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AbstractArticle Info

Importance of the work: The sustainability of coral reefs in the Maluku Waters, Indonesia 
is threatened by future coastal pollution and climate change. Thus, it is crucial to develop a 
mapping projection model as a baseline for conservation policies.
Objectives: To develop a habitat suitability prediction model for coral reefs in 2050, considering 
climate change scenarios and the cumulative impacts of water pollution.
Materials & Methods: The model utilized the habitat data of Acropora spp. from the Ocean 
Biodiversity Information System database and projected them using the maximum entropy 
algorithm (MaxEnt) based on environmental factors (temperature, salinity, current, chlorophyll, 
particulate organic carbon, particulate inorganic carbon, nitrate, phosphate and ultraviolet 
penetration).
Results: The study revealed a significant decline in spatial areas with high habitat suitability, 
decreasing from approximately 3,661 km² to only 64–226 km² in 2050 under the representative 
concentration pathway (RCP) scenarios 2.6, 6.0 and 8.5 Inter-governmental Panel on Climate 
Change AR5 projections. Chlorophyll concentration, an indicator of coastal pollution, had the 
highest correspondence with optimal coral habitat, followed by temperature and salinity.
Main finding: Besides contributing to international carbon emission reduction efforts, reducing 
coastal water pollution runoff is crucial for supporting the long-term sustainability of coral reefs, 
as indicated by the model’s findings. This is due to the destructive effects of water pollution and 
future climate change. Policy adjustments and local wisdom are essential for conserving coral 
reef ecosystems.
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Introduction 

	 Coral reefs in Maluku Waters at the center of the Tropical 
Coral Triangle ecoregion, Indonesia is one of the marine 
biodiversity hotspots in the world, containing more than  
500 species that are both ecologically and economically 
important (Marwayana et al., 2022). Ecologically, the area  
is a foraging, breeding and nursery ground for various  
marine organisms, with an economic value of up to USD  
11.96 million/ha (Haya and Fujii, 2019). Calculations by 
Ramadhan et al. (2017) show that the total economic value of 
protected coral reef areas in the Tropical Coral Triangle region 
is USD 10 million/ha/yr. Thus, the region is an important 
marine resource for tropical ecosystems and supports local 
economies.
	 However, as sessile animals, corals exhibit sensitivity 
toward environmental alterations. The repercussions of  
human-caused climate change include elevated greenhouse  
gas levels, which, in turn, contribute to a reduction in  
oceanic pH, commonly known as ocean acidification  
(Doney et al., 2009). The projected decline in pH caused by 
climate change has major implications for coral organisms 
because ocean acidification leads to a decline in calcification, 
which is essential for most coral organisms to build 
calcium carbonate skeletons (Guinotte and Fabry, 2008).  
In addition, the degradation of coastal habitats for coral  
reefs is due to the influx of pollutants from onshore sources  
and the use of unsustainable fishing methods that are  
detrimental to the environment (Edinger et al., 1998). 
Consequently, the composition of coral reef communities has 
changed significantly, as observed in numerous locations, 
including the tropical region of Indonesia at sites such as 
Wakatobi and the Alor Conservation Park (Januar et al., 2012, 
2015).
	 Hence, an optimal conservation policy based on scientific 
principles is essential to sustain the coral reef ecosystem. 
Species distribution models (SDMs) can provide a scientific 
foundation for policymakers to uphold natural resource value, 
including for coral reefs (Benson et al., 2017). However, 
marine species distribution models have gained traction  
more slowly than terrestrial ones, mainly since 2005. 
Fish, mammal, mollusk and seaweed distribution has been 
more researched (21–37 publications) than stony coral  
(15 publications) according to the review by Melo-Merino  
et al. (2020). The current study aimed to provide a baseline  
for policymakers on predicting coral distribution facing  

climate change in the Tropical Coral Triangle, using a 
MaxEnt model of future reefs in Maluku waters. Maximum  
The maximum entrophy (MaxEnt) algorithm is the most 
common SDM for marine biota (46%), followed by generalized 
additive models (GAMs) and generalized linear models 
(GLMs) according to Melo-Merino et al. (2020). MaxEnt’s 
algorithmic simplicity and reliability with sparse, irregular  
data make it a popular species distribution modeling tool 
(Bedia et al., 2011; Kramer-Schadt et al., 2013; Srivastava 
et al., 2019). For the current study, Acropora spp., widely 
distributed in tropical regions, was chosen as a bioindicator 
species for the SDM.
	 The study used the prediction scenarios of representative 
concentration pathway (RCP) 2.6, 6.0, and 8.5 at 2050 from 
the Inter-governmental Panel on Climate Change (IPCC)  
AR5 marine conditions, as the most recent IPCC Sixth 
Assessment Report (IPCC 2021) data were unavailable  
in the Bio-Oracle 2.2 database for future environmental 
conditions. The AR6 updates focus on anthropogenic 
socioeconomic influences, predicting higher CO2 levels  
of about one step above AR5. Bodeker et al. (2022)  
indicated relatively similar 2050 CO2 estimates for SSP1-1.9 
AR6 and RCP 2.6 AR5, SSP1-2.6 AR6 and RCP 4.5 AR5,  
and SSP3-7.0 AR6 and RCP 8.5 AR5. Despite CO2 value 
variations, Slangen et al. (2023) found relatively small 
differences in the sea level rise model results between AR5  
and AR6. Therefore, RCP AR5 data are still used despite 
limitations on CO2 emission accuracy since some oceanic 
parameters lack spatio-temporal predictive data. Anthropogenic 
pollutants, such as chlorophyll and UV light were added to  
the model, given the absent oceanic data and AR6’s 
socioeconomic focus.

 
Materials and Methods

Study area

	 The study area was located in the coral reef region in 
Maluku Waters, located in the central zone of the Coral 
Triangle on the eastern side of Indonesia (Fig. 1). The area 
includes 1,340 islands covering 54.185 km2 of land area, which 
is 8% of the total area. The remaining 92% (approximately 
658,300 km2) is sea, with a coastline stretching 10,662 km 
around the islands (Ubwarin, 2018).
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Fig. 1	 Maluku Waters, eastern Indonesian archipelago

	 The Maluku Islands, consisting of North Maluku (Halmahera) 
and Maluku (encompassing the central to southern waters 
regions), are considered a less prosperous Indonesian province 
with uneven development, jobs and infrastructure (Kuncara et 
al., 2021; Saptenno et al., 2021). There are approximately 3 
million people inhabiting the Maluku Islands based on 2022 
data (BPS Maluku, 2023; BPS North Maluku, 2023). The 
economy depends on agriculture, forestry and fisheries. Most 
residents live on the northern Ternate-Tidore Islands, central 
Ambon Island and the southern Aru Islands (Pattiasina et al., 
2021). High human activity plus inadequate environmental law 
enforcement have substantially polluted the water, especially 
around Ambon City, South Buru, East Seram and Central 
Maluku (BPS Maluku, 2023; BPS North Maluku, 2023).
 
Data collection

	 Data were collected using the maximum entropy algorithm 
(MaxEnt) to develop a model of future habitat suitability for a 
specific organism, Acropora spp., that serves as a bioindicator 
of coral reef distribution in Maluku Waters. The selection 
was based on the dominance of this species as a reef builder, 
particularly in tropical regions (Roff, 2020; Safuan et al., 2020). 
Distribution data for Acropora spp. were obtained from two 

databases, the Ocean Biodiversity Information System (OBIS) 
and the Global Biodiversity Information Facility (GBIF). Data 
were filtered and processed to eliminate spatial autocorrelation 
points. Filtered data from the polygonal area of water bodies 
yielded 3,727 records from the OBIS database (OBIS, 2023) 
and 4,571 from the GBIF database (Acropora Oken, 1815 in 
GBIF Secretariat, 2023). Both data types were combined and 
further processed to eliminate spatial autocorrelation points, 
based on Brown et al. (2017).
	 Environmental data were collected using the method of 
Simon-Nutbrown et al. (2020), which combined future projections 
of marine environmental variables, including sea surface 
temperature, salinity, and ocean current, under the RCP 2.6, 6.0, 
and 8.5 scenarios for the year 2050. In addition, current spatial 
data of environmental variables associated with direct terrestrial 
anthropogenic discharges were included, such as dissolved 
oxygen, ultraviolet (UV) light penetration, pH, water productivity, 
dissolved oxygen and chlorophyll. Several other variables were 
not included in the analysis due to limitations in the available 
environmental prediction data for the 2050 or because they 
exhibited spatial autocorrelation with existing variables, such 
as sedimentation rate and turbidity. Data related to the turbidity 
variable are correlated with UV-light penetration, as Dias et al. 
(2020) suggested. The model was built assuming that the runoff 
of wastes from the mainland will continue through 2050 without 
any mitigation. The environmental data were obtained from 
the Bio-ORACLE 2.2, NASA Moderate Resolution Imaging 
Spectroradiometer (MODIS) OCSMI and GMED databases.
 
Model development

	 The modeling process involved modeling software using 
the maximum entropy (MaxEnt) approach (Phillips et al., 
2006) to predict the abundance and distribution of Acropora 
spp. Modeling was conducted in response to environmental 
variables under different climate change scenarios (RCP 
2.6, 6.0 and 8.5) for 2050, based on the method proposed 
by Freeman et al. (2013). The occurrence data were split 
into 70% for training the model and 30% for testing it.  
The reliability and accuracy of the model were evaluated using 
the average area under the curve (AUC). The AUC index, 
which ranges from 0 (performance worse than random) to 1 
(perfect discrimination) with values greater than 0.5 serving as 
a threshold for random (Tittensor et al., 2009). Modeling results 
included species distribution maps and environmental variables 
affecting their distribution. Raster data analysis was performed 
using the GIS software ArcMap 10.8 (ESRI, 2021). In the final 
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phase, conclusions were drawn based on the outputs generated 
from the modeling process. These conclusions provided more 
detailed information from the data collected and analyzed, 
contributing to the overall understanding of the habitat suitability 
model for future coral reefs in Maluku waters.

Results and Discussion

Contributing factors

	 The f﻿indings of this study provided valuable insights into 
the habitat suitability of coral reefs in Maluku waters and the 
potential impacts of future environmental changes. The AUC 
analysis produced excellent results, with values exceeding 0.9, 
indicating a reliable model for predicting the distribution of 
Acropora (Fig. 2).
	 Further testing revealed that three variables (chlorophyll, 
temperature and salinity) substantially influenced the suitability 
of the coral reef habitat for Acropora spp. Chlorophyll levels 
in coastal areas made the most substantial contribution of 
57.5%, indicating the importance of nutrient availability, 
particularly phosphate levels (Kadim et al., 2019). Chlorophyll 
is a vital indicator of primary productivity, providing essential 
nutrients and energy for coral reef ecosystems’ growth, oxygen 
production and calcification (Sinutok et al., 2011; Fisher-Pool 
et al., 2016).
	 However, high nutrient levels can indicate the presence of 
erosion runoff, sedimentation, domestic waste, inappropriate 
agricultural practices and other factors; therefore, chlorophyll 
levels are often associated with various factors, primarily 
anthropogenic activities that can reduce aquatic habitat quality 
for organisms (Hou et al., 2019). High chlorophyll levels 
will increase competition between algae and zooxanthellae 

(symbionts of coral animals that play a major role in providing 
their food), thus reducing the food supply for coral animals. 
Data have shown a shift in coral reef coverage, transitioning 
from hard stony coral to dead coral with algae or even rubble 
in conditions where there are high nutrient levels in the water 
(Crehan et al., 2019; Adam et al., 2021).
	 Fig. 2 demonstrates the important roles temperature and 
salinity play, contributing 7.2% and 6.1% to coral reef habitat 
suitability, respectively, by influencing the physiological 
processes and tolerance limits of coral organisms. The pH 
of seawater contributed only 0.1% to the habitat suitability 
model. Climate change affects temperature and salinity by 
increasing CO2, a significant greenhouse gas, while rising 
sea surface temperatures have been detected and correlated 
with greenhouse gas levels in the atmosphere (Dhage and 
Widlansky, 2022).
	 Despite sea temperature and salinity not being identified as 
main drivers of coral reef habitat suitability, predictions suggest 
a trend of decreasing sea surface salinity that is expected to 
occur twice as fast in the Indonesian and East China Seas 
compared to the global average (Jin et al., 2023). Fluctuations 
in sea surface temperature may create temporary opportunities 
for coral recovery, as corals can recover relatively quickly 
from high temperatures (Simpson and Wadsworth, 2021). 
However, coral bleaching events in the Coral Triangle area are 
highly likely during an El Nino phase (Kleypas et al., 2015; 
Wouthuyzen et al., 2018), leading to increased coral mortality 
and a decrease in fish density after disturbances (Pendleton  
et al., 2016; Triki and Bshary, 2019).
	 Furthermore, ongoing anthropogenic pollution is a constant 
threat to coral reefs. This may explain why chlorophyll, as an 
indicator of pollution, substantially affected the suitability of 
the Acropora habitats in the current study. The combination of 
rising temperatures due to future climate change and nutrient 

Fig. 2	 Area under the curve (AUC) values and contribution of water variables to coral reef habitat suitability in Maluku Waters
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runoff will produce a notably greater impact when contrasted 
with the effects of each factor in isolation. Experiments 
conducted by Thummasan et al. (2021) demonstrated that 
while a high level of an individual nutrient (nitrate) did not 
significantly affect coral organisms, the combination of 
elevated nitrate levels and increased temperature leads to 
substantial disruptions in coral physiology. The interplay 
between climate change, particularly sea surface temperature, 
and elevated nutrient levels severely impacts coral organisms 
(Humanes et al., 2016). The cumulative impact of these two 
factors can result in reproductive disturbances, inhibited 
growth, compromised health and reduced coral resilience  
(Ellis et al., 2019).
	 However, these results have limitations related to the 
absence of some environmental factor interactions that can 
play a major role in distribution, resulting in the current 
research only identifying chlorophyll as an important factor 
in the model. One example of such a factor is related to the 
life forms of coral species. Different life forms may respond 
differently to varying environments and Acropora spp. is 
known to have various life forms with different environmental 
tolerances, with the branching type generally less resilient to 
physical environmental pressures than the massive form (Xu 
et al., 2020; Watt-Pringle et al., 2022; Tavakoli-Kolour et al., 
2023). In addition, responses to temperature and sedimentation 
can vary. The model in the current study is limited to the global 
correspondence between the input of environmental conditions 
in the presence of distribution, despite the life form.

Habitat suitability model

	 The GIS analysis revealed that the current total coral reef 
habitat area in the waters of Maluku was approximately 6,775 
km2. Projecting this information using the maximum entropy 
algorithm showed that under current environmental conditions 
(based on 2020 environmental data), the habitat deemed  
“very suitable” (Probability Coefficient, R > 0.75) was 
substantial, encompassing over one-half of the coral reef 
habitat (Table 1).

	 The future projections paint a concerning picture. The 
current habitat suitability condition of the coral reefs is 
expected to decline substantially by 2050 due to projected 
shifts in environmental variables. The area classified as “less 
suitable” (0.25 < R ≤ 0.5) will encompass one-half of the total 
habitat area, while the “very suitable” area will constitute 
less than 5% of its current extent. The projected changes in 
the area extent from 2020 to 2050 are depicted spatially in  
Fig. 3. Notable changes were observed in predicted maps, 
where a previously large area classified as “very suitable” 
habitat declines to “suitable” or even “less suitable.”
	 The waters surrounding the Maluku Islands comprise 
diverse coral reef habitats, including atolls, exposed outer 
reefs and sheltered coasts with mangrove forests. These 
habitats face various local human-induced pressures (Allen 
and Werner, 2002). When evaluating the ocean exposure 
characteristics, the predictive map indicates that coral reef 
habitats more exposed to the open sea, primarily situated 
in the southern islands from the Tanibar Islands to Wetar 
Island, will experience higher pressures than sheltered coast 
ecosystems. Conversely, favorable habitats will concentrate 
within sheltered coast ecosystems, particularly in regions 
around southwest Halmahera, Tidore, the Bacan Islands and 
central areas encompassing Ambon Island, the western part of 
Seram and the Kei Islands. These areas are known to harbor 
mangrove forests on their main islands. These mangrove 
forests act as filters, reducing anthropogenic pressures from the 
main islands, including sediment, erosion and nutrient runoff 
(Susilo et al., 2017; Ulumuddin et al., 2021). Regions with 
mangrove forests are suitable to help strengthen the resilience 
and sustainability of coral reef ecosystems. However, these 
regions also host concentrated human populations on the 
Maluku Islands. Anthropogenic coral reef degradation has 
been observed on islands with higher population density within 
the Maluku Coral Reef archipelago. This degradation occurs 
indirectly due to land-based water pollution, as well as directly 
through activities, such as coral mining and destructive fishing 
practices (Titaheluw et al., 2020; Lessy et al., 2021; Limmon 
and Manuputty, 2021; Limmon et al., 2023).

Table 1	 Areas (square kilometers) of coral reef habitat suitability in the Maluku waters based on probability ranges (where R is the probability coefficient) 
for the current (2020) and future (2050) environmental conditions under different representative concentration pathway (RCP) scenarios

Habitat suitability Current (2020) 2050
RCP 2.6 RCP 6.0 RCP 8.5

Less suitable (0.25<R≤0.5) 1,207.76 3,098.65 3,177.91 2,789.16
Suitable (0.5<R≤0.75) 1,905.99 2,189.06 1,932.41 1,921.09
Very suitable (R>0.75) 3,661.01 226.45 143.42 64.16
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Fig. 3	 Probability (R, where R is probability coefficient) area plots of Acropora habitat suitability in Maluku waters for: (A) current climate (2020); and 
future environmental conditions under scenarios: (B) representative concentration pathway (RCP) 2.6; (C) RCP 6.0; (D) RCP 8.5

	 The habitat suitability model illustrated that the combined 
effects of future climate change dynamics and direct 
anthropogenic impacts, such as increased nutrient runoff in 
coastal waters, will substantially reduce habitat suitability for 
coral reefs. Therefore, it is imperative to prioritize optimal 
coastal conservation efforts to bolster coral reef resilience 
against impending climate change. Disruptions to the balance 
of coastal ecosystems, such as the degradation of mangrove 
forests, can exceed their capacity to absorb runoff, thereby 
profoundly affecting coral reefs, as discussed earlier.
	 Policy adjustments are essential to set practical targets 
for sustaining coral reef ecosystems. Mitigating and reducing 
terrestrial runoff and the regular monitoring of pollution levels 
are critical to bolster coral reef resilience in the face of climate 
change. Efforts to conserve Maluku’s coral reefs have included 
establishing Marine Protected Areas (Ceccarelli et al., 2022). 
The effectiveness of conservation should be enhanced through 
the involvement of local wisdom from the coastal communities 
of the Maluku islands, contributing to the preservation of 
biological resources in coastal and marine ecosystems (Beruat 
et al., 2014; Touwe, 2020; Farah, 2022). However, considering 
that the current study was based on data from IPCC AR5, 
there are certain limitations regarding the accuracy of the 
CO2 emission levels in the corresponding RCP models, the 
environmental variables applied in this research and the 
consideration of the actual life form of the species. Further 
studies utilizing the SSP factors in AR6 and specification of 

the life-form within a species in the presence of distribution 
input to the model will provide updated predictive patterns for 
habitat suitability for tropical coral reefs in response to future 
climate changes.
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