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AbstractArticle Info

Importance of the work: High-throughput phenotyping systems containing non-
destructive and non-invasive characterizations of phenotypic traits throughout the whole 
life cycle of plant development have prevailed over the conventional method.
Objectives: To evaluate the phenotypic characteristics of indica rice genotypes using red-
green-blue (RGB) high-throughput phenotyping over the whole life cycle in relation to 
biomass and yield components.
Materials & Methods: Plant canopy width, canopy height and leaf area values of the rice 
cultivars RD41, Pathumthani1 (PT1), Homchonlasit, IR64, Riceberry and RD43 were 
measured using RGB imagery estimation together with actual measurements at 45 d after 
planting (DAP), 60 DAP, 75 DAP, 90 DAP, 105 DAP and 120 DAP.
Results: Canopy width and canopy height values obtained from actual measurements were 
linearly related to RGB-estimated values in all rice cultivars with values for the correlation  
coefficient (r) of 0.87–0.93 and 0.90–0.99, respectively. Notably, there was a positive relationship 
between plant projected area from the RGB imagery and the leaf area measurement, especially 
at the vegetative stage (r = 0.93–0.99). At harvest, there was also a positive relationship between 
aboveground biomass and total yield (coefficient of determination (R2) = 0.44). The agronomical 
traits and plant characterizations of RD41, PT1, Homchonlasit, IR64, Riceberry and RD43 were 
validated over the whole life cycle of rice crops. 
Main finding: High-throughput phenotyping data collection should overcome 
conventional measurements due to its non-destructive, rapid and automated production 
for large amounts of data and high accuracy in indica rice crops.

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Introduction

	 Rice crops are a staple food that provides carbohydrate 
sources for more than one-half of the world’s population, 
especially people living in Asia (Khush, 2005). Rice grain 
consumption in Europe, Australia, North America and Latin 
America has continually increased (Muthayya et al., 2014; 
Firdaus et al., 2020). Efficient production strategies, including 
plant breeding programs, suitable cultivation and effective 
agricultural management using modern technology, are required 
to improve rice yields to meet the demand for food resources 
(Chawade et al., 2018). Consequently, modern idiotypes of rice 
crops based on stay-green and erect leaves, high photosynthetic 
abilities, highly efficient sink-source relationships and deep 
root traits have played a key role in domesticating rice to 
enhance its yield traits (Peng et al., 2008; Dingkuhn et al., 
2015; Liang et al., 2017; Haghshenas et al., 2020). Phenotypic 
characteristics in rice crops fluctuate depending on genotypic 
variations and environmental cues (genotype by environment 
interaction; G×E interaction) throughout the whole life cycle 
(Dhondt et al., 2013; Zhang et al., 2017a; Omari et al., 2020). 
In rice phenotyping, canopy height, canopy width and leaf 
area index are the basic agronomical parameters that have 
indicated the aboveground biomass and predicted grain yield 
(He et al., 2019; Li et al., 2019). A close relationship between 
the total leaf area and biomass of rice crops at different growth 
stages has been demonstrated (Zhang et al., 2014; Lee et al., 
2018). Rice biomass has also been extensively evaluated to 
assess plant growth status and predict grain yield (Zheng et al., 
2019). Thus, achieving the basic measurement of individual 
quantitative parameters is a promising way to assess valuable 
data for the further study of complex traits (Li et al., 2014). 
However, traditional ways of estimating rice phenotyping 
traits are weak, time consuming, labor intensive, potentially 
damaging (destructive measurement) and prone to errors 
(Jiang and Li, 2020). Furthermore, the expression of each rice 
genotype changes and varies along the different stages of the 
life cycle (Li et al., 2014). Monitoring rice phenotypes that 
change throughout their life cycle increases the throughput 
and difficulty for plant researchers. Therefore, high-throughput 
strategies are necessary to increase the efficiency of the phenotyping 
measurement process (Yang et al., 2013; Araus and Cairns, 
2014; Mir et al., 2019; Kim et al., 2020; Yang et al., 2020).
	 High-throughput phenotyping systems with the ability to 
perform nondestructive and noninvasive characterizations 
for phenotypic traits with high efficiency, great precision and 

automation have been well established to monitor the adaptive 
abilities of higher plants throughout the whole lifecycle 
across crop seasons (Li et al., 2014; Fahlgren et al., 2015b; 
Großkinsky et al., 2015). In addition, continuing advances 
in high-resolution imaging systems, computing capacity and 
image processing algorithms offer great opportunities to 
develop non-destructive high-throughput methods (Klukas 
et al., 2014; Wang et al., 2020). An affordable means has 
been reported of assessing genotypic differences in cereal 
crops using vegetation indices derived from RGB (red-green-
blue) imagery (Fiorani and Schurr, 2013; Araus et al., 2018).  
High-throughput phenotyping technology is effectively 
assessed to measure the overall growth characteristics over 
the whole life cycle of rice crops. In the indica subtype of 
rice, there is still a lack of important information on high-
throughput phenotyping, especially regarding associated traits 
related to grain yield. To date, there is limited information 
on the diversity of leaf color in rice crops, including light 
green, dark green, purple and pink colors, detected by RGB 
cameras via high-throughput phenotyping in relation to plant 
canopy estimation and color segmentation as an alternative 
information source (Peng et al., 2006; Chin et al., 2016; Khan 
et al., 2020). Riceberry is a previously documented indica rice 
variety with a purple leaf sheath (anthocyanin enrichment in 
the leaf sheath, panicle and pericarp of rice grain) (Daiponmak 
et al., 2010; Phonsakhan and Kong-Ngern, 2015). Additionally, 
in the current study rice varieties with light green, green and 
dark green leaves and short-day photoperiod insensitivity were 
selected—Homchonlasit, IR64, PT1, RD41, and RD43—as 
well as a semidwarf rice with a high-yield genotype, IR64, for 
validation (Mackill and Khush, 2018; Pongprayoon et al., 2019; 
Tisarum et al., 2019). There is a lack of basic information on 
high-throughput phenotyping of key features of elite genotypes 
of indica rice that are dominant in irrigated paddy fields in the 
central plain region of Thailand, which is the main area of rice 
production in the country (Office of Agricultural Economics, 
2021). The objective of this experiment was to evaluate 
the phenotypic characteristics using RGB high-throughput 
phenotyping over the whole life cycle of rice.

Materials and Methods

Plant materials and culture conditions

	 Rice seeds from the cultivars RD41, Pathumthani1 (PT1), 
Homchonlasit, IR64, Riceberry and RD43 provided by the 
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Rice Gene Discovery Unit, National Center for Genetic 
Engineering and Biotechnology (BIOTEC), National Science 
and Technology Development Agency (NSTDA) were sown 
in the soil substrate for the germination process. After 2 wk, 
seedlings containing 2–3 leaves (shoot height 5–10 cm) were 
collected and subsequently transplanted into 20 cm diameter 
plastic pots containing commercial soil (EC = 1.687 dS/m; 
pH = 5.5; organic matter = 10.36%; total N = 0.17%; total P 
= 0.07%; total K = 1.19%). Fertilizer (16-16-16 for N-P-K) 
at 2 g per pot was applied monthly. The plants were grown 
at the Plant Phenomics Center, Rice Science Center & Rice 
Gene Discovery Unit, Kasetsart University Kamphaeng 
Saen Campus, Nakhon Pathom, Thailand. A good level of 
irrigation (5 cm flooding with water) was supplied to each pot. 
Greenhouse conditions were set at 80–90% relative humidity, 
a 500–800 µmol/m2/s1 photosynthetic photon flux density light 
intensity under natural sunlight and the air temperature was 
controlled at 35±2°C during the day and 28±2°C at night.

Red-green-blue image capture and extraction of image-based 
parameters

	 Rice plants were photographed using a PlantScreenTM RGB 
Imaging Unit at 2,650 pixels × 1920 pixels resolution (Photon 
Systems Instruments, spol.s r.o.; Czech Republic). The GigE 
eEye UI-5580SE-C-5 pixel QSXGA cameras with ½” CMOS 
sensors (Aptina Imaging Corporation; USA) were equipped at 
a side position in the imaging unit. For the side view camera, 
linear scanning mode was used and measured 1,030 mm × 
1,400 mm (height × width dimensions). Two images were 
taken of each plant at 0° and 90° rotation. After obtaining 
the RGB images, the captured images were analyzed using 
the PlantScreenTM data analyzer software. The background 
was subtracted from the plant images and the noise was 
reduced. The canopy width, canopy height, plant projected 
area and perimeter were the image-based parameters that 
were estimated. The perimeter was defined as the length of the 
outside boundary of the object (Kim et al., 2020). The plant 
volume was calculated according to Arend et al. (2016) using 
Equation 1:

	 At × A0° × A90°V = √ 	 (1)

	 where V is the volume of the plant (in cubic centimeters), 
At is the computed top area (in square centimeters), A0° is the 
computed side area at 0° (in square centimeters) and A90° is the 
computed side area at 90 (in square centimeters). 

	 Color segmentation was provided using nine shades of 
color. Yellow and green colors were dissected as yellow (110; 
111; 90, 90; 98; 58, or 72; 84; 58) and green (73; 86; 36, 
57; 71; 46, 59; 71; 20, 45; 55; 36, 45; 54; 13, or 34; 38; 22), 
respectively.

Data measurement of aboveground traits

	 Shoot height, canopy width and leaf area values in rice 
genotypes at 45 DAP, 60 DAP, 75 DAP, 90 DAP, 105 DAP 
and 120 DAP were manually measured in parallel to the RGB 
image capture. The shoot height of the plant was measured 
as the distance from the base of the plant to the tip of the 
tallest leaf. The canopy width of the plant was measured from 
one edge of the plant to the opposite edge of the plant, while 
allowing the plant to freely stand in the pot. The canopy 
width was obtained from two sides at an approximately 90° 
difference. Plant leaf area was determined using a leaf area 
meter (LI-3100 C, Li-Cor, Inc.; USA) by placing the sample 
leaves on the leaf area meter desktop and securing them in a 
flat position. In addition, the number of tillers was counted and 
the shoot fresh weight (FW) and shoot dry weight (DW) were 
determined. The shoot dry weight of the plants was obtained by 
drying them in a 110 °C hot-air oven for 3 d and then cooling 
the samples to room temperature in a desiccator. The weight of 
the sample was measured using a 2-digit balance.

Determination of yield components

	 In the harvest process, mature rice panicles that had turned 
yellow were subsequently harvested to determine the yield and 
yield components (the number of panicles per plant, number 
of seeds per panicle and grain fertility percentage) following  
Cha-um and Kirdmanee (2010). Rice panicles were dried at 
45 °C for 3 d before measuring the panicle dry weight and 
100-grain weight, which were determined using a 2-digit 
balance. The grain yield was determined from each plant and 
adjusted to a moisture content of 14%.

Experimental design and statistical analysis

	 The greenhouse experiment was laid out in a randomized 
complete block design with six replications (n = 6). Analysis of 
variance was performed for each variable. Mean comparisons 
of each parameter were distinguished using Tukey’s honestly 
significant difference. Linear regression equations were 
calculated for the associations between variables. Simple 
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correlations between parameters obtained from the high-
throughput system and manual measurements were also 
computed using the Pearson correlation coefficient (r). All tests 
were considered significant at p < 0.05. Statistical analyses 
were performed using the SPSS ver.11.5 (SPSS for Windows; 
USA).

Results

Canopy width, canopy height and leaf area

	 The canopy width of each rice cultivar at different 
developmental stages using conventional practice was larger 
than that using RGB estimation. The canopy width of the rice 
cultivars RD41, PT1, Homchonlasit, IR64, Riceberry and 
RD43 continuously increased across growth periods from 45 
DAP to 120 DAP (Table 1). A positive relationship between 
the actual measurement and RGB estimation of canopy width 
using Pearson’s correlation coefficient was observed r = 
0.58–0.81 (Table 2). There was a positive relationship between 
the actual measurement and RGB estimation in individual 
rice cultivars (r = 0.87 to r = 0.93). Therefore, canopy width 
measurement using the conventional method was better than 
that based on RGB two-shot imagery estimation (Fig. 1). For 
the conventional protocol, canopy height was measured from 
the soil surface to the tip of the tallest leaf at the vegetative 
or panicle stage during reproduction. In contrast, using RGB 
imagery, shoot height was measured from the top of pots 
containing plants with normal expansion of the canopy, which 
was shorter than that height for conventional practice. Shoot 
height in the rice cultivars RD41, PT1, Homchonlasit, IR64, 
Riceberry and RD43 increased throughout the growing period 
(Table 1). At the ripening stage (105–120 DAP), shoot height 
measurements in the cultivars PT1, Homchonlasit and IR64 
declined based on the conventional method, depending on leaf 
tip burn and drop-down (senescence). A constant shoot height 
at the ripening stage of the rice cultivars PT1 and IR64 was 
observed using RGB imagery (Table 1). Based on Pearson’s 
correlation coefficient, there was a close relationship between 
the actual values for canopy height and the RGB estimation 
values at each developmental stage (r = 0.77–0.98), as shown 
in Table 2. There was a linear relationship between the RGB 
estimation and actual measurement values of canopy height (r 
= 0.90–0.99), as shown in Fig. 2 and Table 2.
	 The plant projected area derived from RGB imagery was 
lower than that from the leaf area values obtained from the 

leaf area measurements (Table 1). In the vegetative stage 
(45–90 DAP), the leaf area continuously increased with  
a high correlation coefficient (r = 0.70–0.95), as shown in 
Table 2. In contrast, the leaf area declined at the reproductive 
stage, especially in RD41 and RD43 (the early harvesting 
genotypes), leading to fluctuations in each genotype (r = 0.38),  
depending on leaf chlorosis and senescence. In addition,  
a positive relationship was observed between the actual and 
RGB measurements at 120 DAP, with the data for RD41 
and RD43 omitted (r = 0.70). The leaf area at the vegetative 
stage at each measurement based on the conventional 
data was linearly correlated with that for RGB estimation  
(r = 0.93–0.99), as shown in Fig. 3. At the reproductive stage,  
a positive relationship between the actual leaf area measurement 
and RGB estimation was only found for RD41 (r = 0.78) and 
Homchonlasit (r = 0.64), as shown in Fig. 3. Interestingly, color 
segmentation evaluation in the plant canopy of rice crops over 
the whole life cycle was categorized into two harvest groups: 
early (RD41 and RD43) and late (PT1, Homchonlasit, IR64 
and Riceberry). The early harvest plants stayed green within 
90 DAP as was observed for RD41, whereas leaf chlorosis or 
yellowing increased after 90 DAP and reached a maximum 
at 105 DAP for RD43 (Fig. 4). Riceberry stayed green for 
the entire life cycle, with purple leaf sheaths and panicles  
(Fig. 4E). Leaf segmentation stayed green for IR64  
(Fig. 4D), depending on the breeding strategies for the  
high-yielding cultivar adopted by IRRI. In contrast, green  
leaf color segmentation in the cultivars Homchonlasit  
and PT1 was retained at high levels at ≤ 90 DAP, and the 
segments subsequently turned yellow, especially at 120 DAP, 
before the harvest period (Figs. 4B–4C).

Relationship between data obtained from RGB imagery and 
actual measurements

	 In the vegetative stage, there were positive relationships 
between perimeter and the number of tillers (Fig. 5A; 
coefficient of determination (R2) = 0.32), canopy width and 
shoot fresh weight (Fig. 5B; R2 = 0.53) and plant projected area 
and shoot dry weight (Fig. 5C; R2 = 0.93). Those parameters 
in the reproductive stage had R2 values of 0.29, 0.09 and 0.48, 
respectively (Figs. 5D–5F). There were positive relationships 
between the number of green pixels and shoot fresh weight 
(Fig. 6A; R2 = 0.31), plant volume and shoot fresh weight  
(Fig. 6B; R2 = 0.86), plant volume and shoot dry weight  
(Fig. 6C; R2 = 0.77) and shoot dry weight and grain yield  
(Fig. 6D; R2 = 0.44).
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Table 2	 Correlation coefficients (r) of canopy width, canopy height and leaf area values estimated from red-green-blue imaging unit and actually 
measured in six rice cultivars at 45–120 d after planting (DAP)

 
45 DAP 60 DAP 75 DAP 90 DAP 105 DAP 120 DAP Over all
(n = 36) (n = 36) (n = 36) (n = 36) (n = 36) (n = 24) (n = 204)

Canopy width 0.58** 0.79** 0.68** 0.81** 0.58** -0.22 0.87**
Canopy height 0.77** 0.87** 0.98** 0.93** 0.80** 0.95** 0.98**
Leaf area 0.91** 0.95** 0.70** 0.83** 0.38* 0.70** 0.76**

DAP = days after planting; * = significant (p < 0.05); ** = highly significant (p < 0.01)

r = 0.89**
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Fig. 2	 Relationships between actual canopy height and estimated canopy height using red-green-blue (RGB) imagery in indica rice genotypes grown 
in automatic cultivated greenhouse: (A) RD41; (B) PT1; (C) Homchonlasit; (D) IR64; (E) Riceberry; (F) RD43, where number of days after planting are 
indicated in Table 2 and ** = highly significant (p < 0.01)

Fig. 1	 Relationships between actual canopy width and estimated canopy width using red-green-blue (RGB) imagery in indica rice genotypes grown in 
an automatic cultivated greenhouse: (A) RD41; (B) PT1; (C) Homchonlasit; (D) IR64; (E) Riceberry; (F) RD43, where number of days after planting are 
indicated in Table 2 and ** = highly significant (p < 0.01)
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Fig. 3	 Relationships between actual leaf area and estimated leaf area using red-green-blue (RGB) imagery in indica rice genotypes grown in automatic 
cultivated greenhouse: (A) RD41; (B) PT1; (C) Homchonlasit; (D) IR64; (E) Riceberry; (F) RD43, where data were separated into two groups, with group 
one obtained from vegetative stage (filled triangles) and reproductive stage (unfilled triangles); ns = non-significant (p ≥ 0.05); * = significant (p < 0.05); 
** = (p < 0.01) 

Fig. 4	 Color segmentation derived from red-green-blue imagery in indica rice genotypes grown in automatic cultivated greenhouse: (A) RD41;  
(B) PT1; (C) Homchonlasit; (D) IR64; (E) Riceberry; (F) RD43, where DAP = days after planting 
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Fig. 5	 Relationships of six rice genotypes grown in automatic cultivated greenhouse between: (A) number of tillers and perimeter using red-green-blue 
(RGB) imagery; (B) canopy width and shoot fresh weight; (C) plant projected area and shoot dry weight at vegetative stage; (D) number of tillers and 
perimeter using RGB imagery; (E) canopy width and shoot fresh weight (FW); (F) plant projected area and shoot dry weight (DW), where R2 = coefficient 
of determination 

Fig. 6	 Relationships of six rice genotypes grown in automatic cultivated greenhouse between: (A) number of green pixels and shoot fresh weight (FW); 
(B) plant volume and shoot fresh weight; (C) plant volume and shoot dry weight (DW); (D) shoot DW and total grain yield per plant

Overall growth performances and yield components

	 The agronomic traits and yield components of RD41, PT1, 
Homchonlasit, IR64, Riceberry and RD43 were measured at the 
harvesting stage. The number of tillers was the highest for Riceberry 
and the lowest for IR64. (Fig. 7A). The shoot fresh weights of PT1 
and Riceberry were higher than those of other cultivars (Fig. 7B). 
The shoot dry weights and leaf dry weights of PT1, Homchonlasit 
and Riceberry were significantly higher than for the other cultivars 

(Figs. 7C–7D). In addition, the stem dry weights and root dry 
weights of Riceberry were the highest across the measured biomass 
traits (Figs. 7E–7F). Of the yield components, the panicle number 
(Fig. 8A), number of seeds per panicle (Fig. 8B) and panicle weight 
(Fig. 8D) of Homchonlasit were the highest, leading to its maximal 
total yield per plant (Fig. 8F). The grain fertility of IR64 was higher 
than for Riceberry by 1.5-fold (Fig. 8C), and the 100-grain weight 
of RD43 was the highest and was greater than that of Riceberry by 
1.58-fold (Fig. 8E).
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Fig. 8	 Comparisons between six rice genotypes grown in automatic cultivated greenhouse for: (A) number of panicles per plant; (B) number of seeds 
per panicle; (C) grain fertility percentage; (D) panicle weight; (E) 100-grain weight; (F) grain yield per plant (F), where different lowercase letters above 
bars represent significant differences (p < 0.05); error bars = ±SD
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Fig. 7	 Comparisons between six rice genotypes grown in automatic cultivated greenhouse for: (A) number of tillers; (B) shoot fresh weight (FW);  
(C) shoot dry weight (DW); (D) leaf DW; (E) stem DW; (F) root DW, where different lowercase letters above bars represent significant differences  
(p < 0.05); error bars = ±SD

Discussion

	 In the current study, canopy width and canopy height 
were identified as good candidate parameters to evaluate 
the growth performance of rice over the whole life cycle in 
the cultivars RD41, PT1, Homchonlasit, IR64, Riceberry 
and RD43. Canopy width, canopy height and leaf area have 

been used as candidate parameters for identifying the growth 
status of several plants based on high-throughput phenotyping 
measurements, such as for rice (Campbell et al., 2015, 2017), 
maize (Zhang et al., 2017b), Miscanthus (Malinowska et al., 
2017) and rapeseed (Xiong et al., 2017). Conventional (manual 
data measurement) and automatic data collection in seven rice 
cultivars at the early seedling stage, as well as the relationships 
of those parameters, has been well established (Anandan et al., 
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2020). The canopy width and canopy height of the cultivars 
RD41 and RD43 (early harvest genotypes) showed a compact 
plant architecture throughout the whole life cycle. Previously, 
shoot height estimation of 553 landrace and elite accessions of 
rice at the milk-grain stage compared to the tillering stage was 
evaluated using RAP (rice automatic phenotyping platform), 
and the relationships among those data were expressed as linear 
correlations (Yang et al., 2014). The shoot height and leaf width 
of bananas estimated using RGB-D sensors (Vit et al., 2019) 
and the leaf area of soybean estimated using pixels (Zhu et al., 
2020) have been successfully validated with high accuracy.  
A linear relationship of shoot height obtained from conventional 
measurement versus automatic measurement was also 
reported for maize (R2 = 0.98) (Zhang et al., 2017b), rapeseed  
(R2 = 0.84) (Xiong et al., 2017) and the genus Arabidopsis  
(R2 = 0.898; Arend et al., 2016). Data obtained for the plant 
projected area from manual measurements and RGB estimations 
were divided into the vegetative stage (seedling and tillering) 
and the reproductive stage to establish the best model of the 
relationship. Leaf arrangement and the overlap of leaf position 
of the whole plant canopy have the lowest effect values for 
leaf area compared with those determined by the conventional 
method, which leads to underestimation of the plant projected 
area (Fanourakis et al., 2014). Canopy architecture is a major 
factor that reduces the accuracy of estimation of digital plant 
phenotyping platforms (Liu et al., 2019). A linear relationship 
between plant green area and actual architectural measurements 
was observed in eight DAT seedlings of 373 genotypes  
under treatment with 270 mM NaCl: 9.9 mM CaCl2 for 20 d  
(R2 = 0.96; Campbell et al., 2015).
	 High-throughput plant phenotyping with digital information 
is indispensable for nondestructive plant growth measurements 
(Mir et al., 2019). A relationship between the parameters 
obtained from conventional measurement and those from RGB 
estimation has been reported. For example, automatic digital 
measurement of the estimated tiller diameter using CT-RGB 
phenotyping and actual measurement data in 35 accessions 
of rice produced an R2 value of 0.959 (Wu et al., 2019). Plant 
projected area has been applied to the biomass measurements 
of plants in terms of FW and DW in several crop species, 
including the genus Arabidopsis (Arend et al., 2016), tomatoes 
(Laxma et al., 2018), rice (Yang et al., 2014; Kim et al., 2020), 
maize (Ge et al., 2016) and Setaria (Fahlgren et al., 2015a). 
In two inbred maize genotypes (B73 and FFMM-A), a linear 
relationship between shoot FW and plant projected area (pixel 
count) at the early stage (6–26 DAP) was demonstrated with 
a high R2 value (0.993). However, the relationships between 

plant biomass and projected area were very weak when the 
developmental stage of plants was increased (26-46 DAP; Ge 
et al., 2016). Laxma et al. (2018) found a linear relationship 
between shoot FW and projected shoot area with an R2 value 
of 0.85 in four tomato cultivars (Arka Rakshak, Arka Samrat, 
Arka Ashish and Abhinav). In the current study at harvest, the 
yield of rice was linearly correlated with the shoot DW with  
a relatively high correlation (R2 = 0.44). The agronomical traits 
and yield components of RD41, PT1, Homchonlasit, IR64, 
Riceberry and RD43 fluctuated depending on early or late 
harvest times, the stay-green types and their interaction.

Conclusion 

	 The current study validated high-throughput phenotyping 
of the whole life cycle of the indica rice genotypes RD41, 
PT1, Homchonlasit, IR64, Riceberry and RD43 based on 
a comparison with actual measurements. Canopy height, 
canopy width and leaf area in each developmental stage were 
related to rice biomass. A close relationship was observed in 
the vegetative stage between non-destructive estimations and 
conventional measurements of the number of tillers, canopy 
width and shoot FW, and plant projected area and shoot DW. 
These findings suggested that high-throughput phenotype 
techniques could be used to rapidly assess the growth and 
biomass of indica rice using non-destructive samples.
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