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AbstractArticle Info

AGRICULTURE AND
NATURAL RESOURCES

Corrugated boxes are the most important type of distribution packaging made from 
natural resources. Optimization of the fiber used versus the strength requirement  
is necessary. This research compared a regression model, a backpropagation neural 
network (BPN) model and a radial basis function network (RBFN) model with traditional 
models, namely, the Whitsitt model and the Markström model, in predicting the edgewise 
compression strength (ECT) of corrugated fiberboard from related design factors. Three 
types of modeling patterns were studied: a model for single wall board, a model for double 
wall board and a model for both single and double wall boards. The results indicated that 
the predictive models for both the single and double wall boards were comparable to 
the other two in terms of prediction accuracy and were within an acceptable industrial 
error range. The 16-12-1 BPN model and the polynomial regression model were the two 
best choices for predicting the ECT of both single and double wall boards together in 
one model. The BPN model had a mean absolute percentage error (MAPE) of 4.23%, 
while the polynomial regression model had a MAPE of 5.14%. In addition, both models 
identified the most influential design factors affecting ECT: the basis weight of paper  
for the inner, middle and outer liners; the basis weight of the corrugated medium for  
the flute connected to the outer liner; the edge length of the corrugated board;  
and the height of the flute connected to the inner liner.
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Introduction 

	 Corrugated boxes are used extensively as transport packaging 
due to their light weight, environmental acceptance and structural 
design flexibility, by addressing transportation needs with  

an acceptable cost (Park and Kim, 2010). The strength of a corrugated 
box is the main concern during the design and development 
stage since it has a significant impact on stacking and space 
management decisions during transportation and storage, 
especially for ease of handling of fragile goods (Whitsitt and 
McKee, 1966; Talbi et al., 2009; Park and Kim, 2010). 
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	 The composition and strength of corrugated fiberboards 
directly affect the strength of corrugated boxes and natural 
fibers derived from renewable resources that are either virgin 
or recycled can be mixed and converted into kraft liners for 
corrugated fiberboards and corrugated boxes production 
respectively (Archaviboonyobu et al., 2020). The ratio of 
fiber contents compared to other additives affects the strength 
of kraft liners and the final performance of corrugated boxes 
(Archaviboonyobu et al., 2020). Therefore, the optimization 
of the resources used versus the strength of the packaging 
materials need to be investigated. At present, accurate 
decision tools for packaging materials optimization are limited 
(Archaviboonyobu et al., 2020). However, all manufacturers, 
especially in the packaging and materials industries, have 
identified the urgent need for proof of their compliance 
with global guidelines under the circular economy concept 
(Archaviboonyobu et al., 2020).
	 Many tests are available to measure the strength of a 
corrugated fiberboard, including the edge crush test, the flat 
crush test and bursting strength. However, the edgewise 
compression strength (ECT) from an edge crust test has a 
direct relationship with the strength of a corrugated fiberboard 
and is commonly used as a major parameter to estimate the 
box compression strength (BCT) which represents the total 
strength of a corrugated box structure (McKee et al., 1963). 
Consequently, an accurate ECT estimation of corrugated boards 
from structural parameters, such as panel size, type of flute and 
composition, as well as grammage of paper combination, is 
advantageous for the design of corrugated boxes, ensuring 
that they have enough compression strength to protect the 
products within. This would allow designers to select the 
proper structure of a corrugated fiberboard in a shorter time 
and without performing costly strength analysis. Traditionally, 
mathematical models have been applied to predict the ECT 
of a corrugated fiberboard, using data from a ring crush test 
(RCT) or the board’s components such as the basis weight of 
the inner liner, medium and outer liner. For example, Whitsitt 
(1990) described a mathematical model to predict the ECT of a 
corrugated fiberboard, for a single wall board and for a double 
wall board using Equations 1 and 2, respectively:

	 ECT = 0.8(L1+ tM + L2) + 2.1	 (1)

	 where ECT is the edge crush test value or edgewise compression 
strength, L1 is the ring crush value of the outer liner, t is the 
take-up factor of the medium, M is the ring crush value of the 
medium and L2 is the ring crush value of the inner liner.

	 ECT = 0.8(L1 + tM1 +L2 + tM2 +L3) + 2.1	 (2)

	 where ECT is the edge crush value, L1 is the ring crush 
value of the outer liner, M1 and M2 are the ring crush values 
of the flutes, L2 is the ring crush value of the middle layer liner 
and L3 is the ring crush value of the inner liner.
	 Whitsitt’s model is very popular for determining the 
strength of corrugated fiberboards in practice since it is linear 
and straightforward to implement, although its limitation is that 
the constants 0.8 and 2.1 are applied for all structures of single 
wall and double wall board, respectively. Later, Markström 
(1999) generalized Whitsitt’s model, as shown in Equation 3:

	 ECT = k(L1+ tM + L2) + c	 (3)

	 where ECT is the edgewise compression strength, k and c 
are specific constants of the flute, L1 is the ring crush value of 
the outer liner, t is the take-up factor of the medium, M is the 
ring crush value of the medium and L2 is the ring crush value 
of the inner liner.
	 However, both models are only able to achieve low ECT 
prediction accuracy, since they are linear in nature and only  
take into account the take-up factor of the flute and the ring  
crush values, which may not represent the true relationship 
function. Less accurate models can pose a major problem 
in practice. Frank (2014) asserted that the current predictive 
models were acceptable; however, their performance was 
at least 10 times less accurate than material models for 
most other packaging. Furthermore, their scope was quite 
narrow, focusing on a single wall or double wall only.  
In fact, corrugated fiberboards have a complex composition. 
Typically, the content of corrugated liners is composed of 
virgin and recycled fibers as a skeleton matrix and starch-based 
or inorganic-based substances as fillers or additives. Various 
chemicals are also added to improve specific functionality of 
the formed paper. The compression strength of the corrugated 
fiberboards depends not only on the material composition 
but also on the design of flute structure, the converting 
process and storage environment (Pommier and Poustis, 
1990; Srihirun, 2008; Nordstrand, 2004). Thus, ECT may be 
considered nonlinear since several factors contribute to the 
ultimate strength (Pommier and Poustis, 1990; Srihirun, 2008; 
Nordstrand, 2004; Archaviboonyobu et al., 2020).
	 Regression, the most popular empirical model, is capable 
of approximating the nonlinear relationship between several 
independent variables (input) and a dependent variable 
(output). The regression model’s parameters (regression 
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coefficients) are calculated from the observed pairs of data 
points (input-output) via least squares estimation. Regression 
models are very straightforward to implement; nevertheless, 
they require restrictive assumptions on the error terms, such as 
normal random errors, constant error variance and the absence 
of multicollinearity (Madu, 1990). Their performance also 
depends on the proper selection of functional forms (Kutner et 
al., 2008). In addition, high order regression tends to produce 
approximation functions that oscillate widely and thus lead to 
degraded prediction accuracy (Madu, 1990).
	 An alternative nonlinear empirical model is an artificial 
neural network (ANN) model that requires no a priori functional 
form or knowledge of the input-output relationship, does not 
adhere to any statistical assumptions and can accommodate 
several inputs and outputs. ANN models have been described in 
detail by Fausett (1994). In summary, an ANN model develops 
a map from the input variables to the output variables through 
an iterative learning process. It consists of a large number of 
processing elements (called artificial neurons) organized into a 
sequence of layers with connections between layers. Associated 
with each connection is a weight that represents the information 
being used to approximate the relationship in the data. These 
weights are iteratively adjusted by a learning process to optimal 
values that produce the best fit of the predicted outputs over the 
learning or training data. Input neurons receive the input data 
and pass them on to the next layer. Each neuron in the hidden or 
the output layer sums its input signals from the previous layer 
weighted by the connection weights and applies an activation 
function to determine its output signal. The ANN architecture 
(the arrangement of neurons into layers and the connection 
pattern within and between layers), a training or learning 
algorithm, and an activation function are used to characterize 
the ANN paradigm (Fausett, 1994). The current investigated 
and described in detail a backpropagation network and a radial 
basis function network.
	 A back propagation network (BPN) is a multi-layer neural 
network that utilizes a gradient-descent training algorithm 
with the aim of minimizing the total squared error of the 
output computed by the network (Rumelhart et al., 1986). 
The standard BPN training algorithm involves three stages: 
the feedforward of the input training set, calculation and 
backpropagation of error and adjustment of the weights.  
At the onset of training, all weights are randomly initialized. 
For a given set of inputs to the network, the output of  
each neuron in the output layer is computed using a nonlinear 
activation function and compared with the corresponding 
target output response. The errors associated with the output 

layer are propagated backward to the hidden layer and  
finally to the input layer to calculate the weight adjustments 
between the output and hidden layers as well as between  
the hidden and input layers. Finally, all weights in the network 
are updated. This learning or training process is repeated  
until the desired global error is achieved. Limitations  
of a BPN are the difficulty in selecting its architecture  
and training parameters such as the number of hidden layers 
and hidden neurons (Chaveesuk and Smith, 2003; Paliwal  
and Kumar, 2009).
	 A radial basis function network (RBFN) is a special case 
of a feedforward multi-layer network with one hidden layer 
(Moody and Darken, 1989; Poggio and Girosi, 1990; Haykin, 
1999). Its architecture differs from a three-layer BPN as there 
is no weight associated with the connections between the 
input layer and the hidden or cluster layer. The input training 
set is passed directly to hidden neurons which compute their 
activation or output using the radial basis function called the 
kernel function. This function produces a localized, bounded 
and radially symmetric activation, that is, its maximum is 
at the center and drops off rapidly to zero away from the 
center. The connections between the hidden layer and output 
layer are weighted in the same fashion as in the BPN model.  
The activation of the output neuron can be computed by the 
sum of the weighted activation of individual hidden neurons 
or by the application of a nonlinear activation function. An 
RBFN trains faster than a BPN; however, some discriminatory 
information could be lost during the unsupervised training 
phase (Hassoun, 1995).
	 The current study pioneered examination of the use of 
regression, BPN and RBFN models for building a relationship 
between the design factors of corrugated fiberboards and 
the corresponding ECT; their accuracy was compared in 
predicting the ECT for various corrugated cardboard design 
configurations. Influential design factors were also identified 
from the most accurate model to gain some insight into their 
relationship. 

Materials and Methods

Materials and properties

	 The corrugated fiberboards used were both single wall and 
double wall boards; the paper composition of the boards are 
listed in Table 1. All the corrugated fiberboards and liners were 
made by SCG (Bangkok, Thailand). B-flute, C-flute and E-flute 
corrugated fiberboards were used in the experiment.
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Determination of edgewise compression strength values for 
various combinations of design factors

	 The design factors considered were: the number of paper 
layers in corrugated fiberboards, the paper type for liners and 
flutes and the edge length and height of the board panels. 
The edge lengths of test specimens were studied at 6 cm, 8 
cm and 10 cm, while the heights of specimens were studied 
at 2 cm, 3 cm and 4 cm. These dimension combinations  
were in accordance with the ISO 3037:2013 international 
standard test method (ISO, 2013). The boards were cut using 
a Kongsberg XL20 cutting table (Esko; Ghent, Belgium). The 
ECT tests of the boards with different design combinations 
were performed using a universal testing machine (Micro 350;  
Testometric; Rochdale, UK), following ISO 3037:2013 (ISO, 
2013). Each experiment was replicated 10 times.

Data preparation

	 The design factors in various combinations and their 
corresponding ECT values were arranged into input-output 
mapping, with 16 design factors as input variables and the 
corresponding ECT value (in newtons) as an output variable. 
For single wall board modeling, only 10 related design 
factors were used as input variables. Table 2, Fig. 1 and 
Fig. 2 describe all 16 input variables. An input-output data 
sample was collected from the combinations studied based  
on 10 replications.

Model building

	 Five modeling techniques were investigated consisting of 
two traditional models (Whitsitt and Markström models) and 
three alternative models (regression, BPN and RBFN models). 
Since the latter three could incorporate as many input variables 
as possible, they were used to construct: (1) a model to predict 
only single wall board; (2) a model to predict only double wall 
board; and (3) a model to predict both single wall and double 
wall boards. The entire data for building each of the three 

patterns were randomly divided into two distinct datasets with 
80% for a training set and 20% for a validation set. The training 
set was used for model building, whereas the validation 
data set was used to assess model prediction accuracy and 
generalization capability.

	 Whitsitt models
	 The Whitsitt models were built separately for prediction 
of a single wall or a double wall board. The data on the design 
factors from the training data set were used to compute the 
corresponding RCT values and then fitted to Equations (1) and 
(2) for the prediction of single wall and double wall boards, 
respectively.

Table 2	 Description of input variables and their values
Input variable Description
B1 Paper type of liner 1
G1 Basis weight of paper for liner 1 (g/m2)
B2 Paper type of flute 1
G2 Basis weight of paper for flute 1 (g/m2)
B3 Paper type of liner 2
G3 Basis weight of paper for liner 2 (g/m2)
B4 Paper type of flute 2
G4 Basis weight of paper for flute 2 (g/m2)
B5 Paper type of liner 3
G5 Basis weight of paper for liner 3 (g/m2)
L Edge length of corrugated board (cm)
H Height of corrugated board panel (cm)
F1M Number of flutes/m for B2
F1H Height of flute 1 (B2) (mm)
F2M Number of flutes/m for B4
F2H Height of flute 2 (B4) (mm)

Table 1	 Paper composition of selected corrugated fiberboards
Trade name
(paper application)

Basis weight (g/m2)

CA (for flute) 105 125
KA (for liner) 125 150 185 230
KI (for liner) 125 150 185
KS (for liner) 170

Fig. 1	 Components of (A) single wall board; (B) double wall board

Fig. 2	 Dimensions of fiberboard corresponding to those of corrugated box
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	 Markström models
	 The Markström models were built separately for prediction 
of a single wall or a double wall board. The data on the design 
factors from the training data set were used to compute the 
corresponding RCT values; the parameters k and c were 
estimated to achieve the least prediction errors, using the Solver 
in the Microsoft Excel software package (Microsoft Corp.; 
Redmond, WA, USA) and were then included in Equation (3). 

	 Regression models
	 The regression models were constructed from the training 
data using the SPSS Statistics 19 software (IBM Corp.; 
Armonk, NY, USA). Both multiple and polynomial regression 
were studied, using full model (enter), forward, backward and 
stepwise regressions. Each input factor was expressed as a 
deviation around its mean to avoid multicollinearity of input 
variables. Model parameters were selected based on the lowest 
ECT prediction error of the validation data in terms of mean 
absolute error (MAE), as computed using Equation 4.

	 	 (4)

	 where yi is the actual ECT value of data point i, yi is the 
predicted ECT value of data point i and n is the number of data 
points over which the error was calculated.
	 The reliability of the model was evaluated using: 1) the 
Kolmogorov-Smirnov test for normal distribution of error; 2) 
Levene’s test for constant variance of error; 3) standardized 
residuals for outliers; and 4) a variance inflation factor for 
multicollinearity (Kutner et al., 2008).

Backpropagation neural network and radial basis function network 

	 The BPN and RBFN models were built using the 
NeuralWorks Explorer software (Pittsburgh, PA, USA), using 
design factors as input variables and the corresponding ECT 
value as an output variable from the training set. All variables 
were normalized to be in the range of the activation function, 
that was a hyperbolic tangent function in this research. One 
hidden layer has proven to be sufficient for modeling any 
continuous function (Basheer and Hajmeer, 2000) and was 
applied in this research. Several hidden neurons (1–15), 
learning rules (delta rule and extended delta-bar-delta rule) 
and sets of initial random weights were explored. To avoid 
overtraining, the model learning phase was stopped and 
evaluated with the validation set every 1,000 iterations up to 
a maximum of 500,000 iterations. The training was stopped 

when the MAE of the validation set continued to increase. 
The proper architecture and learning parameters were selected 
based on the lowest MAE of the validation data.

Model comparison

	 All models were compared for prediction accuracy for both 
training and validation data based on MAE and the coefficient 
of determination (R2) from the plot of actual ECT and predicted 
ECT, and mean absolute percentage error (MAPE) as calculated 
using Equation 5: 

	 	 (5)

	 where yi is the actual ECT value of data point i, ŷi is the 
predicted ECT value of data point i and n is the number of data 
points over which the error was calculated.
	 A superior model should possess good prediction accuracy 
for both training and validation data sets. In other words, its 
generalization capability (high accuracy for predicting data 
that are not used in the model building) should be retained 
(Chaveesuk and Seepung, 2007).

Identification of key design factors 

	 Once the model had been built and validated, it was used 
to predict the ECT from various design configurations and to 
identify the design factors affecting the ECT prediction value. 
Chaveesuk and Seepung (2007) showed that both polynomial 
regression and a backpropagation neural network could identify 
the significant factors affecting the cost of corrugated boxes. In 
the case of polynomial regression models, an inference could 
be made from the magnitude of the standardized regression 
coefficients, with a large coefficient indicating an important 
effect of that design factor. For the BPN and RBFN models, 
varying each input variable by a certain percentage and 
computing how much the output changes is a means of 
observing key design factors, where the larger the percentage 
change, the greater the effect of that input variable (Chaveesuk 
and Seepung, 2007).

Results and Discussion

Predictive models for a single wall board

	 The model from each modeling technique that had the 
highest prediction accuracy and satisfied all the model 
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assumptions was selected and shown in Table 3. It was clear 
that the BPN model with 10 hidden neurons, the delta rule and 
10,000 learning iterations had the highest prediction accuracy, 
followed by the full multiple regression model. The traditional 
models (Whitsitt and Markström), as well as RBFN with 9 hidden 
neurons, were markedly inferior. Furthermore, a plot of the actual 
ECT values versus the predicted ECT values from the validation 
data of each model under study (Fig. 3) revealed that the 10-10-1 
BPN model (R2 = 94.5%) had the highest generalization capability 
and was selected for further study. All modeling techniques had 
poorer accuracy when predicting ECT over 300 N.

Predictive models for a double wall board

	 The model from each modeling technique that exhibited 
highest prediction accuracy and satisfied all model assumptions 
was selected and is displayed in Table 4. It was clear that 
the BPN, with two hidden neurons, the delta rule and 
23,000 learning iterations, and the backward polynomial 
regression outperformed the traditional models of Whitsitt 
and Markström as well as the RBFN with seven hidden 

Table 4	 Model accuracy for predicting edgewise compression strength value of a double wall board

Modeling 
technique

MAE (N) MAPE (%) Description
Training Validation Training Validation

Whitsitt 161.15 187.08 30.87 31.68
Markström 98.34 99.11 118.16 130.00 k = 0.57, c = 333
Polynomial regression 7.12 8.66 1.43 1.62 Satisfy all assumptions
16-2-1 BPN* 7.26 8.36 1.48 1.35 Delta rule, α of 0.1, Hyperbolic Tangent, 

10,000 iterations
16-7-1 RBFN* 35.79 16.03 7.23 2.48 Delta rule, α of 0.1, Hyperbolic Tangent, 

14,000 iterations
MAE = mean absolute error; MAPE = mean absolute percentage error; α = learning rate; BPN = backpropagation neural network;
* number of input neurons/hidden neurons/output neurons

Table 3	 Model accuracy for predicting edgewise compression strength value of a single wall board

Modeling 
technique

MAE (N) MAPE (%) Description

Training Validation Training Validation

Whitsitt 32.27 32.92 15.39 14.19

Markström 31.49 27.72 14.97 16.59 k = 0.66, c = 3.33

Multiple regression 16.08 19.17 8.00 9.61 Satisfy all assumptions

10-10-1 BPN* 9.60 14.16 4.90 7.81 Delta rule, α of 0.1, Hyperbolic Tangent, 
10,000 iterations

10-9-1 RBFN* 36.13 30.64 16.63 16.85 Delta rule, α of 0.1, Hyperbolic Tangent, 
14,000 iterations

BPN = backpropagation neural network; 
* number of input neurons/hidden neurons/output neurons;
MAE = mean absolute error; MAPE = mean absolute percentage error; α = learning rate
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Fig. 3	 Actual and predicted edgewise compression strength (ECT) values 
from validation data of 10-10-1 BPN (coefficient of determination = 
94.5%) for a single wall board

neurons. Both polynomial regression and BPN could represent  
the complicated and nonlinear relationship occurring in  
a double wall board compared with a single wall board. In 
fact, a BPN is by nature a universal approximator, as it can 
theoretically approximate any nonlinear relationship to any 
given degree of accuracy (Funahashi, 1989; Hornik et al., 1989).  
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Table 5	 Model accuracy for predicting edgewise compression strength value of both single and double wall boards

Modeling 
technique

MAE (N) MAPE (%) Description

Training Validation Training Validation

Whitsitt 68.25 36.64 19.29 13.17

Markström 65.79 42.45 107.42 63.06 k = 0.57, c = 333

Polynomial regression 8.16 14.58 3.53 5.14 Satisfy all assumptions

16-12-1 BPN* 10.21 11.79 3.95 4.23 Delta rule, α of 0.1, Hyperbolic Tangent, 
10,000 iterations

16-9-1 RBFN* 48.58 33.95 18.19 12.45 Delta rule, α of 0.1, Hyperbolic Tangent, 
14,000 iterations

MAE = mean absolute error; MAPE = mean absolute percentage error; α = learning rate; BPN = backpropagation neural network;
* number of input neurons/hidden neurons/output neurons
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However, in practice, this property is limited by finite learning 
samples, improper network training and a lack of some input 
variables. In fact, an RBFN is also a nonlinear model and has 
been proven as a universal approximator as well (Poggio and 
Girosi, 1989; Hartman et al., 1990; Park and Sandberg, 1991, 
1993). However, based on its function in the hidden neurons, it 
performs a local fit to training data while the BPN model performs 
a global fit, leading to greater generalization capability of the 
BPN over the RBFN. For function approximation, the RBFN 
can achieve prediction accuracy comparable to the BPN, with 10 
times or more data and more hidden units than the BPN. Plots of  
actual ECT values and predicted values from the validation  
data (Fig. 4) indicated that both the 16-2-1 BPN and stepwise 
polynomial regression models, with R2 values greater than 99%, 
had high generalization capability and were selected for further 
study.

Predictive models for both single wall and double wall boards

	 The most accurate generalized predictive model for both 
single wall and double wall cardboard was the 16-12-1 BPN 
model with the delta rule and 10,000 learning iterations, followed 

closely by backward polynomial regression (Table 5). These 
results reinforced that the relationship between design factors and 
ECT values is not linear in nature. It was also apparent that the 
predictive model for both single wall and double wall cardboard 
was more complicated than the model for either single wall only 
or double wall only, as seen from the higher number (12) of 
hidden neurons. Fig. 5 reveals that both the stepwise polynomial 
regression and the 16-12-1 BPN models had R2 values greater than 
98%. Similar to the predictive models for single wall cardboard, 
the accuracy of the Whitsitt, Markström and 16-9-1 RBFN models 
deteriorated when the ECT values exceeded 400 N.

Determination of key design factors

	 An accurate model can be used for ECT estimation as 
well as for identification of the key design factors. Corrugated 
fiberboard manufacturers can focus on the key factors during 
design configuration selection to better control planning time 
and costs. The most accurate models for predicting the ECT 
of a single wall board only, a double wall board only, and 
both single and double wall boards, were used to identify the 
influential factors, as shown in Table 6.

Fig. 4	 Actual edgewise compression strength (ECT) and predicted ECT from validation data for a double wall board: (A)16-12-1 BPN (coefficient of 
determination, R2 = 99.4%); (B) stepwise polynomial regression (R2 = 99.1%)
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Fig. 5	 Actual edgewise compression strength (ECT) and predicted ECT from validation data for both single and double wall boards: (A) 16-12-1 BPN 
model (coefficient of determination, R2 = 98.8%); (B) stepwise polynomial regression (R2 = 98.8%)

Table 6	 Key design factors for predicting edgewise compression strength value
Modeling pattern Model Key design factors
Single wall 10-10-1 BPN* Edge length of a corrugated board

Basis weight of paper for flute 1
Basis weight of paper for liner 2 or outer liner

Double wall Stepwise polynomial 
regression 

Basis weight of paper for flute 2
Edge length of a corrugated board
Basis weight of paper for liner 1 or inner liner
Height of a corrugated board panel
Basis weight of paper for liner 3 or outer liner

16-2-1 BPN* Edge length of a corrugated board
Height of flute 1
Paper type of liner 1 or inner liner

Both single and double wall Stepwise polynomial 
regression 

Basis weight of paper for liner 1 or inner liner
Basis weight of paper for liner 2 or middle liner
Height of flute 1

16-9-1 BPN* Basis weight of paper for liner 3 or outer liner
Edge length of a corrugated board
Basis weight of paper for flute 2

BPN = backpropagation neural network; 
* number of input neurons/hidden neurons/output neurons
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	 Analysis of Table 6 revealed that the common design 
factors strongly affecting the ECT value identified using the 
three modeling patterns were the edge length of the corrugated 
board and the basis weight of the paper for the related liner and 
flute. In other words, a small change in these design factors 
would lead to a large change in the ECT value. Notably, these 
changes would be in positive directions, that is: 1) the longer 
the edge length of a corrugated fiberboard, the greater the ECT 
value; and 2) the higher the basis weight of paper for the related 
liner and flute, the greater the ECT value.

Comparison of the edgewise compression strength prediction 
accuracy for three modeling patterns

	 A comparison of the ECT prediction accuracy for single 
wall, double wall and both single wall and double wall patterns 

(Table 7) indicated that the accuracy of the three modeling 
patterns differed little and they were all within the acceptable 
range for the industry (Biancolini and Brutti, 2003; Srihirun, 
2008). Therefore, a model that could predict the ECT of both 
single and double wall boards (either the stepwise polynomial 
regression model or the 16-12-1 BPN model), may be further 
evaluated and selected by industry based on certain criteria 
such as the prediction accuracy and generalization capability, 
cost and time for development, cost and time for training and 
model update ability. However, Archaviboonyobu et al. (2020) 
have proven that the BPN model could accurately predict the 
corrugated fiberboard box compression strength with an R2 
value of 97%.
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Table 7	 Edgewise compression strength prediction accuracy of three modeling patterns

Modeling pattern Model MAE (N) MAPE (%)

Training Validation Training Validation

Single wall 10-10-1 BPN* 9.60 14.16 4.90 7.81

Double wall Backward PR 7.12 8.66 1.43 1.62

16-2-1 BPN* 7.26 8.36 1.48 1.35

Both single and double wall Backward PR 8.16 14.58 3.53 5.14

16-12-1 BPN* 10.21 11.79 3.95 4.23

MAE = mean absolute error; MAPE = mean absolute percentage error; PR = polynomial regression; BPN = backpropagation neural network;
* number of input neurons/hidden neurons/output neurons

	 The ECT prediction accuracy of the empirical predictive 
models for corrugated fiberboards, such as polynomial 
regression and BPN, were far better, compared with traditional 
models such as Whitsitt and Markström, regardless of the 
modeling pattern. The models for predicting the ECT of 
single wall and double wall cardboard at the same time 
had similar levels of prediction accuracy compared with 
the models for single wall or double wall cardboard only. 
Stepwise polynomial regression and 16-12-1 BPN were the 
two best predictive models for both single wall and double 
wall cardboard. The design factors that positively influenced 
the ECT value identified by both models were the basis weight 
of paper for the inner, middle and outer liners, the basis weight 
of the corrugated medium for the flute connected to the outer 
liner, the edge length of the corrugated board and the height of 
the flute connected to the inner liner. These four factors must be 
taken into careful consideration during the design and planning 
phases.
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