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Importance of the work: High-throughput phenotyping systems containing non-
destructive and non-invasive characterizations of phenotypic traits throughout the whole
life cycle of plant development have prevailed over the conventional method.
Objectives: To evaluate the phenotypic characteristics of indica rice genotypes using red-
green-blue (RGB) high-throughput phenotyping over the whole life cycle in relation to
biomass and yield components.

Materials & Methods: Plant canopy width, canopy height and leaf area values of the rice
cultivars RD41, Pathumthanil (PT1), Homchonlasit, IR64, Riceberry and RD43 were
measured using RGB imagery estimation together with actual measurements at 45 d after
planting (DAP), 60 DAP, 75 DAP, 90 DAP, 105 DAP and 120 DAP.

Results: Canopy width and canopy height values obtained from actual measurements were
linearly related to RGB-estimated values in all rice cultivars with values for the correlation
coefficient (r) of 0.87-0.93 and 0.90-0.99, respectively. Notably, there was a positive relationship
between plant projected area from the RGB imagery and the leaf area measurement, especially
at the vegetative stage (r = 0.93-0.99). At harvest, there was also a positive relationship between
aboveground biomass and total yield (coefficient of determination (R?) = 0.44). The agronomical
traits and plant characterizations of RD41, PT1, Homchonlasit, IR64, Riceberry and RD43 were
validated over the whole life cycle of rice crops.

Main finding: High-throughput phenotyping data collection should overcome
conventional measurements due to its non-destructive, rapid and automated production
for large amounts of data and high accuracy in indica rice crops.
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Introduction

Rice crops are a staple food that provides carbohydrate
sources for more than one-half of the world’s population,
especially people living in Asia (Khush, 2005). Rice grain
consumption in Europe, Australia, North America and Latin
America has continually increased (Muthayya et al., 2014;
Firdaus et al., 2020). Efficient production strategies, including
plant breeding programs, suitable cultivation and effective
agricultural management using modern technology, are required
to improve rice yields to meet the demand for food resources
(Chawade et al., 2018). Consequently, modern idiotypes of rice
crops based on stay-green and erect leaves, high photosynthetic
abilities, highly efficient sink-source relationships and deep
root traits have played a key role in domesticating rice to
enhance its yield traits (Peng et al., 2008; Dingkuhn et al.,
2015; Liang et al., 2017; Haghshenas et al., 2020). Phenotypic
characteristics in rice crops fluctuate depending on genotypic
variations and environmental cues (genotype by environment
interaction; GXE interaction) throughout the whole life cycle
(Dhondt et al., 2013; Zhang et al., 2017a; Omari et al., 2020).
In rice phenotyping, canopy height, canopy width and leaf
area index are the basic agronomical parameters that have
indicated the aboveground biomass and predicted grain yield
(He et al., 2019; Li et al., 2019). A close relationship between
the total leaf area and biomass of rice crops at different growth
stages has been demonstrated (Zhang et al., 2014; Lee et al.,
2018). Rice biomass has also been extensively evaluated to
assess plant growth status and predict grain yield (Zheng et al.,
2019). Thus, achieving the basic measurement of individual
quantitative parameters is a promising way to assess valuable
data for the further study of complex traits (Li et al., 2014).
However, traditional ways of estimating rice phenotyping
traits are weak, time consuming, labor intensive, potentially
damaging (destructive measurement) and prone to errors
(Jiang and Li, 2020). Furthermore, the expression of each rice
genotype changes and varies along the different stages of the
life cycle (Li et al., 2014). Monitoring rice phenotypes that
change throughout their life cycle increases the throughput
and difficulty for plant researchers. Therefore, high-throughput
strategies are necessary to increase the efficiency of the phenotyping
measurement process (Yang et al., 2013; Araus and Cairns,
2014; Mir et al., 2019; Kim et al., 2020; Yang et al., 2020).

High-throughput phenotyping systems with the ability to
perform nondestructive and noninvasive characterizations
for phenotypic traits with high efficiency, great precision and

automation have been well established to monitor the adaptive
abilities of higher plants throughout the whole lifecycle
across crop seasons (Li et al., 2014; Fahlgren et al., 2015b;
GroBkinsky et al., 2015). In addition, continuing advances
in high-resolution imaging systems, computing capacity and
image processing algorithms offer great opportunities to
develop non-destructive high-throughput methods (Klukas
et al., 2014; Wang et al., 2020). An affordable means has
been reported of assessing genotypic differences in cereal
crops using vegetation indices derived from RGB (red-green-
blue) imagery (Fiorani and Schurr, 2013; Araus et al., 2018).
High-throughput phenotyping technology is effectively
assessed to measure the overall growth characteristics over
the whole life cycle of rice crops. In the indica subtype of
rice, there is still a lack of important information on high-
throughput phenotyping, especially regarding associated traits
related to grain yield. To date, there is limited information
on the diversity of leaf color in rice crops, including light
green, dark green, purple and pink colors, detected by RGB
cameras via high-throughput phenotyping in relation to plant
canopy estimation and color segmentation as an alternative
information source (Peng et al., 2006; Chin et al., 2016; Khan
et al., 2020). Riceberry is a previously documented indica rice
variety with a purple leaf sheath (anthocyanin enrichment in
the leaf sheath, panicle and pericarp of rice grain) (Daiponmak
et al., 2010; Phonsakhan and Kong-Ngern, 2015). Additionally,
in the current study rice varieties with light green, green and
dark green leaves and short-day photoperiod insensitivity were
selected—Homchonlasit, IR64, PT1, RD41, and RD43—as
well as a semidwarf rice with a high-yield genotype, IR64, for
validation (Mackill and Khush, 2018; Pongprayoon et al., 2019;
Tisarum et al., 2019). There is a lack of basic information on
high-throughput phenotyping of key features of elite genotypes
of indica rice that are dominant in irrigated paddy fields in the
central plain region of Thailand, which is the main area of rice
production in the country (Office of Agricultural Economics,
2021). The objective of this experiment was to evaluate
the phenotypic characteristics using RGB high-throughput
phenotyping over the whole life cycle of rice.

Materials and Methods
Plant materials and culture conditions

Rice seeds from the cultivars RD41, Pathumthanil (PT1),
Homchonlasit, IR64, Riceberry and RD43 provided by the
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Rice Gene Discovery Unit, National Center for Genetic
Engineering and Biotechnology (BIOTEC), National Science
and Technology Development Agency (NSTDA) were sown
in the soil substrate for the germination process. After 2 wk,
seedlings containing 2—3 leaves (shoot height 5-10 cm) were
collected and subsequently transplanted into 20 cm diameter
plastic pots containing commercial soil (EC = 1.687 dS/m;
pH = 5.5; organic matter = 10.36%; total N = 0.17%; total P
= 0.07%; total K = 1.19%). Fertilizer (16-16-16 for N-P-K)
at 2 g per pot was applied monthly. The plants were grown
at the Plant Phenomics Center, Rice Science Center & Rice
Gene Discovery Unit, Kasetsart University Kamphaeng
Saen Campus, Nakhon Pathom, Thailand. A good level of
irrigation (5 cm flooding with water) was supplied to each pot.
Greenhouse conditions were set at 80-90% relative humidity,
a 500-800 pmol/m?/s' photosynthetic photon flux density light
intensity under natural sunlight and the air temperature was
controlled at 35+2°C during the day and 28+2°C at night.

Red-green-blue image capture and extraction of image-based

parameters

Rice plants were photographed using a PlantScreen™ RGB
Imaging Unit at 2,650 pixels x 1920 pixels resolution (Photon
Systems Instruments, spol.s r.0.; Czech Republic). The GigE
eEye UI-5580SE-C-5 pixel QSXGA cameras with 2”7 CMOS
sensors (Aptina Imaging Corporation; USA) were equipped at
a side position in the imaging unit. For the side view camera,
linear scanning mode was used and measured 1,030 mm X
1,400 mm (height x width dimensions). Two images were
taken of each plant at 0° and 90° rotation. After obtaining
the RGB images, the captured images were analyzed using
the PlantScreen™ data analyzer software. The background
was subtracted from the plant images and the noise was
reduced. The canopy width, canopy height, plant projected
area and perimeter were the image-based parameters that
were estimated. The perimeter was defined as the length of the
outside boundary of the object (Kim et al., 2020). The plant
volume was calculated according to Arend et al. (2016) using
Equation 1:

V'=~NAt x A0° x 490° (1)

where V is the volume of the plant (in cubic centimeters),
At is the computed top area (in square centimeters), 40° is the
computed side area at 0° (in square centimeters) and 4A90° is the
computed side area at 90 (in square centimeters).

Color segmentation was provided using nine shades of
color. Yellow and green colors were dissected as yellow (110;
111; 90, 90; 98; 58, or 72; 84; 58) and green (73; 86; 36,
57; 71; 46, 59; 71; 20, 45; 55; 36, 45; 54; 13, or 34; 38; 22),
respectively.

Data measurement of aboveground traits

Shoot height, canopy width and leaf area values in rice
genotypes at 45 DAP, 60 DAP, 75 DAP, 90 DAP, 105 DAP
and 120 DAP were manually measured in parallel to the RGB
image capture. The shoot height of the plant was measured
as the distance from the base of the plant to the tip of the
tallest leaf. The canopy width of the plant was measured from
one edge of the plant to the opposite edge of the plant, while
allowing the plant to freely stand in the pot. The canopy
width was obtained from two sides at an approximately 90°
difference. Plant leaf area was determined using a leaf area
meter (LI-3100 C, Li-Cor, Inc.; USA) by placing the sample
leaves on the leaf area meter desktop and securing them in a
flat position. In addition, the number of tillers was counted and
the shoot fresh weight (FW) and shoot dry weight (DW) were
determined. The shoot dry weight of the plants was obtained by
drying them in a 110 °C hot-air oven for 3 d and then cooling
the samples to room temperature in a desiccator. The weight of
the sample was measured using a 2-digit balance.

Determination of yield components

In the harvest process, mature rice panicles that had turned
yellow were subsequently harvested to determine the yield and
yield components (the number of panicles per plant, number
of seeds per panicle and grain fertility percentage) following
Cha-um and Kirdmanee (2010). Rice panicles were dried at
45 °C for 3 d before measuring the panicle dry weight and
100-grain weight, which were determined using a 2-digit
balance. The grain yield was determined from each plant and
adjusted to a moisture content of 14%.

Experimental design and statistical analysis

The greenhouse experiment was laid out in a randomized
complete block design with six replications (n = 6). Analysis of
variance was performed for each variable. Mean comparisons
of each parameter were distinguished using Tukey’s honestly
significant difference. Linear regression equations were
calculated for the associations between variables. Simple
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correlations between parameters obtained from the high-
throughput system and manual measurements were also
computed using the Pearson correlation coefficient (r). All tests
were considered significant at p < 0.05. Statistical analyses
were performed using the SPSS ver.11.5 (SPSS for Windows®;
USA).

Results

Canopy width, canopy height and leaf area

The canopy width of each rice cultivar at different
developmental stages using conventional practice was larger
than that using RGB estimation. The canopy width of the rice
cultivars RD41, PT1, Homchonlasit, IR64, Riceberry and
RD43 continuously increased across growth periods from 45
DAP to 120 DAP (Table 1). A positive relationship between
the actual measurement and RGB estimation of canopy width
using Pearson’s correlation coefficient was observed r =
0.58-0.81 (Table 2). There was a positive relationship between
the actual measurement and RGB estimation in individual
rice cultivars (r = 0.87 to r = 0.93). Therefore, canopy width
measurement using the conventional method was better than
that based on RGB two-shot imagery estimation (Fig. 1). For
the conventional protocol, canopy height was measured from
the soil surface to the tip of the tallest leaf at the vegetative
or panicle stage during reproduction. In contrast, using RGB
imagery, shoot height was measured from the top of pots
containing plants with normal expansion of the canopy, which
was shorter than that height for conventional practice. Shoot
height in the rice cultivars RD41, PT1, Homchonlasit, IR64,
Riceberry and RD43 increased throughout the growing period
(Table 1). At the ripening stage (105-120 DAP), shoot height
measurements in the cultivars PT1, Homchonlasit and IR64
declined based on the conventional method, depending on leaf
tip burn and drop-down (senescence). A constant shoot height
at the ripening stage of the rice cultivars PT1 and IR64 was
observed using RGB imagery (Table 1). Based on Pearson’s
correlation coefficient, there was a close relationship between
the actual values for canopy height and the RGB estimation
values at each developmental stage (r = 0.77-0.98), as shown
in Table 2. There was a linear relationship between the RGB
estimation and actual measurement values of canopy height (r
=0.90-0.99), as shown in Fig. 2 and Table 2.

The plant projected area derived from RGB imagery was
lower than that from the leaf area values obtained from the

leaf area measurements (Table 1). In the vegetative stage
(45-90 DAP), the leaf area continuously increased with
a high correlation coefficient (r = 0.70-0.95), as shown in
Table 2. In contrast, the leaf area declined at the reproductive
stage, especially in RD41 and RD43 (the early harvesting
genotypes), leading to fluctuations in each genotype (r = 0.38),
depending on leaf chlorosis and senescence. In addition,
a positive relationship was observed between the actual and
RGB measurements at 120 DAP, with the data for RD41
and RD43 omitted (r = 0.70). The leaf areca at the vegetative
stage at each measurement based on the conventional
data was linearly correlated with that for RGB estimation
(r=0.93-0.99), as shown in Fig. 3. At the reproductive stage,
a positive relationship between the actual leaf area measurement
and RGB estimation was only found for RD41 (r = 0.78) and
Homchonlasit (r=0.64), as shown in Fig. 3. Interestingly, color
segmentation evaluation in the plant canopy of rice crops over
the whole life cycle was categorized into two harvest groups:
early (RD41 and RD43) and late (PT1, Homchonlasit, IR64
and Riceberry). The early harvest plants stayed green within
90 DAP as was observed for RD41, whereas leaf chlorosis or
yellowing increased after 90 DAP and reached a maximum
at 105 DAP for RD43 (Fig. 4). Riceberry stayed green for
the entire life cycle, with purple leaf sheaths and panicles
(Fig. 4E). Leaf segmentation stayed green for IR64
(Fig. 4D), depending on the breeding strategies for the
high-yielding cultivar adopted by IRRI. In contrast, green
leaf color segmentation in the cultivars Homchonlasit
and PT1 was retained at high levels at < 90 DAP, and the
segments subsequently turned yellow, especially at 120 DAP,
before the harvest period (Figs. 4B—4C).

Relationship between data obtained from RGB imagery and
actual measurements

In the vegetative stage, there were positive relationships
between perimeter and the number of tillers (Fig. 5SA;
coefficient of determination (R?) = 0.32), canopy width and
shoot fresh weight (Fig. 5B; R? = 0.53) and plant projected area
and shoot dry weight (Fig. 5C; R* = 0.93). Those parameters
in the reproductive stage had R? values of 0.29, 0.09 and 0.48,
respectively (Figs. 5D—-5F). There were positive relationships
between the number of green pixels and shoot fresh weight
(Fig. 6A; R? = 0.31), plant volume and shoot fresh weight
(Fig. 6B; R? = 0.86), plant volume and shoot dry weight
(Fig. 6C; R? = 0.77) and shoot dry weight and grain yield
(Fig. 6D; R?=0.44).
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Table 2 Correlation coefficients (r) of canopy width, canopy height and leaf area values estimated from red-green-blue imaging unit and actually
measured in six rice cultivars at 45-120 d after planting (DAP)

45 DAP 60 DAP 75 DAP 90 DAP 105 DAP 120 DAP Over all
(n =36) (n=36) (n=36) (n=136) (n=136) (n=24) (n=204)
Canopy width 0.58%* 0.79%* 0.68%* 0.81%* 0.58%* 022 0.87%*
Canopy height 0.77%* 0.87%* 0.98%* 0.93%* 0.80%* 0.95%* 0.98%*
Leaf arca 0.91%* 0.95%* 0.70%* 0.83%* 0.38* 0.70%* 0.76**

DAP = days after planting; * = significant (p < 0.05); ** = highly significant (» <0.01)
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(B) PT1; (C) Homchonlasit; (D) IR64; (E) Riceberry; (F) RD43, where DAP = days after planting

Color segmentation derived from red-green-blue imagery in indica rice genotypes grown in automatic cultivated greenhouse: (A) RD41;
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Overall growth performances and yield components

The agronomic traits and yield components of RD41, PT1,
Homchonlasit, IR64, Riceberry and RD43 were measured at the
harvesting stage. The number of tillers was the highest for Riceberry
and the lowest for IR64. (Fig. 7A). The shoot fresh weights of PT1
and Riceberry were higher than those of other cultivars (Fig. 7B).
The shoot dry weights and leaf dry weights of PT1, Homchonlasit
and Riceberry were significantly higher than for the other cultivars

(Figs. 7C-7D). In addition, the stem dry weights and root dry
weights of Riceberry were the highest across the measured biomass
traits (Figs. 7E-7F). Of the yield components, the panicle number
(Fig. 8A), number of seeds per panicle (Fig. 8B) and panicle weight
(Fig. 8D) of Homchonlasit were the highest, leading to its maximal
total yield per plant (Fig. 8F). The grain fertility of IR64 was higher
than for Riceberry by 1.5-fold (Fig. 8C), and the 100-grain weight
of RD43 was the highest and was greater than that of Riceberry by
1.58-fold (Fig. 8E).
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Discussion

In the current study, canopy width and canopy height
were identified as good candidate parameters to evaluate
the growth performance of rice over the whole life cycle in
the cultivars RD41, PT1, Homchonlasit, IR64, Riceberry
and RD43. Canopy width, canopy height and leaf area have

been used as candidate parameters for identifying the growth
status of several plants based on high-throughput phenotyping
measurements, such as for rice (Campbell et al., 2015, 2017),
maize (Zhang et al., 2017b), Miscanthus (Malinowska et al.,
2017) and rapeseed (Xiong et al., 2017). Conventional (manual
data measurement) and automatic data collection in seven rice
cultivars at the early seedling stage, as well as the relationships
of those parameters, has been well established (Anandan et al.,
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2020). The canopy width and canopy height of the cultivars
RD41 and RD43 (early harvest genotypes) showed a compact
plant architecture throughout the whole life cycle. Previously,
shoot height estimation of 553 landrace and elite accessions of
rice at the milk-grain stage compared to the tillering stage was
evaluated using RAP (rice automatic phenotyping platform),
and the relationships among those data were expressed as linear
correlations (Yang et al., 2014). The shoot height and leaf width
of bananas estimated using RGB-D sensors (Vit et al., 2019)
and the leaf area of soybean estimated using pixels (Zhu et al.,
2020) have been successfully validated with high accuracy.
Alinear relationship of shoot height obtained from conventional
measurement versus automatic measurement was also
reported for maize (R? = 0.98) (Zhang et al., 2017b), rapeseed
(R? = 0.84) (Xiong et al., 2017) and the genus Arabidopsis
(R? = 0.898; Arend et al., 2016). Data obtained for the plant
projected area from manual measurements and RGB estimations
were divided into the vegetative stage (seedling and tillering)
and the reproductive stage to establish the best model of the
relationship. Leaf arrangement and the overlap of leaf position
of the whole plant canopy have the lowest effect values for
leaf area compared with those determined by the conventional
method, which leads to underestimation of the plant projected
area (Fanourakis et al., 2014). Canopy architecture is a major
factor that reduces the accuracy of estimation of digital plant
phenotyping platforms (Liu et al., 2019). A linear relationship
between plant green area and actual architectural measurements
was observed in eight DAT seedlings of 373 genotypes
under treatment with 270 mM NaCl: 9.9 mM CacCl, for 20 d
(R?=0.96; Campbell et al., 2015).

High-throughput plant phenotyping with digital information
is indispensable for nondestructive plant growth measurements
(Mir et al., 2019). A relationship between the parameters
obtained from conventional measurement and those from RGB
estimation has been reported. For example, automatic digital
measurement of the estimated tiller diameter using CT-RGB
phenotyping and actual measurement data in 35 accessions
of rice produced an R? value of 0.959 (Wu et al., 2019). Plant
projected area has been applied to the biomass measurements
of plants in terms of FW and DW in several crop species,
including the genus Arabidopsis (Arend et al., 2016), tomatoes
(Laxma_et al., 2018), rice (Yang et al.. 2014; Kim et al., 2020),
maize (Ge et al., 2016) and Setaria (Fahlgren et al., 2015a).
In two inbred maize genotypes (B73 and FFMM-A), a linear
relationship between shoot FW and plant projected area (pixel

count) at the early stage (626 DAP) was demonstrated with
a high R? value (0.993). However, the relationships between

plant biomass and projected area were very weak when the
developmental stage of plants was increased (26-46 DAP; Ge
et al., 2016). Laxma et al. (2018) found a linear relationship
between shoot FW and projected shoot area with an R? value
of 0.85 in four tomato cultivars (Arka Rakshak, Arka Samrat,
Arka Ashish and Abhinav). In the current study at harvest, the
yield of rice was linearly correlated with the shoot DW with
arelatively high correlation (R? = 0.44). The agronomical traits
and yield components of RD41, PT1, Homchonlasit, IR64,
Riceberry and RD43 fluctuated depending on early or late
harvest times, the stay-green types and their interaction.

Conclusion

The current study validated high-throughput phenotyping
of the whole life cycle of the indica rice genotypes RD41,
PT1, Homchonlasit, IR64, Riceberry and RD43 based on
a comparison with actual measurements. Canopy height,
canopy width and leaf area in each developmental stage were
related to rice biomass. A close relationship was observed in
the vegetative stage between non-destructive estimations and
conventional measurements of the number of tillers, canopy
width and shoot FW, and plant projected area and shoot DW.
These findings suggested that high-throughput phenotype
techniques could be used to rapidly assess the growth and
biomass of indica rice using non-destructive samples.
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