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AbstractArticle Info

Importance of the work: The yield is an important component when determining the probability 
of success of new high-yielding plant varieties. 
Objectives: To estimate the influence of genotype-by-environment interactions (GEIs) on sweet 
potato yields, to select stable genotypes using various methods in multi-environments and to 
estimate the relationship between environmental factors and sweet potato yields in West Java, 
Indonesia. 
Materials & Methods: The genetic materials used were eight new breeding genotypes and 
two commercial varieties as checks. Field experiments were conducted in five environments 
(Karawang, Garut, Jatinangor, Cileles and Bandung) in West Java, Indonesia, using a randomized 
completed block design. Data were analyzed using: combined analysis of variance, parametric and 
non-parametric stability measurements, genotype plus genotype-versus-environment interaction 
(GGE) biplots and Pearson’s correlation. 
Results: The environments and GEIs had an effect on sweet potato yields at 37.89% and 
45.09%, respectively. The GGE biplot analysis showed that of the five environments, Garut and 
Karawang were the most discriminative and representative. Therefore, these two environments are 
recommended as being ideal in West Java for the selection of optimal sweet potato genotypes. The 
numerical and graphical methods produced the same results, identifying genotypes 57/97(G2) and 
Rancing (G6) as the optimal genotypes in West Java. The correlation analysis showed that each 
genotype had a different correlation with the various environmental factors. 
Main finding: Information on GEIs can be used as a basis for research on sweet potato development 
in wider environments. The two genotypes have the potential to be developed into new sweet potato 
superior genotypes.
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Introduction 

	 Fleshy roots are widely used as basic substantial sources 
of food, feed and industrial applications in Indonesia 
(Mukhopadhyay et al., 2011). The various uses of sweet 
potatoes cannot be separated from its nutritional value; it 
has  high contents of starch, vitamins A and C and is a natural 
source of fiber, which is a primary reason why people consume 
this crop (Teow et al., 2007; Burri, 2011). In addition, the 
contents of beta-carotene, anthocyanins and other minerals are 
beneficial for health (Hariadi et al., 2018). Sweet potatoes play 
an important role in reducing hunger due to their carbohydrate 
and vitamin contents ( Food and Agriculture Organization of 
the United Nations, 2014). The use of sweet potatoes in industry 
requires a large supply of tubers as raw material; however, these 
applications require various specifications. Therefore, new 
genotypes that are in accordance with industrial specifications 
are needed to fulfill the raw material requirements.
	 Universitas Padjadjaran (UNPAD) has developed various 
types of new sweet potato genotypes that can be matched 
to consumer preferences. These genotypes have been tested 
initially based on their physical and chemical characteristics. 
Some of them have been tested for use as natural dyes and other 
products (Hariadi et al., 2018; Sunyoto et al., 2019). However, 
these genotypes have not been assessed for the stability and 
adaptability of their yield in multi-environmental conditions. 
West Java is one of the provinces with the largest, sweet potato 
production in Indonesia (Karuniawan et al., 2021). Therefore, 
testing involving multiple locations in West Java was required 
to assess the stability and adaptability of the yields of new 
genotypes for further consideration and development.
	 Analysis of genotype–environment interactions (GEI) 
is an initial stage in the procedure of plant selection. The 
occurrence of GEIs indicates that different genotypes can have 
different responses to environmental changes, making the 
selection process inefficient (Rukundo et al., 2013; Kivuva et 
al., 2014; Andrade et al., 2016). In some cases, sweet potato 
yields are strongly influenced by GEIs due to the influence 
of environmental changes (Gruneberg et al., 2005; Gurmu, 
2017; Mustamu et al., 2018; Ngailo et al., 2019). Studies have 
found that GEIs complicated the selection process for yellow 
passionfruit in Brazil (Oliveira et al., 2014), barley in Turkey 
(Kendal, E., 2016), finger millet in India (Sood et al., 2016) 
and cotton in China (Shahzad et al., 2019). Therefore, GEI 
analysis plays a major part in evaluating the increasing genetic 
resources that can further promote sweet potato genotypes. 

	 Various methods have been applied in stability and 
adaptability studies. Recent GEI studies have used statistical 
methods such as linear regression (Eberhart and Russell, 1966; 
Ruswandi et al., 2020), eco-valence value (Wi2) (Wricke, 
1962), Shukla’s steadiness discordance (σ2i; Shukla, 1972), 
coefficient of variance (Cvi; Francis and Kannenberg, 1978), 
additive main effects and multiplicative interaction (AMMI; 
Gauch, 1988) and GGE biplot analysis (Yan and Tinker, 
2006; Yan et al., 2007; Ruswandi et al., 2020). Numerous 
sweet potato development programs have utilized these 
methods. For example, an AMMI model was successfully 
applied to determine GEIs and to evaluate the stability of 
the yield of sweet potato clones in various environments in 
Turkey (Caliskan et al., 2007). Laurie et al. (2015) used GGE 
biplots to identify the competency of sweet potato genes and 
problematical environments in South Africa. However, the use 
of a single stability measurement was considered less accurate 
in selecting the ideal genotype (stable and high yielding), 
so another selection model was needed to obtain the ideal 
genotype. Karuniawan et al. (2021) used AMMI, GGE biplot 
and parametric and nonparametric measurements to select 
stable and high yielding genotypes of honey sweet potato in 
Indonesia. Mustamu et al. (2018) used AMMI and GGE biplot 
to select stable as well as adaptable sweet potato genotypes in 
Indonesia. In another study, Tolorunse et al. (2018) successfully 
selected soybeans in Nigeria under rhizobium inoculation 
using AMMI and GGE biplot. Thus, the objectives of the 
current research were to estimate the influence of GEIs on 
sweet potato yields, to select stable genotypes using various 
methods in multi-environments and to estimate the relationship 
between environmental factors and sweet potato yields in West 
Java, Indonesia.

Materials and Methods

Plant material

	 The genetic materials used consisted of eight new breeding 
genotypes—Awachy 1, 57(97), IND OF7, IND OF8, IND 
93(407), MZ119, MZ462 and MZ496—and two commercial 
varieties as checks (Rancing and Beta-2). These tubers were 
selected based on consumer preferences according to Maulana 
et al. (2016). The selected genotypes were chosen based on 
tuber production in the initial growth phase.
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Experimental design 

	 Field experiments were conducted in five environments in 
West Java, Indonesia: Karawang, Garut, Jatinangor, Cileles and 
Bandung (Fig. 1). The five locations used represented the sweet 
potato production centers in West Java, Indonesia. Information 
about the field trials is presented in Table 1. Each genotype was 
planted on a plot measuring 5m × 5 m, with a spacing of 25 cm 
× 100 cm, so that the area used in each environment was 750 
m2. Each genotype was planted in mounds with a length of 5 
m and a height of 40 cm. Each genotype was planted as 100 

cuttings. Each cutting was planted in an ‘L’ shape at a distance 
of 25 cm between holes in one mound. The distance between 
the mounds was 30 cm and the width of the mounds was 75 
cm. The experiments were carried out using a randomized 
block design planting in three blocks. Fertilizer was applied 
using chicken dung at a dosage of 5 t/ha and NPK (consisting 
of nitrogen (16%): phosphorus (16%): potassium (16%)) at 
200 kg/ha in each location. Chicken dung was applied at the 
beginning of planting to provide nutrient reserves for the 
growing period. NPK fertilizer was applied to plants at 6 week 
after planting (WAP).

Table 1	 Trial location information

Loc Alt Temp Rf Hum Year Season Coordinates pH K P N C-O

Karawang 24 27.82 173.73 72.67 2018 Dry
6°20'15.1"S 
107°18'20.2"E

4.42 0.30 17.77 0.13 1.33

Garut 729 22.14 53.82 76.72 2019 Dry
7°12'20.2"S 
107°56'15.0"E

5.01 0.36 70.46 0.15 7.00

Jatinangor 753 21.14 116.52 86.57 2017 Dry
6°55'00.6"S 
107°46'18.3"E

5.92 0.37 26.68 0.18 1.70

Cileles 755 23.08 270.00 91.50 2019 Wet
6°54'59.6"S 
107°46'14.5"E

5.60 0.33 31.29 0.13 1.41

Bandung 996 26.00 817.86 78.80 2018 Wet
7°03'35.3"S 
107°38'46.5"E

4,81 0.69 45.49 0.21 2.17

Loc = location; Alt = altitude; (m.a.s.l.= meters above sea level); Temp= temperature (°C); Rf = rainfall (millimeters per month); C-O = carbon organic (%);  
K = potassium (%); P = phosphorous (%); N = nitrogen (%)

Fig. 1	 Map of multi-environments trial in West Java, Indonesia, where 5 trial sites are in red



764 H. Maulana et al. / Agr. Nat. Resour. 56 (2022) 761–772

Data collection

	 The observed trait was tuber yield per plot (Huamán, 1991). 
The data were collected at the time of harvest (18 WAP). The 
weight (in kilograms) of the sample obtained from each 5 m × 5 
m plot of each genotype was converted into tonnes per hectare.

Data analysis

	 Estimation of the GEIs was carried out for all genotypes. 
The statistical model for combined analysis of variance of the 
environments is shown in Equation 1: 

	 Yefgh = μ + Ge + Ef + GEef + Rg(f) + Bh(g) + εefgh	 (1)

	 where Yefgh is the value in plot h of genotype e and the value 
in location f of each replication g; μ is the grand mean; Ge is the 
influence of genotype e; Ef is the influence of the location; GEef 
is the influence of interaction between genotype e and location 
f; Rg(f) is the influence of replicate g on location f; Bh(g) is the 
influence of repeat g on plot h; and εefgh is the influence error of 
genotype e in plot h and repeat g of location f, respectively.
	 Identification of the stable genotypes was conducted 
using parametric and nonparametric stability models. Linear 
regression was done following Eberhart and Russell (1966). 
Based on this model, genotype was indicated as stable if the 
regression slope (bi) was equal to 1 and the variance deviation 
(S2di) was 0. The mean variance component (θi) was estimated 
according to Plaisted and Peterson (1959) using Equation 2: 

	 	 (2)

	 The GE variance component (θ(i)) was calculated according 
to Plaisted (1960), as shown in Equation 3:

	 	 (3)

	 Wricke’s ecovalence (Wi2) was calculated according to 
Wricke (1962), as shown in Equation 4:

	 	 (4)

	 Shukla’s stability variance (σ2i) was calculated according to 
Shukla (1972), as shown in Equation 5:

	 	 (5)

	 and the coefficient of variance (CVi) was calculated according 
to Francis and Kannenberg (1978), as shown in Equation 6:

	 	 (6)

where xij is the yield of genotype i in location j; Xi is the yield 
of genotype i; Xj is the average yield of location j; X.. is the 
average overall yield; p and q are the numbers of genotypes and 
environments, respectively; and SDg is the standard deviation 
of a genotype mean across locations.
	 Stability nonparametric (S(i)) models were applied according 
to Nassar and Huhn (1987) and Huehn (1990), as shown in 
Equations 7–10:

	 	 (7)

	 	 (8)
 

	 	 (9)

	 	 (10)

	 where rij is the rank in location j from genotype i; ri is the mean 
rank across all locations for each genotype; and N is the number 
of environments. Stability parameters (NP(i)) were calculated 
according to Thennarasu (1995), as shown in Equations 11–14:

	 	 (11)

	 	 (12)

	 	 (13)

	 	 (14)

	 where r*ij is the rank of genotype ‘I’ in location ‘j’ based on 
adjusted data; M*di is the median rank of adjusted data; Mdi is 
the same parameter obtained from the unadjusted data; and N is 
the number of locations. Kang’s nonparametric stability measure 
(KR) was assessed according to Kang (1988). In this method, the 
yield performance and stability variance to identify stable and 
high-yielding genotypes were given weightings of 1. To calculate 
the parametric and nonparametric statistics, the online software 
STABILITYSOFT (Pour-aboughadareh et al., 2019) was used.
	 The model for GGE biplot applied Equation 15 (Yan and 
Tinker, 2006):
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	 	 (15)

	 where Ῡef; μe; βf; k; λg; αeg and γfh; εef were the performance 
in location ‘f’ from genotype ‘e’; overall average yield; the 
influence of location ‘f’; number of primer components; the 
singular value from primer component ‘g’; value of genotype 
‘e’ and location ‘f’ for primer component ‘g’; and the error of 
the genotype ‘e’ in location ‘f’, respectively.

Ethics statements 

	 This study was approved by the Ethics Committee of 
UNPAD. The plant material used in the study was a cultivated 
plant that involved non-lethal collecting and did not impact any 
threatened species. In addition, the material used was sweet 
potato derived from cross breeding by the Plant Breeding 
Laboratory of UNPAD, in an effort to increase crop production 
to meet domestic needs.

Results 

Genotype responses to environments

	 Table 2 presents the combined variance of yield in the five 
environments. The environmental factors, genotypes and GEIs 

showed significant differences (p < 0.01) with SS explaining 
approximately 37.89%, 17.02% and 45.09%, respectively. 
This showed that the yield of sweet potato was affected by 
environmental factors, genotypes and GEIs. The environmental 
factors were significant because the five locations had different 
environmental conditions and characteristics (Table 1). 
Variances in altitude, soil category, temperature, humidity and 
rainfall along the experimental gradient resulted in different 
responses by each tested genotype.

Parametric and nonparametric stability of sweet potatoes in 
five growing environments

	 The average yields and the parametric stability parameters 
of the fleshy root genotypes are shown in Table 3. The average 
yields were in the range 13.19–30.37 t/ha, with genotypes 
57(97), IND OF8, Rancing and Beta-2 having higher average 

Table 2	 Combined analysis of variance of yield in five agro-ecosystems 
  df SS MS F-value
Environments (E) 4 8951 2237.75  4.81**
Replication/E 10 4648 464.80  3.66**
Genotypes (G) 9 4022 446.89  3.52**
Interactions (GEIs) 36 10652 295.89  2.33**
Minimum (t/ha) 0.11
Maximum (t/ha) 80.66
CV (%) 32.53

** = highly significant (p < 0.01); df = degrees of freedom; SS = sum 
squares; MS = mean squares; CV = coefficient of variation

Table 3	 Parametric stability measurements of 10 sweet potato genotypes in five environments
Genotype AY Wᵢ² σ²ᵢ s²dᵢ bᵢ CVi θ(ᵢ) θᵢ
Awachy 1 21.31 248.72 65.40 29.02 0.61 41.57 102.32 90.02
57(97) 23.83 20.85 -5.81 1.74 0.83 30.94 110.23 58.37
IND OF7 16.47 252.72 66.65 27.87 1.44 86.59 102.18 90.58
IND OF8 23.07 1012.01 303.93 113.31 0.14 61.28 75.81 196.03
IND 93(407) 18.72 106.22 20.87 10.33 1.34 65.73 107.26 70.23
MZ119 21.00 139.85 31.38 1.26 0.34 15.58 106.10 74.90
MZ462 18.86 244.46 64.07 29.56 0.65 48.23 102.46 89.43
MZ496 13.19 174.50 42.20 14.49 0.51 50.50 104.89 79.71
Rancing 30.02 302.18 82.10 17.40 1.78 54.34 100.46 97.45
Beta-2 30.37 1048.92 315.46 69.13 2.38 76.67 74.53 201.16
Rank
Awachy 1 5 6 6 7 4 3 6 5
57(97) 3 1 1 2 1 2 1 10
IND OF7 9 7 7 6 5 10 7 4
IND OF8 4 9 9 10 9 7 9 2
IND 93(407) 8 2 2 3 2 8 2 9
MZ119 6 3 3 1 7 1 3 8
MZ462 7 5 5 8 3 4 5 6
MZ496 10 4 4 4 6 5 4 7
Rancing 2 8 8 5 8 6 8 3
Beta-2 1 10 10 9 10 9 10 1

AY = average yield (tonnes/hectare); Wᵢ² = Wricke’s ecovalence (Wricke, 1962); σ²ᵢ = Shukla’s stability variance (Shukla, 1972); s²dᵢ, bᵢ = linear regression 
(Eberhart and Russell, 1966); Cvi= coefficient of variance (Francis and Kannenberg, 1978); θ(ᵢ) = GE variance component (Plaisted, 1960); θᵢ= mean 
variance component (Plaisted and Peterson, 1959)
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yields (>21.68 t/ha), while IND OF7, IND93(407) and MZ496 
had lower yields. The Eberhart and Russel (1996) model, 
genotype stability was determined by regression coefficients 
(bi) and variance deviance (S2di), with estimates of bi = 1 and 
low S2di. Genotypes 57(97), IND 93(407) and MZ462 had 
values of bi = 1, whereas IND93(407) and MZ462 had lower 
yields than the overall average yield. Therefore, these latter 
two genotypes were less adaptable to the range of planting 
sites. Genotypes IND OF7, Rancing and Beta-2 (bi> 1) had 
low average levels of stability, indicating that they adapted 
specifically to a particular environment and produced high 
yields in certain environments. Genotypes Awachy 1, IND 
OF8, MZ119 and MZ496 had bi values <1 and an average yield 
that was lower than the overall yield, which are specific to a 
low-production environment. Based on the S2di measurements, 
the MZ119 genotype had the lowest value, similar to 57(97) and 
IND 93(407); therefore, MZ119 was found to be the most stable 
according to this approach. Based on Francis and Kannenberg’s 
parametric stability (CVi) variance stability model, genotypes 
MZ119, 57(97) and Awachy 1 were classified as very well-
established genotypes. The mean variance component of 
Plaisted and Peterson’s (θi) established Beta-2, IND OF8 and 
Rancing as the most stable genotypes. Three other parametric 

stability models (Wricke ecovalence (Wi2), Shukla stability 
variance (σi

2) and the GE Plaisted variance component (θ(i)))  
indicated that 57(97), IND 93(407) and MZ119 were also the 
most stable genotypes.
	 Stability estimates for each genotype using the non-
parametric stability models of Huehn and Nassar (S(i)), 
Thennarasu (NP(i)) and the Kang rank-sum (KR) method are 
presented in Table 4. All non-parametric stability models 
showed that the 57(97) genotype had the lowermost value 
and represented the most stable genotype. On the other hand, 
the constancy parameters of S(1), S(2), S(3), S(6), NP(1) and NP(4) 
identified IND OF8 as the most unstable genotype. The NP(2) 
and NP(3) parameters estimated MZ496 as the most unstable 
genotype, while the KR parameter estimated IND OF7 as the 
most unstable. Table 4 also presents information on the rank 
number, average rank, the standard deviation of the stability 
ranking and the genotypic stability ranking of all parametric 
and nonparametric stability parameters. Based on Table 4, 
the 57(97) genotype had the smallest average rank (AR) 
value; hence, it was the most stable genotype. IND OF8 had 
the largest AR value and was the most unstable or adaptive 
genotype in a particular region.

Table 4	 Nonparametric stability measurements models of 10 sweet potato genotypes in five environments
Genotype S(¹) S(²) S(³) S(6) NP(¹) NP(²) NP(³) NP(4) KR
Awachy 1 3.20 8.00 5.33 2.00 3.00 0.25 0.54 0.53 11.00
57(97) 0.60 0.30 0.18 0.36 0.60 0.09 0.07 0.09 4.00
IND OF7 4.00 10.70 10.19 3.14 2.60 0.60 0.63 0.95 16.00
IND OF8 5.40 20.30 15.04 3.41 4.20 0.46 0.71 1.00 13.00
IND 93(407) 2.60 4.80 4.17 1.65 2.40 0.56 0.48 0.57 10.00
MZ119 3.20 6.70 4.32 1.48 2.60 0.37 0.40 0.52 9.00
MZ462 3.60 8.20 6.31 2.15 3.20 0.54 0.58 0.69 12.00
MZ496 2.00 2.80 4.67 2.67 2.80 1.87 1.07 0.83 14.00
Rancing 3.00 5.80 3.14 1.30 2.80 0.20 0.42 0.41 10.00
Beta-2 3.80 10.50 6.00 2.00 3.60 0.31 0.50 0.54 11.00
Rank SR AR SD
Awachy 1 5 6 6 5 7 3 6 4 5 89 5.24 1.20
57(97) 1 1 1 1 1 1 1 1 1 30 1.76 2.19
IND OF7 9 9 9 9 3 9 8 9 10 130 7.65 2.09
IND OF8 10 10 10 10 10 6 9 10 8 142 8.35 2.34
IND 93(407) 3 3 3 4 2 8 4 6 3 72 4.24 2.51
MZ119 5 5 4 3 3 5 2 3 2 64 3.76 1.99
MZ462 7 7 8 7 8 7 7 7 7 108 6.35 1.46
MZ496 2 2 5 8 5 10 10 8 9 103 6.06 2.70
Rancing 4 4 2 2 5 2 3 2 3 75 4.41 2.37
Beta-2 8 8 7 5 9 4 5 5 5 116 6.82 3.03

S(¹), S(²), S(³), S(6) = Nassar and Huhn (1987); NP(¹), NP(²), NP(³), NP(4) = Thennarasu (1995); 𝘒R = Kang (1988); SR = sum rank; AR = average rank
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Spearman’s rank correlations of parametric and nonparametric 
stability parameters with yield and sweet potato genotypes 

	 The Spearman rank correlation coefficients revealed that 
the average yield was positively and significantly correlated 
with NP(2) (p < 0.01) and with NP(3), NP(4), and KR (p < 0.05) 
(Table 5). The other positive and significant correlations were: 
Wᵢ² with σ²ᵢ, s²dᵢ, bi, θ(ᵢ), S(1), S(2), S(3) and NP(1) (p < 0.01); σ²ᵢ 
with s²dᵢ, bi, θ(ᵢ), S(1), S(2), S(3) and NP(1) (p < 0.01); S²dᵢ with  
θ(ᵢ), S(1), S(2), S(3), S(3) and NP(1) (p < 0.01); bi with θ(ᵢ) and NP(1)  

(p < 0.01) and with S(1) and S(2) (p < 0.05); CVi with θ(ᵢ)  
(p < 0.01) and with NP(4) and KR (p < 0.05); θ(ᵢ) with S(1), S(2) 
and S(3) and with NP(1) (p < 0.01); S(1) with S(2), S(3) and S(6) and 
NP(1) (p < 0.01), NP(4) and with KR (p < 0.05); S(2) with S(3), S(6) 
and NP(1) (p < 0.01) and with NP(4) and KR (p < 0.05); S(3) with 
S(6), NP(1), NP(3), NP(4) and KR (p < 0.01); S(6) with NP(1), NP(2), 
NP(3), NP(4) and KR (p < 0.01); and NP(1) with NP(3), NP(2), NP(3), 
NP(4) and KR (p < 0.01). In contrast to the above results, θᵢ had 
a negative and significant correlation with S(1), S(2), S(3), NP(1), 
Wᵢ², σ²ᵢ ,Cvi, S²dᵢ, bi and θ(ᵢ) (p < 0.01), as shown in Table 5. 
	 Cluster analyses (dendrograms) were used to classify sweet 
potato genotypes. The dendrograms in this analysis divided 
the sweet potato genotypes into two main groups (Fig. 2). 
The first group (KI) was the unstable group and was divided 
into two subclusters: 1) the genotypes Awachy 1, MZ462, 
MZ496 and IND OF7, which had low average yields (below 
the overall average yield) and low average stability ranks; 
and 2) the genotypes IND OF8 and Beta-2, which had yields 
that were greater than the overall average but had low average 
stability ranks. The second group (K2) was the stable group  
and was also divided into two subclusters: 1) the genotypes 
IND 93(407), MZ119 and 57(97), where IND 93(407) and 
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Fig. 2	 Dendrogram of hierarchical classification of 10 sweet potato 
genotypes, where AR indicates the average sum of ranks for all parametric 
and nonparametric measures
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MZ119 had yields below the overall average and high average 
stability ranks, while the 57(97) genotype had a yield that was 
above the overall average yield and the highest average rank 
(most stable); and 2) the Rancing genotype with yields above 
the overall average and a fairly high average rank.

GGE biplot analysis of 10 sweet potato genotypes 

	 For the GGE biplot of the 10 sweet potato genotypes in West 
Java, principal component (PC) 1 and PC 2 explained 55.90% 
and 24.70%, respectively, of the whole variation, accounting 
in total for 80.60% of all differences in the sweet potato yield  
(Fig. 3). Fig. 3 is divided into six sectors, but only three sectors 
had environment coordinates, namely, sector 1 (Jatinangor), 
sector 2 (Cileles, Garut and Karawang), and sector 3 (Bandung). 
Jatinangor was located in sector 1 and the peak genotype in this 
sector was IND OF8. Cileles, Garut and Karawang were in 
sector 2 and the mega environment; the peak genotypes in this 
sector were Beta-2 and Rancing. Bandung was in sector 3 with 
the IND 93(407) peak genotype. The genotypes located in the 
peak of the graph (MZ462 and MZ496), that were not included 
in the environment within the sector, were considered as the 
lowest yielding within all environments. Genotypes 57(97), 
IND 93(407) and MZ119 were the closest to the center of the 
axis; these genotypes showed stable yields in all environments 
and a low GEI effect.

	 According to Yan et al. (2007), the experimental environment 
in the GGE biplots can be categorized into three kinds.  
The class I environment had a short vector and limited 
information about the genotype; thus, it was rejected as a 
test environment. Class II resulted in extended vectors and 
little viewpoints, with an average environment coordinate 
abscissa, so they were the best model for selecting excellent 
genotypes. Class III had no short vectors and produced 
considerable angles, with an average environment coordinate 
abscissa; therefore, it was rejected for assessment of the 
perfect genotype. However, this class entries were valuable 
in selecting adaptive individuals. Fig. 4 indicated Cileles 
as a class I environment; thus it could not be used as a trial 
environment. Garut and Karawang were perfect environments 
(class II) for selecting superior genotypes because of their high 
differentiation and representation. Jatinangor was a class III 
environment and could not be used to select main genotypes. 
In addition, ideal genotypes should have high yields and high 
stability levels (closer to the center point in the GGE biplot). 
The average yield data from the five locations were used to 
select the ideal genotype. The rankings of the ideal genotypes 
were, in descending order, Rancing, Beta-2, IND 93(407)  
and 57(97), as shown in Fig. 3. The IND OF8 genotype had  
a high yield. This genotype, along with MZ462 and MZ496, 
was categorized as less favorable because of their distance 
from the biplot origin.

Fig. 4	 Biplot of 10 sweet potato genotypes against average yields at five 
locations

Fig. 3	 Mega-environments biplot of 10 sweet potato genotypes at five 
locations
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Pearson’s correlation between yield and environment factors

	 In Table 6, 80% of the tested genotypes was correlated with 
P and 60% with C-Organic. This shows that P and C-Organic 
each had a substantial effect on sweet potato yields. A positive 
and significant correlation was found for Awachy1 with 
altitude, humidity and soil pH (p < 0.01); for 57(97) with air 
temperature (p < 0.05), P and C-Organic (p < 0.01); for IND 
OF7 with  (p < 0.05); for IND 93(407), MZ119, Rancing and 
Beta-2 with P and C-Organic (p < 0.01); for MZ496 with 
altitude, P and C-Organic (p < 0.01) and with pH (p < 0.05). 
There were strong negative correlations for Awachy 1 and 
MZ496 with air temperature (p < 0.01); for IND OF8 with 
rainfall, K (p < 0.01) and with N (p < 0.05); for IND 93(407) 
with air temperature and rainfall (p <0.01); for Rancing 
with rainfall and N (p <0.05); and for Beta-2 with rainfall                        
(p < 0.01) and K (p <0.05). The differences in relationships 
for each genotype indicated that the responses of genotypes 
to environmental factors were not the same. Therefore, the 
development of new superior sweet potato genotypes must be 
adapted to the appropriate environmental conditions.

Discussion

	 Environmental factors, genotypes and GEIs had significant 
impacts on the yield of sweet potatoes. There was greater 
variation contributed by GEIs than by either the genotype or 
environment. Several other studies have found that differences 
in planting locations can lead to differences in the yield 
potential and yield quality of sweet potatoes (Solihin et al., 
2018; Maulana et al., 2020). In addition, differences in planting 
locations have an impact on the development of sweet potato 
disease, which affects the quality of the yield (Dewayani  
et al., 2021). In other studies, the significance of environment 

was also shown in canola oil (Pavlista et al., 2011) and maize 
single-cross hybrids (Mafouasson et al., 2018). Oliveira  
et al. (2014) stated that the existence of GEIs made it difficult 
to select yellow passionfruit in Brazil. In addition, the low 
intensity of rainfall and low soil moisture reduce the level of 
cassava enlargement (Mcharo and Ndolo, 2013; Sokoto and 
Gaya, 2016). In the current study, the genotypes Awachy1, 
57(97), IND OF8, IND 93(407), MZ496, Rancing and Beta-
2 were influenced by weather and soil factors, while the 
genotypes IND OF7, MZ119 and MZ462 were only influenced 
by soil factors (Table 6). Therefore, the highly significant GEIs 
for sweet potato yield justified the use of parametric stability 
parameters, nonparametric stability parameters and GGE 
biplots to reduce the GEIs and to estimate the potential yield 
as well as the stability of the evaluated sweet potato genotypes.
	 In plant breeding, the presence of GEIs complicates the 
sweet potato selection process. This situation indicates that 
the selection of sweet potato clones based on yield must be 
conducted in a specific environment, making the breeding 
program inefficient. Andrade et al. (2016) reported that GEIs 
caused in-efficiencies in the sweet potato breeding program 
in Mozambique. If a sweet potato plant breeding program 
was carried out on a broad scale, the sweet potato genotypes 
that were assessed will have different advantages when 
planted in different locations. The influence of GEIs also led 
to the sub-optimal potential of the genotypes under dissimilar 
environmental conditions. However, the presence of GEIs can 
also provide opportunities for selecting sweet potato genotypes 
that have a high yield in specific areas. Mustamu et al. (2018) 
suggested this same idea in different environmental conditions 
in West Java. These conditions indicated that the selection 
of appropriate sweet potato genotypes must be carried out 
in each environment. Shahzad et al. (2019) reported that the 
environment and GEIs had very high impacts on the yield 
and fiber value characters of cotton in China. Therefore,  

Table 6	 Pearson correlations between yield and environmental factors
Genotype AY Alt Temp Rf Hum pH K P N C-O
Awachy 1 21.31 0.76 -0.82 -0.08 0.79 0.76 0.01 0.45 0.05 0.29
57(97) 23.83 0.25 -0.52 -0.42 0.15 0.16 -0.32 0.74 -0.41 0.78
IND OF7 16.47 0.08 -0.35 -0.39 0.35 0.18 -0.46 0.40 -0.66 0.42
IND OF8 23.07 -0.48 -0.34 -0.75 0.36 0.51 -0.81 -0.62 -0.51 -0.35
IND 93(407) 18.72 0.06 -0.60 -0.69 -0.05 0.16 -0.48 0.70 -0.39 0.87
MZ119 21.00 0.25 -0.34 -0.25 -0.05 -0.07 -0.14 0.85 -0.31 0.85
MZ462 18.86 0.30 -0.04 0.14 0.20 -0.10 0.03 0.52 -0.33 0.38
MZ496 13.19 0.81 -0.78 -0.03 0.48 0.55 0.17 0.76 0.22 0.61
Rancing 30.02 -0.07 -0.30 -0.54 -0.14 -0.11 -0.45 0.68 -0.56 0.82
Beta-2 30.37 -0.13 -0.44 -0.72 -0.24 -0.02 -0.53 0.65 -0.45 0.87

Numbers in bold denote significant correlation (p < 0.05); AY = average yield (tonnes/hectare); Alt = altitude; m.a.s.l. = meters above sea level;  
Temp= temperature (°C); Rf = rainfall (millimeters/month); C-O = carbon organic (%); K = potassium (%); P = phosphorous (%); N = nitrogen (%)
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plant breeding activities should be directed in accordance with 
appropriate environmental conditions so that the developed 
plant varieties are able to adapt well to specific environments. 
	 Various methods have been proposed for selecting stable 
individuals with great productivity. The use of a single stability 
model remains difficult, so another selection model is needed 
to obtain the ideal genotype. Several studies have reported 
the selection of stable genotypes and high yields by applying 
a combination of stability models, including Farshadfar  
et al. (2012) for chickpea genotypes, Ahmadi et al. (2015) for 
grass pea genotypes, Vaezi et al. (2019) for barley genotypes 
and Ruswandi et al. (2022) for a maize hybrid. In the current 
research, parametric and non-parametric stability models and 
GGE biplots were applied to identify sweet potato genotypes 
that were high yielding and stable in five environments.  
The average rank (AR) of all stability models was used to 
select high-yielding and stable sweet potato genotypes (that is 
with low AR values). The 57(97) and Rancing genotypes had 
the lowest AR values and were known to be stable and high 
yielding (above the overall average yield), as shown in Table 4.  
	 To confirm this result, hierarchical clustering analysis 
(HCA) using a dendrogram was developed based on the 
average yield rank as a multivariate method to examine the 
genotypes. The dendrogram of sweet potato genotypes divided 
the genotypes into two primer groups (Fig. 2). Class I (KI) 
consisted of genotypes that have a low average yield (below the 
overall average yield) and greater than average yield but a high 
average stability rank, indicating that certain genotypes have 
undergone specific adaptation in some environments. Class 
II (K2) consisted of genotypes that have low and high yields 
with a low average stability rank (the most stable). Therefore, 
these genotypes can be used to improve the performance and 
adaptation of sweet potato breeding programs.
	 Overall, the results of Spearman’s rank correlation analysis 
revealed that the measures of stability NP(2), NP(3), NP(4) 
and KR were clearly associated with average yields, thus 
providing a measure of stability in a dynamic sense. According 
to Mohammadi and Amri (2008), stability models that are 
positively correlated with yield can be used to recommend 
genotypes within a particular environment. In another study, 
Ahmadi et al. (2015) and Vaezi et al. (2019) reported that CVi, 
bi and Fox-rank (TOP) were significantly correlated to yield; 
thus, these are three parameters that are useful to identify 
sweet potatoes with high average yields in environments with 
favorable growth conditions. Based on this, the NP(2), NP(3), 
NP(4) and KR models can also be used as stability models to 
identify sweet potato yields in a favorable environment.

	 In the “which won where” GGE biplot, the polygons 
represent genotypic markers that are positioned utmost from 
the source of the biplot in numerous ways, so that whole 
genotype markers are convened in polygons. The genotype at 
the top of each sector is the genotype with the highest yield in 
the environment in that sector. Yan et al. (2007) stated that this 
biplot can indicate the existence of a mega-environment. The 
current results showed that there were various environmental 
groupings throughout the trials. The first PC explained 50.90% 
of the total variation caused by environmental effects (E) and 
GEIs during the experiment (Fig. 3). The grouping of the 
environment and mega-environment in various regions in West 
Java with different peak genotypes indicated the existence of 
specific adaptations of the genotypes to the mega-environment 
and the positive utilization of GEIs (Vaezi et al., 2019). The 
current findings revealed that some sweet potato genotypes 
have adapted to different environments in West Java better 
than other genotypes. The ideal environment must distinguish 
genotypes and represent all environments in the trial (Yan et 
al., 2007). In the current study, the discriminativeness versus 
representativeness of the GGE biplot revealed that Cileles 
was a class I environment, or a less than ideal location that 
must be replaced or moved. Among the five environments, 
Garut and Karawang were class II environments that had high 
selective influence power and representativeness; hence, they 
were ideal locations for selecting superior genotypes (Fig. 4). 
Based on Ahmadi et al. (2015), ideal genotypes have a high 
yield and are stable in various environments. The Rancing 
genotype, followed by Beta-2, IND 93(407) and 57(97), were 
identified as ideal genotypes. The dendrogram identified 
57(97) and Rancing as genotypes with high and stable yields  
(Fig. 2). The current results using both numerical (parametric 
and nonparametric) and graphical (GGE biplot) methods 
produced the same pattern to identify stable genotypes.  
For example, numerical methods identified several stable 
and high yield genotypes: 57(97) and Rancing, whereas the 
graphical method identified genotypes 57(97), IND 93(407), 
Rancing and Beta-2 as the most stable and ideal genotypes. 
Some studies have also used numerical approaches and GGE 
biplots to select ideal genotypes for chickpea (Farshadfar et al., 
2012), grass pea (Ahmadi et al., 2015) and soybean (Goksoy 
et al., 2019) in various regions in Iran. Those studies reported 
the relative contribution of the two methods in identifying the 
ideal genotypes.
	 Each genotype has a different correlation with environmental 
factors (Table 6). This is caused by the origin of each genotype, 
which is the result of crossing with different elders. Some 
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studies have mentioned that adequate water intake during  
planting will affect sweet potato yields (Mcharo and  
Ndolo, 2013; Laurie et al., 2015; Lestari and Ricky, 2015; 
Opafola et al., 2018). In addition, Sokoto and Gaya (2016) 
commented that elevated air temperature, low nutrient  
contents and sparse rainfall will cause plant stress and  
inhibit crop development. In another study, environmental 
differences (weather and soil factors) caused variations  
in yield and yield attributes in the Stevia genotype (Amien  
et al., 2021). The current study supported adjusting the 
cultivation methods according to the genotype in suitable 
environments. Therefore, the right planting environment 
for the sweet potato development program could increase  
the genetic potential.
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