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Introduction

The domestic sheep (Ovis aries) is one of the most important
domestic animals that is used mainly for meat (Hamadalahmad
etal.,2020). Currently, researchers concentrate on the molecular
mechanisms to improve the skeletal muscle in sheep, which is
of vital importance to enhance the meat production of existing
sheep breeds (Betti et al., 2022). It is necessary to recognize
genes that influence muscle growth rates in sheep because
sheep are an important species especially for mutton production
and they are distributed broadly as domestic animals (Li et al.,
2020; Mohammadi et al., 2018). The homeland of Texel sheep
is in the Netherlands on Texel Island. The production systems
of this breed have transferred from an initial concentration on
wool to now being mainly for meat production in Australia and
New Zealand (Kinka and Young, 2019; Huang et al., 2020).

Transcriptome studies in mammalian species in the large
majority have resulted in the identification of various types of
non-coding RNAs of which long non-coding RNAs (IncRNAs)
are the more abundant (approximately 75% of the genome) and
are also a functionally versatile category; they participate in
essential functions by regulating differentiation, maintenance
development in cell identification and disease (Neguembor
et al., 2014). The most plentiful ncRNA families which are
more than 200 nucleotides in length include: PIWI-interacting
RNA (piRNA) (Itou et al., 2015; Lim et al., 2015), microRNA
(miRNA) (Bhin et al., 2015; Grossman and Shalgi, 2016),
small interfering RNA (siRNA)(Hilz et al., 2016). Studies have
shown IncRNAs as a novel regulatory molecule are shared in
mammalian evolution (Ulitsky and Bartel, 2013).

Progress in RNA sequencing technologies has exposed
the complication of genomes. Non-coding RNAs form the
majority (98%) of the transcriptome, and some significant
functions of regulatory RNA have been discovered (Zhu et al.,
2017). Understanding the mechanism of the non-coding RNAs
action is one of the most important challenges facing biology
today. LncRNAs can be categorized into diverse subtypes
(Antisense, Intergenic, Overlapping, Intronic, Bidirectional
and Processed) according to the direction and location of
transcription to other genes (Peschansky and Wahlestedt,
2014; Mattick and Rinn, 2015). Many IncRNAs are expressed
in a tissue-specific pattern, with more variation between
tissues than protein-coding genes (Derrien et al., 2012). It was
believed that the IncRNAs had no ability for coding because
of their deficiency in optimal open reading frames. Still, more
recent researches have revealed that IncRNAs could encode
a few peptides because the IncRNAs had small open reading

frames; therefore, encoding a few peptides can have crucially
vital functions (Anderson et al., 2016; Nelson et al., 2016).

More recently, IncRNAs have been identified as being
involved in muscle differentiation as crucial regulators. For
example, Linc-RAM (long intergenic non-protein coding
RNA activator of myogenesis), Lnc-mg (myogenesis-
associated IncRNA), and Linc-MDI1 (long intergenic non-
protein coding RNA, muscle differentiation 1) are involved
in myogenesis (Zhu et al., 2017). LncRNA-Six1 can stimulate
cell proliferation, which contributes to muscle growth
(Cai et al., 2017). Other study revealed the IncRNA transcripts
expressed in the skeletal muscle of sheep (Chao et al., 2016).
Sun et al. (2016) demonstrated that IncMD (muscle-specific
IncRNA) competes with endogenous RNA (ceRNA) to boost
muscle differentiation.

LncRNA targeting genes participate in the signaling paths
associated with the development and growth of muscle in
sheep based on Gene Ontology (GO) and KEGG enrichment
analysis (Li et al., 2019; Yuan et al., 2020). The sheep is one of
the most important livestock animals used mainly for mutton
production (Aljubouri et al., 2020), with growing biological
evidence referring to IncRNA roles in muscle development and
differentiation. However, to date, only some novel IncRNAs
with their targeted genes have been distinguished in detail,
such as miRNAs and mRNAs. Therefore, the current study
aimed to identify the role of novel IncRNAs and the target
genes (miRNAs and mRNAs) regulated by IncRNAs that are
effective in the growth and development of skeletal muscle
tissue in Texel sheep. The knowledge created from such
identification could be useful in future research exploring the
IncRNA functions in the longissimus dorsal muscle of sheep.
It may also inform the regulation of miRNA and mRNA
genes, which participate in critical roles in muscle growth and
development by binding their sites. Such work would lay the
basis for animal breeding and genetic policies to enhance the
growth and development of meat production in sheep.

Materials and Methods
Data collection and samples

The RNA sequences data (paired-end) used in the analysis
were retrieved from the Ensemble database (Clark et al., 2017)
with accession numbers ERR4891 and ERR4892. The sheep
reference genome (Oar_v3.1) and gene model annotation
GTF (Oar_v3.1.96) files were downloaded from the Ensemble
database. The sample consisted of muscle tissues (longissimus
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dorsal) from six juveniles (aged 89 mth) and six adult Texel
sheep (Clark et al., 2017). Tissues were preserved in RNAlater
and kept at -80°C, with the RNA extraction based on the TRizol
protocol explained in detail by Clark et al. (2017).

RNA sequences data analysis

The total RNA raw reads produced 141,079,400 pieces
of data. Sequencing used the Illumina HiSeq 2500 platform
with (2 X 151 bp) paired-end reads. The RNA raw reads were
submitted to quality control using the FastQC version 0.11.5
software (Andrews, 2010). Reads containing adapters, bases
below quality and low-quality reads were trimmed from the
raw data using the Trimmomatic version 0.36 software (Bolger
et al., 2014) Finally, reads were kept with 20 as a minimum
Phred quality score and a minimum length of 36 bp.

LncRNA identification pipeline

The pipeline in Fig. S1 was used to identify the IncRNAs.
The first step generated the index sheep reference genome
(Oar_v3.1) using the command hisat2-build and the paired-end
clean reads aligned to the sheep reference genome (Oar _v3.1)
using the Hisat2 software (Kim et al., 2015). The mapping
reads were from the per library assembly with the Cufflinks
software (v2.2.1.0SX x86_64; http://cufflinks.cbcb.umd.edu;
Trapnell et al., 2010). All assemblies for samples were merged
to generate an assembly GTF file using the Cuffmerge software
(Trapnell et al., 2012). Expression analysis used the Cuffdiff
version 2.2.1 software (Trapnell et al., 2010) to identify
differentially expressed genes (DEGs) between the two groups
(six samples of adult sheep and six samples of young sheep).

Genes with a false discovery rate (FDR) < 0.05 were
considered as DEGs. GO analysis was performed using the
Cytoscape version 3.7.2 software with the ClueGO plug-
in (Bindea et al., 2009) for determining the function of the
IncRNA genes that might participate in common biological
responses or possess related functions. Enriched GO terms
were tested for significance at p < 0.05 (Saedi et al., 2022).
Heatmap analysis (Babicki et al., 2016) was performed to
visualize the differences in the expression level of the IncRNA
genes in the longissimus dorsal muscle tissue at different
developmental stages. A volcano plot using the ggplot2
package in the R program (R Core team, 2021) was used for
the visual identification of up-regulated and down-regulated
DE IncRNA genes (based on log2 fold-change > 1.0; p <
0.05). The second step used the Cuffcompare version 2.2.1
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software (Trapnell et al., 2010) to select transcripts with

(intronic transcripts), “u” (intergenic transcripts), and “x”
(antisense transcripts) classes, depending on the reference
transcriptome. Filtering the pipeline to identify the potential
candidate transcripts from all assembling transcripts used the
criteria: 1) the transcripts with one exon number and length
> 200 bp were kept (Ji et al., 2020); and 2) the three tools
applied to predict the coding potential for all transcripts were:
Coding Potential Calculator 2 (CPC2; score > 0.5; Kang et al.,
2017), Coding-Potential Assessment Tool (CPAT; score > 0.36;
Wang et al., 2013) and Coding-Non-Coding Identifying Tool
(CNIT; score > 0 indicates coding RNA, score < 0 indicates
non-coding RNA; Guo et al., 2019). The predicted transcripts
that were potentially coding, were removed using any of the
three tools above, and those predicted as non-coding potential
were considered as candidate IncRNAs.

3. A novel and known IncRNA was distinguished from
candidate IncRNAs using the NONCODE version 5 databases
(http://www.noncode.org/; Fang et al., 2018) for an integrated
knowledge database dedicated to ncRNAs, especially IncRNAs.

Target prediction of candidate IncRNAs

The IncRNA structures (secondary and tertiary) also play
an important role in the mechanism of their actions by making
binding locations for other bio-molecules such as DNA/RNA/
proteins. Additionally, IncRNA can interact with miRNA,
which participates in the post-translational process by acting
as a decoy or sponge and thus maintains the stability of the
mRNA (Ramakrishnaiah et al., 2020). Interactions were
performed between the IncRNAs—miRNAs and IncRNAs—
mRNAs that are present only in the skeletal muscle of sheep, to
explore the target genes that may be regulated by the candidate
IncRNAs. The IncRNAs can interact with miRNAs to control
gene expression by the miRNA sponge mechanism (Johnsson
et al., 2013). Therefore, the determination of miRNA target
locations on IncRNAs would provide evidence for IncRNA
functional research. Interactions between IncRNAs—miRNAs
were executed using the database of IncRNASNP2 (Miao et al.,
2018), which produced miRNA genes intersected using the Pita,
TargetScan and Miranda tools and a free base binding energy
< -20, with a score > 150. To reduce the occurrence of positive
false results, the final targeted miRNAs in the IncRNASNP2
database were intersected with the results obtained from tools
such as the miRanda, TargetScan, and Pita (Miao et al., 2018).

Interaction between the IncRNAs-mRNAs using the
Rlsearch software (Wenzel et al., 2012) was used to predict the
binding locations between IncRNAs-mRNAs with free energy
values no more than -50 (Yuan et al., 2020).
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Construction of regulatory networks

The regulatory networks (IncRNAs-regulated) for interaction
between IncRNAs-mRNAs and IncRNAs-miRNAs were
constructed for visualizing and integrating the networks using
the Cytoscape software version 3.7.2 (Shannon et al., 2003).

Results
RNA sequencing and mapping

For identification of the IncRNAs in addition to probable
functional IncRNAs, which may be involved in the sheep skeletal
muscle tissue growth and development, 12 samples from young
and adult muscle tissue (longissimus dorsal) were sequenced using
[lumina HiSeq 2500. To recognize the samples from the various
sequencings, the six young Texel sheep were identified from
ERR489116 1 fastqc to ERR489121 2 fastqc as C1, C3, C5,
C7, C9 and C11, while the six adults were identified as two adult
Texel sheep from ERR489188 1 fastqc to ERR489189 2 fastqc
as C13 and C15 and four adult Texel sheep from ERR489242 1
fastqc to ERR489245 2 fastqc as C17, C19, C21 and C23.

Six samples from the longissimus dorsal muscle tissue of
juveniles (8-9 mth), namely C1, C3, C5, C7, C9 and C11 and
six samples (C13, C15, C17, C19, C21 and C23) for the adult
individuals were used to identify the DE IncRNAs between the
two different physiological stages. Before trimming, the total
RNA sequencing obtained 141,079,400 short reads with the
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young and adult stages averaging 7,1664,033 and 69,415,367
short reads, respectively. After trimming the total RNA, the raw
data consisted of 103,922,274 and then removing low-quality
reads was reduced to 37,157,126. On average, 51% of the clean
reads were aligned exactly to the sheep reference genome,
while on average, overall alignment rate was 91.5% for clean
reads. The GC percentage was more than 44% (Table S1).

Differentially expressed IncRNAs in sheep muscle tissue

In total, 260 IncRNA genes were significantly differentially
expressed between the young and adult individuals. All genes
with FDR < 0.05 were considered as DEGs. Among them, there
were 82 IncRNA genes (15 genes up-regulated and 67 genes
down-regulated in adults compared with young, based on log2
fold-change>1.0; p < 0.05), as shown in Fig .1A and Table S3.
Cluster analysis was performed using Heatmap (Babicki et al.,
2016) to visualize the differences in the expression level in the
IncRNA genes in the longissimus dorsal muscle at different
developmental stages.

The results demonstrated that the styles of different IncRNA
expression were correlated with the young and adult stages and
in Fig. 1B, there was higher expression of the IncRNA genes
in the young than in the adult individuals using cluster analysis
(based on FPKM for 82 of the expressed genes). Among the
top 10, the expressed IncRNAs were most abundant in the
longissimus dorsal muscle tissue (Table 1). These findings may
assist in identifying DE IncRNAs for particular periods in the
growth and development of the skeletal muscle in sheep.

]

05 0 05
Row ZScore

®)

—

b

ANKRD13C
HSPG2
COL4A1

4
ADCY2
PPP1R10
TSPYL4
IRF2BPL
CccDcs
MYLK3
ADRB2
DUSP10
PGM2L1
SLC7A2

RCAN1
SLC25A25
MLF1
FLNC

3
<

g
5
3

Fig. 1 Analysis of differentially expressed (DE) IncRNA genes: (A) volcano plot of 82 DE IncRNA genes in young and adult individuals; (B) heatmap

for clustering analysis of 82 DE IncRNA genes in young and adult individuals, where blue and red circles denote down- and up-regulated expression,

respectively and yellow in the heatmap refers to the higher expression of genes in young compared to adult individuals
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Table 1 Top 10 expressed IncRNAs most abundant in skeletal muscle from adult and young Texel sheep

No. LncRNA gene Gene id Chromosome locus Log2 (fold-change >1.0) Adjusted p (p <0.05)
1 APOD XLOC 000970 1:190322030-190335306 1.3656 0.00518531
2 C7 XLOC 012175 16:33481055-33542068 1.63463 0.00518531
3 DDIT4 XLOC 023295 25:28192240-28194468 1.69527 0.00518531
4 TSPYL4 XLOC 033990 8:21477848-21482100 1.70352 0.00518531
5 PVALB XLOC 026714 3:180006100-180067626 2.36872 0.005185

6 ZC3H12C XLOC 010487 15:19647455-19734973 -1.0246 0.00518531
7 SIK3 XLOC 011063 15:27001572-27122508 -1.01641 0.00518531
8 FLNC XLOC 028293 4:92858801-92887441 -1.01271 0.00518531
9 MMP2 XLOC 008916 14:23102468-23341508 -1.00391 0.016986755
10 SPARC XLOC 030802 5:60404914-60427915 -1.00261 0.00518531

GO enrichment analysis

GO analysis of the DE IncRNA genes was performed
to explore their functions using the ClueGO plug-in in the
Cytoscape software version 2.7.2 software (Bindea et al.,
2009). In total, 25 GO terms significantly enriched, with 11
of these terms associated with biological processes (BPs),
such as regulation of the muscle system process, muscle organ
development, striated muscle cell differentiation, striated
muscle cell development and muscle tissue development,
while others were associated with cellular components
(CC), such as contractile fiber, sarcomere and basement
membrane.

Table 2 GO enrichment analysis of differentially expressed IncRNAs

RNA polymerase II regulatory region DNA binding,
transcription regulatory region sequence-specific DNA binding
and RNA polymerase II regulatory region sequence-specific
DNA binding were associated with molecular functions
(MFs). In total, 26 genes of the GOs were classified as BP,
of which 2 genes (FOS in GO:0007517 and GO:0060537)
were up-regulated in muscle organ and tissue development. In
comparison, 24 genes were down-regulated, 9 genes as CC were
down-regulated and 18 genes as molecular functions (MFs)
among them 6 genes (FOS, HES1 in each of GO:0001012,
GO0:0000976 and GO:0000977) were up-regulated, while the
remaining 12 genes were down-regulated. The significantly
enriched GO terms are shown in Table 2.

GO term Number Gene name Regulated p-Value
of genes direction (» <0.05)
Biological process
GO0:0090257  regulation of muscle system process 2 TMEM38B Down 0.04
ADRB2 Down
GO:0007517 muscle organ development 8 ARID5B Down
ANKRD1 Down 0.01
COL3A1 Down
FOS Up
PIl6 Down
RCANI1 Down
ATF3 Down
XIRP2 Down
GO:0051146  striated muscle cell differentiation 5 FLNC Down 0.01
MYLK3 Down
PIl6 Down
RCANI1 Down
TANCI Down
GO:0055002  striated muscle cell development 4 ALPK2 Down 0.01
MYLK3 Down
PIl6 Down
RCANI1 Down
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Table 2 Continued

GO term Number Gene name Regulated p-Value
of genes direction (» <0.05)
GO:0060537 muscle tissue development 7 ALPK2 Down 0.04
ATF3 Down
COL3A1 Down
FOS Up
PIl6 Down
RCANI1 Down
XIRP2 Down
Cellular component
G0:0043292  contractile fiber 3 ABRA Down 0.01
MMP2 Down
XIRP2 Down
GO:0030017  sarcomere 2 XIRP2 Down 0.04
MMP2 Down
GO:0005604 basement membrane 4 ANXA2 Down 0.02
COL4A1 Down
FN1 Down
NID1 Down
Molecular function
GO:0001012 RNA polymerase II regulatory region DNA 6 ARID5B Down 0.03
binding ATF3 Down
FOS Up
HESI1 Up
KLF4 Down
KLF6 Down
GO0:0000976  transcription regulatory region sequence-specific 6 ARID5B Down 0.03
DNA binding ATF3 Down
FOS Up
HESI1 Up
KLF4 Down
KLF6 Down
GO0:0000977 RNA polymerase I regulatory region sequence- 6 ATF3 Down 0.03
specific DNA binding ARID5B Down
FOS Up
HESI1 Up
KLF4 Down
KLF6 Down

Identification of IncRNAs in sheep skeletal muscle

To identify the candidate IncRNA transcripts in sheep
skeletal muscle tissue in the young and adult samples, first,
69,790 transcripts were filtered with only classes u, i, x using
the Cuffcompare software. Then 15,841 of the remaining
transcripts were categorized with 14,203 transcripts as class
code u (intergenic), 72 transcripts as class code i (intronic) and
1,566 transcripts as class code x (antisense).

Around 75% of the assembled transcripts were removed
by the selection classes u, i and x. The remaining 15,841
transcripts were filtered to a length > 200bp and exon number
>1 that resulted in the removal of 1,310 transcripts (Ji et al.,
2020). After completing the length filter, 1,453 [transcripts
were submitted for filter coding potential using CPC2, CPAT
and CNIT (Table 3). This produced 994 non-coding transcripts.
Then, these transcripts were distinguished between the novel
and known IncRNAs using the NONCODE version 5 databases
(Fangetal., 2018). Finally, 466 known and 528 novel transcripts
were obtained.
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Table 3 Coding potential using Coding Potential Calculator 2 (CPC2), Coding-Potential Assessment Tool (CPAT) and Coding-Non-Coding Identifying

Tool (CNIT)
Tools Total coding/ Noncoding Coding Cutoff Class-code
non-coding transcripts
CPAT 1,312 1,190 122 Coding > 0.364 Intergenic = 942 (75 coding +867 noncoding)
Noncoding < 0.364 Antisense = 353 (47 coding + 306 noncoding)
Intronic = 17 (0 coding +17 non-coding)
CPC2 1,318 1,149 169 Coding > 0.5 Intergenic = 944 (116 coding +828 noncoding)
Noncoding < 0.5 Antisense = 355 (53 coding +302 noncoding)
Intronic = 19 (0 coding +19 noncoding)
CNIT 1,293 1,105 188 Coding >0 Intergenic = 924 (133 coding +791 noncoding)
Noncoding < 0 Antisense = 351 (53 coding +298 noncoding)
Intronic = 18 (2 coding +16 noncoding)
LncRNASs features two exons per transcript. The transcripts with only one exon

The LncRNA transcripts features were screened for the
number of chromosomes, the number of exons and the length
of transcripts. (Fig. 2). The results showed that most of the
IncRNA transcripts were distributed on chromosomes 3 and
1. The IncRNA transcripts were divided into all Texel sheep
chromosomes but did not appear on the Y chromosome
(Fig. 2C). Furthermore, most IncRNA transcripts had one and
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Target prediction of candidate IncRNAs

LncRNAs-mRNAs interaction prediction

To predict the binding locations between the IncRNAs
and protein-coding genes, 994 sequences of known and novel
IncRNA transcripts (query) were interacted with 1,0921
mRNAs detected in sheep skeletal muscle (target) using the
RlIsearch software (RNA interaction search; Wenzel et al.,
2012) under a free energy of no more than -50. The results
showed that only 474 from 994 IncRNAs had 1,537 targets of
mRNA. Among them, 262 and 212 IncRNA sequences were
novel and known IncRNAs, respectively. TCONS 00063730,
TCONS_00063387 and TCONS_00063388 for novel
intergenic IncRNAs and TCONS 00033181 for novel
antisense IncRNAs had strong correlations with mRNAs,
while only TCONS_00060832 and TCONS_00060833 for
known antisense IncRNAs had strong correlations with mRNAs.

Interaction prediction of LncRNAs-miRNAs

To predict miRNA targets on IncRNA sequences, 994
known and novel IncRNA transcripts were submitted to the
IncRNASNP2 database to explore the potential function of the
IncRNA transcripts on miRNA binding.

The results indicated that only 116 IncRNA transcripts
were bound with 125 miRNAs under a cutoff energy
< -20 (score > 150). Among them, 55 and 61 IncRNA
transcripts were novel and known IncRNAs, respectively.
Furthermore, the results were filtered using the miRNAs
data detected in sheep skeletal muscle by Zhang et al.,
(2013). All 116 IncRNA transcripts had a relationship
with 125 miRNAs, but TCONS 00040327, TCONS 00061518
and TCONS 00064968, and TCONS 00012728,
TCONS 00036070 and TCONS 00043102 for novel and
known intergenic IncRNA transcripts, respectively, had greater
correlation with miRNAs detected in sheep skeletal muscle. In
addition, found TCONS 00033645 and TCONS 00052875 for
novel and known antisense IncRNA transcripts, respectively,
had greater correlation with miRNAs detected in sheep
skeletal muscle. Furthermore, the IncRNA transcripts targeted
miRNAs, such as oar-miR-22, oar-miR-29, oar-miR-493,
oar-miR-432 and oar-miR-433, that were mentioned in other
studies, were differentially expressed after birth and during the
embryonic stages, respectively (Yuan et al., 2020).

LncRNAs-mRNASs interaction network construction

Regulatory interaction networks were constructed
between 200 novel IncRNA transcripts and their target

genes (MRNAs) using the Cytoscape version 3.7.2 software
(Shannon et al., 2003), as shown in Fig. 3. The network
results showed that among the 200 novel IncRNA transcripts,
TCONS_00048535, TCONS_00061466, TCONS_ 00047958
and TCONS 00053067 had more relationships with 8, 7, 7
and 7 protein-coding genes, respectively, compared to the
other IncRNA transcripts (Table S6). Protein-coding genes,
such as the MIS18BP1 and TAF9B genes, were strongly
associated with 38 and 37 novel IncRNA transcripts,
respectively (Table S6).

Network construction of IncRNAs-miRNAs interactions

Only 55 novel IncRNA transcripts (intergenic, antisense
and intronic) targeting 59 miRNAs were selected. The
regulatory interaction networks were constructed between
55 novel IncRNA transcripts and their target genes
(miRNAs) using the Cytoscape version 3.7.2 software
(Shannon et al., 2003), as shown in Fig. 4. The network
results showed that among the 55 novel IncRNA transcripts,
TCONS_00040327, TCONS_00061518, TCONS_00064968
and TCONS 00033645 had more associations with 2, 2, 2
and 2 miRNAs, respectively, detected in sheep skeletal muscle
compared to other novel IncRNA transcripts (Tables S7 and
S8). In addition, miRNAs detected in sheep skeletal muscle,
such as oar-miR-127 and oar-miR-432, had a strong association
with 7 and 7 novel IncRNA transcripts, respectively, compared
to other miRNAs (Tables S7 and S8).

Discussion

Many studies have shown that IncRNAs could be critical as
regulatory factors in the growth of muscle (Legnini et al., 2014;
Ballarino et al., 2015; Mueller et al., 2015; Wang et al., 2015).
The critical roles of IncRNAs in numerous vital biological
processes and diseases, such as cancer (Weikard et al., 2017;
Saliani et al., 2021), are the subject of current research. Rapid
advances in modern techniques for RNA sequencing have
helped to discover many IncRNAs in organisms such as humans
and mice; however, studies on IncRNAs in sheep, especially,
are very few (Bakhtiarizadeh et al., 2016). Therefore, databases
are available for most organisms except sheep. A search for
IncRNAs in the NONCODE database, identified 17 species,
excluding sheep (Zhao et al., 2016). In the current study,
RNA-Seq technology was applied to detect novel IncRNAs
and their regulatory functions associated with the growth and
development of skeletal muscle in Texel sheep.
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Based on the current literature, this was the first study
identifying the expression of IncRNAs and their regulatory
networks associated with the development and growth of
skeletal muscle at different stages in Texel sheep using the
RNA-Seq method. After merging all transcript files using the
Cuffmerege software, a merged output file was produced as
the input for the Cuffdiff software to identify DEGs between
the two groups of adult and young skeletal muscle. From
the 260 significantly differentially expressed IncRNA genes,
82 IncRNA genes were identified, with 15 being up-regulated
in adults compared to young sheep and 67 being down-
regulated (log2 fold-change >1.0; p < 0.05), with a higher
expression of the IncRNA genes in the young than in the
adult individuals (Table S2). The GO analysis revealed that
25 GO terms were significantly enriched (p < 0.05); among
them, 5 were associated with biological processes (BPs),
such as regulation of muscle system process, muscle organ

development, striated muscle cell differentiation, striated
muscle cell development and muscle tissue development.
These findings supported the vital role of DE IncRNAs in
the growth and development of Texel sheep skeletal muscle.
In total, 528 novel IncRNA transcripts were identified,
consisting of 383 intergenic IncRNAs, 135 antisense IncRNAs
and 10 intronic IncRNAs, using acceptable filtering criteria.
The number of novel IncRNA transcripts was consistent
with another study (Bakhtiarizadeh and Salami, 2019).
The novel IncRNA transcripts in the current study shared
many features with other mammalian IncRNAs, such as
having few exon numbers and a large exon size (Bakhtiarizadeh
et al., 2016; Palmieri et al., 2017). These results showed
that the pipeline used in the current study to identify the
IncRNA transcripts was dependable, and the findings could be
used as a reasonable basis for more analysis.
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The increasing weight of published evidence suggests
that IncRNAs, are crucial regulators of gene expression
in differentiation, development and human illnesses. The
regulatory mechanisms of IncRNAs can be classified into
four main models: signals, decoys, scaffolds and guides. The
cumulative evidence suggests that IncRNAs are capable of
modulating almost every cellular process by their binding
to proteins, mRNAs, miRNAs and/or DNAs (Li et al.,
2019). Consequently, to predict the bounds of IncRNAs
with sheep skeletal muscle mRNAs, the RIsearch software
(Wengzel et al., 2012) was applied with a free energy of base
binding of no more than -50, consistent with (Yuan et al.,
2020). The findings revealed that 474 IncRNA transcripts
were bound with 1,537 targets of sheep skeletal muscle
mRNA. Among them, 262 IncRNA transcripts were novel
IncRNAs, such as TCONS 00063730, TCONS 00063387
and TCONS 00063388 for novel intergenic IncRNAs, and
TCONS 00033181 for novel antisense IncRNA, with all these
having strong correlations with sheep skeletal muscle mRNAs.

In addition, novel antisense IncRNA TCONS 00033181
targeted seven sheep skeletal muscle mRNAs (LRRFIPI,
UBQLN4, ITSN1, CEP63, TINAGL1, SERPINE1, ECSIT),
while the novel intergenic IncRNAs (TCONS 00063730,
TCONS 00063387, TCONS 00063388) targeted 18 sheep
skeletal muscle mRNAs (PPM1J, CHODL, EBPL, DPEP3,
TNPO1, EDEM1, RBM15B, UBE2R2, SERINC2, TAF4B,
GPATCHI11, IMPDH1, ENSOARG00000018777, MCLI1,
ENSOARG00000009490, SIAE, ENSOARG00000004465,
RIC8A) All these mRNAs were reported by Clark et al. (2017)
as differentially expressed genes between the purebred Texel
and hybrid T x BF (Texel x Scottish Blackface) in skeletal
muscle. The complete information on the interaction between
the novel IncRNAs and mRNAs is provided in Table S4.

The competitive endogenous RNA (ceRNA) hypothesis
suggests that RNA transcripts, involving non-coding and
coding RNAs, compete for post-translational regulation with
shared miRNA binding positions (Salmena et al., 2011).
Therefore, IncRNA can competitively bind some miRNAs,
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which play critical roles in muscle growth and decrease the
impact of regulation of miRNAs on their target genes and hence
act in vital roles themselves in the growth of muscle (Wu et al.,
2020). To forecast miRNA targets on IncRNAs sequences, the
IncRNASNP2 database (Miao et al., 2018) was sued with a
cutoff (energy < -20 ¢ score > 150) consistent with (Jiang et
al., 2020) to discover the potential function of the IncRNA
transcripts on miRNA binding. The results demonstrated that
116 IncRNA transcripts had an association with 125 miRNA
targets. Among them, 55 IncRNA transcripts were novel
IncRNAs. Additionally, the results were filtered with miRNA
data detected in sheep skeletal muscle (Zhang et al., 2013) and
this identified novel intergenic IncRNAs (TCONS 00040327,
TCONS 00061518, TCONS 00064968) and a novel antisense
IncRNA (TCONS_00033645) that had additional relationships
with miRNAs. For example, TCONS 00040327 was associated
with oar-miR-432 and oar-miR-21.

Yuan et al. (2020) reported high expression was abundant
in miR-432 during the embryo stage of skeletal muscle in
fetal sheep. Another study reported that oar-miR-432 inhibited
myoblast differentiation and proliferation and could inhibit
myogenesis by targeted PSSPIK and E2F3 genes using the
signaling pathway PI3K/AKT/mTOR (Ma et al., 2017). These
miRNAs (miR-21, miR-155, miR-143, miR-221, miR-23a) are
involved in the proliferation, development and/or differentiation
of skeletal muscles (Fatima and Morris, 2013; Zhang et al.,
2017). Kaur et al. (2020) revealed that miR-21 was highly
differentially expressed (log2 FC = 4) in the Bandur breed and
was associated with sheep muscle growth and development.
They reported that TCONS 00061518 was associated with
oar-let-7b and oar- let-7¢. The family of let-7 miRNAs includes
one of the vital regulatory factors in the developmental process
(Zhang et al., 2013). TCONS_00064968 is associated with
oar-miR-21 and oar-miR-654, while miRNA-21 is a new
myogenic involved in the skeletal muscle development of pigs
and targeting the TGFpI gene can modulate PI3K/Akt/mTOR
signaling (Bai et al., 2015). Zhang et al. (2021) noticed that
miR-21-5p stimulated the proliferation and differentiation of
SMSCs in chicken by targeting KLF3.

Notably, miRNA-21 targeted mRNA (MEF2C) associated
with sheep skeletal muscle (Liuetal.,2019). TCONS_00033645
is associated with oar-miR-412 and oar-miR-432. The current
results identified novel intergenic TCONS 00035378 and
TCONS 00056977 binding with oar-miR-381, as reported in
another study that targeted multiple muscle-related mRNAs,
such as MEF2C, IGF2 and MBNLI1 (Liu et al., 2019), with
oar-miR-381-3p being one of the most abundant miRNAs

found in sheep skeletal muscle at different developmental
stages (Zhao et al., 2016). The current study identified that
novel intergenic TCONS 00033426, TCONS 00042182 and
TCONS 00063730, and novel antisense TCONS 00033663,
TCONS 00053067 and TCONS 00055533 targeted oar-
miR-127. Another study showed that miR-127 had a higher
expression level in the before-birth stage compared with the
afterbirth stage, suggesting that miR-127 may play a vital role
in embryonic myogenesis (Liu et al., 2019). Yuan et al. (2020)
detected important upregulations of highly differentially
expressed miRNAs, such as miR-136 and miR-127, in the
skeletal muscle of embryonic sheep. Zhai et al. (2017) found
that miR-127 was mainly expressed in the tissue of skeletal
muscle and that it was upregulated during the differentiation
of satellite cell (SC) and C2C12. The current study detected
different novel IncRNA that targeted the oar-miR-29a, such as
TCONS 00047958, TCONS 00040369, TCONS 00048770,
TCONS_00055782, TCONS_00040351. Other studies reported
that miR-29a was involved in the development and growth of
skeletal muscle (Galimov et al., 2016; Muluhngwi et al., 2017,
Zhou et al., 2016).

Wu et al. (2020) showed that miR-29a might inhibit
proliferation and differentiation in Hu sheep skeletal muscle
satellite cells (SMSCs). In addition, the novel IncRNAs
TCONS_00052750, TCONS_00060737, TCONS_00066388,
TCONS 00033644 and TCONS 00061466 targeted oar-miR-
125b, as mentioned by Kaur et al. (2020) were differentially
expressed in Bandur sheep and was correlated with their muscle
growth and development. Liu et al. (2019) demonstrated that
miR-125b targeted many mRNAs associated with sheep skeletal
muscle, suchasMYEF2, MYBL2 and Sirt]. TCONS_ 00050114,
TCONS 00050115 and TCONS 00050113 bound with oar-
miR-433. Zhao et al. (2016) reported that oar-miR-433-3p
was most abundant at different developmental stages in sheep
skeletal muscle, whereas Yuan et al. (2020) discovered that
miR-433 appeared as broad expression in the skeletal muscle
of embryonic sheep. The detailed information of the interaction
between novel IncRNAs and miRNAs is provided in Table S5.
These results suggested that novel IncRNAs may play a vital
role in the growth and development of skeletal muscle in Texel
sheep.

Conclusion

In total, 82 DE IncRNA genes were identified with
15 up-regulated in adults compared with 67 down-regulated
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(log2 fold-change>1.0, P< 0.05) in young sheep, with a higher
expression of the IncRNA genes in the young than in the adult
individuals. The 82 DE IncRNA genes were submitted for GO
analysis and among them, 26 were classified as biological
processes (BPs) that were related to the regulation of muscle
organs, cell, tissue development and differentiation.

The study detected novel IncRNA transcripts, such as
TCONS 00063730, TCONS 00063387, TCONS 00063388
and TCONS 00033181, that had strong correlations with
mRNAs, while other novel IncRNA transcripts, such as
TCONS 00040327, TCONS 00061518, TCONS 00064968
and TCONS 00033645, had greater correlations with miRNAs
detected in sheep skeletal muscle. This study should provide
additional information on novel IncRNAs that can be applied
in modulating both miRNAs and mRNAs, which play crucial
roles in muscle growth and development, by interacting
with their binding sites to help progress research into meat
production processes.
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