/m?)
B4 Paper type of flute 2
G4 Basis weight of paper for flute 2 (g/m?)
BS Paper type of liner 3
G5 Basis weight of paper for liner 3 (g/m?)
L Edge length of corrugated board (cm)
H Height of corrugated board panel (cm)
FIM Number of flutes/m for B2
FIH Height of flute 1 (B2) (mm)
F2M Number of flutes/m for B4
F2H Height of flute 2 (B4) (mm)

(A) (B)

Liner2

Liner2
A -
Liner 1

Fig. 1 Components of (A) single wall board; (B) double wall board

frmmm————

Length

Fig. 2 Dimensions of fiberboard corresponding to those of corrugated box



1066

Markstrém models

The Markstrom models were built separately for prediction
of a single wall or a double wall board. The data on the design
factors from the training data set were used to compute the
corresponding RCT values; the parameters k and ¢ were
estimated to achieve the least prediction errors, using the Solver
in the Microsoft Excel software package (Microsoft Corp.;
Redmond, WA, USA) and were then included in Equation (3).

Regression models

The regression models were constructed from the training
data using the SPSS Statistics 19 software (IBM Corp.;
Armonk, NY, USA). Both multiple and polynomial regression
were studied, using full model (enter), forward, backward and
stepwise regressions. Each input factor was expressed as a
deviation around its mean to avoid multicollinearity of input
variables. Model parameters were selected based on the lowest
ECT prediction error of the validation data in terms of mean
absolute error (MAE), as computed using Equation 4.

n T
MAE = Zl:llZl Vil (4)

where y, is the actual ECT value of data point 7, y,is the
predicted ECT value of data point i and # is the number of data
points over which the error was calculated.

The reliability of the model was evaluated using: 1) the
Kolmogorov-Smirnov test for normal distribution of error; 2)
Levene’s test for constant variance of error; 3) standardized
residuals for outliers; and 4) a variance inflation factor for
multicollinearity (Kutner et al., 2008).

Backpropagation neural network and radial basis function network

The BPN and RBFN models were built using the
NeuralWorks Explorer software (Pittsburgh, PA, USA), using
design factors as input variables and the corresponding ECT
value as an output variable from the training set. All variables
were normalized to be in the range of the activation function,
that was a hyperbolic tangent function in this research. One
hidden layer has proven to be sufficient for modeling any
continuous function (Basheer and Hajmeer, 2000) and was
applied in this research. Several hidden neurons (1-15),
learning rules (delta rule and extended delta-bar-delta rule)
and sets of initial random weights were explored. To avoid
overtraining, the model learning phase was stopped and
evaluated with the validation set every 1,000 iterations up to
a maximum of 500,000 iterations. The training was stopped
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when the MAE of the validation set continued to increase.
The proper architecture and learning parameters were selected
based on the lowest MAE of the validation data.

Model comparison

All models were compared for prediction accuracy for both
training and validation data based on MAE and the coefficient
of determination (R?) from the plot of actual ECT and predicted
ECT, and mean absolute percentage error (MAPE) as calculated
using Equation 5:

n |Yi=

wapg < SRS 5)

where y;is the actual ECT value of data point i, yi is the
predicted ECT value of data point i and n is the number of data
points over which the error was calculated.

A superior model should possess good prediction accuracy
for both training and validation data sets. In other words, its
generalization capability (high accuracy for predicting data
that are not used in the model building) should be retained
(Chaveesuk and Seepung, 2007).

Identification of key design factors

Once the model had been built and validated, it was used
to predict the ECT from various design configurations and to
identify the design factors affecting the ECT prediction value.
Chaveesuk and Seepung (2007) showed that both polynomial
regression and a backpropagation neural network could identify
the significant factors affecting the cost of corrugated boxes. In
the case of polynomial regression models, an inference could
be made from the magnitude of the standardized regression
coefficients, with a large coefficient indicating an important
effect of that design factor. For the BPN and RBFN models,
varying each input variable by a certain percentage and
computing how much the output changes is a means of
observing key design factors, where the larger the percentage
change, the greater the effect of that input variable (Chaveesuk
and Seepung, 2007).

Results and Discussion
Predictive models for a single wall board

The model from each modeling technique that had the
highest prediction accuracy and satisfied all the model
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assumptions was selected and shown in Table 3. It was clear
that the BPN model with 10 hidden neurons, the delta rule and
10,000 learning iterations had the highest prediction accuracy,
followed by the full multiple regression model. The traditional
models (Whitsitt and Markstrom), as well as RBFN with 9 hidden
neurons, were markedly inferior. Furthermore, a plot of the actual
ECT values versus the predicted ECT values from the validation
data of each model under study (Fig. 3) revealed that the 10-10-1
BPN model (R?=94.5%) had the highest generalization capability
and was selected for further study. All modeling techniques had
poorer accuracy when predicting ECT over 300 N.

Predictive models for a double wall board

The model from each modeling technique that exhibited
highest prediction accuracy and satisfied all model assumptions
was selected and is displayed in Table 4. It was clear that
the BPN, with two hidden neurons, the delta rule and
23,000 learning iterations, and the backward polynomial
regression outperformed the traditional models of Whitsitt
and Markstrom as well as the RBFN with seven hidden

1067

neurons. Both polynomial regression and BPN could represent
the complicated and nonlinear relationship occurring in
a double wall board compared with a single wall board. In
fact, a BPN is by nature a universal approximator, as it can
theoretically approximate any nonlinear relationship to any
given degree of accuracy (Funahashi, 1989; Hornik et al., 1989).

500
450 +
400 +
350 +
300 +
250 +
200 +
150 +
100 +
50 +

Actual ECT (N)

0 100 200 300 400 500 600
Predicted ECT (N)

Fig. 3 Actual and predicted edgewise compression strength (ECT) values

from validation data of 10-10-1 BPN (coefficient of determination =

94.5%) for a single wall board

Table 3 Model accuracy for predicting edgewise compression strength value of a single wall board

Modeling MAE (N) MAPE (%) Description

technique Training Validation Training Validation

Whitsitt 32.27 32.92 15.39 14.19

Markstrom 31.49 27.72 14.97 16.59 k=10.66,c=3.33

Multiple regression 16.08 19.17 8.00 9.61 Satisfy all assumptions

10-10-1 BPN* 9.60 14.16 4.90 7.81 Delta rule, a of 0.1, Hyperbolic Tangent,
10,000 iterations

10-9-1 RBFN* 36.13 30.64 16.63 16.85 Delta rule, o of 0.1, Hyperbolic Tangent,

14,000 iterations

BPN = backpropagation neural network;
* number of input neurons/hidden neurons/output neurons;

MAE = mean absolute error; MAPE = mean absolute percentage error; o = learning rate

Table 4 Model accuracy for predicting edgewise compression strength value of a double wall board

Modeling MAE (N) MAPE (%) Description

technique Training Validation Training Validation

Whitsitt 161.15 187.08 30.87 31.68

Markstrom 98.34 99.11 118.16 130.00 k=0.57,c=333

Polynomial regression 7.12 8.66 1.43 1.62 Satisfy all assumptions

16-2-1 BPN* 7.26 8.36 1.48 1.35 Delta rule, o of 0.1, Hyperbolic Tangent,
10,000 iterations

16-7-1 RBFN* 35.79 16.03 7.23 2.48 Delta rule, a of 0.1, Hyperbolic Tangent,

14,000 iterations

MAE = mean absolute error; MAPE = mean absolute percentage error; o = learning rate; BPN = backpropagation neural network;

* number of input neurons/hidden neurons/output neurons
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However, in practice, this property is limited by finite learning
samples, improper network training and a lack of some input
variables. In fact, an RBFN is also a nonlinear model and has
been proven as a universal approximator as well (Poggio and
Girosi, 1989; Hartman et al., 1990; Park and Sandberg, 1991,
1993). However, based on its function in the hidden neurons, it
performs a local fit to training data while the BPN model performs
a global fit, leading to greater generalization capability of the
BPN over the RBFN. For function approximation, the RBFN
can achieve prediction accuracy comparable to the BPN, with 10
times or more data and more hidden units than the BPN. Plots of
actual ECT values and predicted values from the validation
data (Fig. 4) indicated that both the 16-2-1 BPN and stepwise
polynomial regression models, with R* values greater than 99%,
had high generalization capability and were selected for further
study.

Predictive models for both single wall and double wall boards
The most accurate generalized predictive model for both

single wall and double wall cardboard was the 16-12-1 BPN
model with the delta rule and 10,000 learning iterations, followed
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closely by backward polynomial regression (Table 5). These
results reinforced that the relationship between design factors and
ECT values is not linear in nature. It was also apparent that the
predictive model for both single wall and double wall cardboard
was more complicated than the model for either single wall only
or double wall only, as seen from the higher number (12) of
hidden neurons. Fig. 5 reveals that both the stepwise polynomial
regression and the 16-12-1 BPN models had R? values greater than
98%. Similar to the predictive models for single wall cardboard,
the accuracy of the Whitsitt, Markstrom and 16-9-1 RBFN models
deteriorated when the ECT values exceeded 400 N.

Determination of key design factors

An accurate model can be used for ECT estimation as
well as for identification of the key design factors. Corrugated
fiberboard manufacturers can focus on the key factors during
design configuration selection to better control planning time
and costs. The most accurate models for predicting the ECT
of a single wall board only, a double wall board only, and
both single and double wall boards, were used to identify the
influential factors, as shown in Table 6.

(A) (B)

800 T 800 T
Z 600 + & 600 +
S 3
= 400 + @ 400 +
E E
5 200 + S 200 T
< <

0 t t t 1 0 t t t 1
0 200 400 600 800 0 200 400 600 800
Predicted ECT (N) Predicted ECT (N)

Fig. 4 Actual edgewise compression strength (ECT) and predicted ECT from validation data for a double wall board: (A)16-12-1 BPN (coefficient of
determination, R? = 99.4%); (B) stepwise polynomial regression (R*=99.1%)

Table 5 Model accuracy for predicting edgewise compression strength value of both single and double wall boards

Modeling MAE (N) MAPE (%) Description

technique Training Validation Training Validation

Whitsitt 68.25 36.64 19.29 13.17

Markstrom 65.79 42.45 107.42 63.06 k=0.57,¢c=333

Polynomial regression 8.16 14.58 3.53 5.14 Satisfy all assumptions

16-12-1 BPN* 10.21 11.79 3.95 4.23 Delta rule, o of 0.1, Hyperbolic Tangent,
10,000 iterations

16-9-1 RBFN* 48.58 33.95 18.19 12.45 Delta rule, a of 0.1, Hyperbolic Tangent,

14,000 iterations

MAE = mean absolute error; MAPE = mean absolute percentage error; o = learning rate; BPN = backpropagation neural network;

* number of input neurons/hidden neurons/output neurons



R. Chaveesuk et al. / Agr. Nat. Resour. 55 (2021) 1062—1071

(A)

800

€ 600

[

3 400

E 200

Q

< 0+ : : : |

0 200 400 600 800
Predicted ECT (N)
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(B)
800
Z 600
5 400
8]
= 200
=
S 0 t t t |
< 200 400 600 800
Predicted ECT (N)

Fig. 5 Actual edgewise compression strength (ECT) and predicted ECT from validation data for both single and double wall boards: (A) 16-12-1 BPN
model (coefficient of determination, R? = 98.8%); (B) stepwise polynomial regression (R = 98.8%)

Table 6 Key design factors for predicting edgewise compression strength value

Modeling pattern Model

Key design factors

Single wall 10-10-1 BPN*

Edge length of a corrugated board
Basis weight of paper for flute 1
Basis weight of paper for liner 2 or outer liner

Double wall Stepwise polynomial

regression

Basis weight of paper for flute 2

Edge length of a corrugated board

Basis weight of paper for liner 1 or inner liner
Height of a corrugated board panel

Basis weight of paper for liner 3 or outer liner

16-2-1 BPN*

Edge length of a corrugated board
Height of flute 1
Paper type of liner 1 or inner liner

Both single and double wall Stepwise polynomial

regression

Basis weight of paper for liner 1 or inner liner
Basis weight of paper for liner 2 or middle liner
Height of flute 1

16-9-1 BPN*

Basis weight of paper for liner 3 or outer liner
Edge length of a corrugated board
Basis weight of paper for flute 2

BPN = backpropagation neural network;
* number of input neurons/hidden neurons/output neurons

Analysis of Table 6 revealed that the common design
factors strongly affecting the ECT value identified using the
three modeling patterns were the edge length of the corrugated
board and the basis weight of the paper for the related liner and
flute. In other words, a small change in these design factors
would lead to a large change in the ECT value. Notably, these
changes would be in positive directions, that is: 1) the longer
the edge length of a corrugated fiberboard, the greater the ECT
value; and 2) the higher the basis weight of paper for the related
liner and flute, the greater the ECT value.

Comparison of the edgewise compression strength prediction
accuracy for three modeling patterns

A comparison of the ECT prediction accuracy for single
wall, double wall and both single wall and double wall patterns

(Table 7) indicated that the accuracy of the three modeling
patterns differed little and they were all within the acceptable
range for the industry (Biancolini and Brutti, 2003; Srihirun,
2008). Therefore, a model that could predict the ECT of both
single and double wall boards (either the stepwise polynomial
regression model or the 16-12-1 BPN model), may be further
evaluated and selected by industry based on certain criteria
such as the prediction accuracy and generalization capability,
cost and time for development, cost and time for training and
model update ability. However, Archaviboonyobu et al. (2020)
have proven that the BPN model could accurately predict the
corrugated fiberboard box compression strength with an R?
value of 97%.
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Table 7 Edgewise compression strength prediction accuracy of three modeling patterns

Modeling pattern Model MAE (N) MAPE (%)
Training Validation Training Validation
Single wall 10-10-1 BPN* 9.60 14.16 4.90 7.81
Double wall Backward PR 7.12 8.66 1.43 1.62
16-2-1 BPN* 7.26 8.36 1.48 1.35
Both single and double wall ~ Backward PR 8.16 14.58 3.53 5.14
16-12-1 BPN* 10.21 11.79 3.95 423

MAE = mean absolute error; MAPE = mean absolute percentage error; PR = polynomial regression; BPN = backpropagation neural network;

* number of input neurons/hidden neurons/output neurons

The ECT prediction accuracy of the empirical predictive
models for corrugated fiberboards, such as polynomial
regression and BPN, were far better, compared with traditional
models such as Whitsitt and Markstrom, regardless of the
modeling pattern. The models for predicting the ECT of
single wall and double wall cardboard at the same time
had similar levels of prediction accuracy compared with
the models for single wall or double wall cardboard only.
Stepwise polynomial regression and 16-12-1 BPN were the
two best predictive models for both single wall and double
wall cardboard. The design factors that positively influenced
the ECT value identified by both models were the basis weight
of paper for the inner, middle and outer liners, the basis weight
of the corrugated medium for the flute connected to the outer
liner, the edge length of the corrugated board and the height of
the flute connected to the inner liner. These four factors must be
taken into careful consideration during the design and planning
phases.
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