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Importance of the work: An accurate compression strength prediction model of regular-
slotted-container (RSC) corrugated boxes could be used as an effective packaging design
tool for industry.

Objectives: To apply material and design parameters for RSC corrugated box strength
prediction using artificial backpropagation neural network modelling (BPN).

Materials and Methods: In total, 7 material and design factors from 630 commercially

corrugated box samples in Thailand were recorded as input parameters along with their box
compression test (BCT) values as output parameter. Data were randomly grouped during the model
development based on a training set-to-test set-to-validation set ratio of 80:10:10, respectively.
Results: The backpropagation neural network BPN17-13-1 model (17 inputs, 13 hidden
layers and 1 output) produced the highest prediction performance with a coefficient of
determination (R?) value of 0.982 compared to calculations based on the simplified McKee’s
formula that produced an R? value of 0.737. Of the material parameters, flute 2 as well as
grammage of the liner 2 and medium 2 had a greater influence on the predicted BCT-than
flute 1 and the grammage of the middle layer and outer liner. Fiber composition had less
influence than the grammage factor. In the packaging design, the contributions to BCT
of the height, length and width of the boxes were 9.94%, 5.62% and 1.64% respectively.
Furthermore, the printing area contributed more toward BCT than the printing position.
Main finding: The developed compression strength prediction model was more accurate
than the simplified McKee’s formula applied in the industry. The important material
parameters were the type of flute and the grammage. Furthermore, the important packaging
design parameters were the box height, box length and printing area.
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Introduction

Corrugated fiberboard containers have been recognized
as the most economical and efficient form of distribution
packaging for a multitude of products since their introduction
in the early 1900s (Foster, 1997). These containers can be
constructed to provide optimal compression strength toward
any specific distribution lane by modifying the fiberboard
structure and flute size; selecting the optimum composition
and grammage of the linerboard and corrugating medium;
or maximizing the box strength through structural design; or
a mixture of these factors (Foster, 1997; Steadman, 2002;
Dekker, 2005; Frank, 2014). Additionally, the associated
conversion and distribution processes influence the
compressive strength and the overall performance of the
corrugated fiberboard boxes during their logistical journey
(Steadman 2002; Dekker, 2005; Frank, 2014). Converting
processes relate to those used during the production of the
containers such as printing/decorating and die cutting, while
the distribution processes include ambient and physical factors
such as humidity, temperature, stacking pattern and storage
time. The relationship or influence levels of these multiple
factors on the compressive strength of corrugated fiberboard
containers is complex, making it challenging to predict and
model. Understanding the influence of these factors toward the
compression strength prediction of corrugated fiberboard boxes
is essential since packaging engineers need to consider safety
factors during the design stage to prevent potential damage to
the boxes and the products.

Laboratory-based physical testing to determine the
compression strength of corrugated fiberboard containers
is important for internal quality control as well as assuring
compliance with various distribution standards. In addition,
laboratory-based testing is critical in addressing the research
objectives of optimizing the fiberboard component and
minimizing the strength reduction potential. In this regard,
compression strength of the corrugated fiberboard liners, cross
direction edgewise compression strength of the corrugated
fiberboard panels and the top-to-bottom compressive strength
of the corrugated fiberboard containers are commonly elevated
by ring crush test (RCT), edge crush test (ECT) and box
compression test (BCT), respectively. Variation of up to
30% among different test standards have been reported for
the compressive strength values and this can further impede
strength properties prediction (Steadman, 2002). Various
studies have confirmed that RCT and ECT, as well as other

design parameters, such as board caliper, box perimeter, shape
and size of hand holes and ventilation holes, are substantially
associated with the bending stiffness of the fiberboard panels
and, ultimately, influence the strength properties including
the BCT values of the containers (Killicutt and Landt, 1952;
Mckee et al., 1963; Urbanik, 1997; Jinkarn et al., 2006;
Urbanik and Frank, 2006; Singh et al., 2008; Sohrabpour and
Hellstrdm, 2010; Zhou et al., 2012; Opara and Pathare, 2014;
Adamopoulos et al., 2016; Fadijia et al., 2016; Fadijia and Opara,
2017; Fadijia et al., 2018; Archaviboonyobul et al., 2020).

Although physical testing using standard procedures
providesuseful BCT values for corrugated fiberboard containers,
the major trade-offs include resources such as time and cost.
Compression strength prediction of the corrugated fiberboard
containers based on either linear or nonlinear mathematical
models have been proposed to aid in more effective decision
making related to the engineering design concept (Jinkarn
etal., 2006; Adamopoulos et al., 2016; Archaviboonyobul et al.,
2020, Chaveesuk et al., 2021, Gu et al., 2023). Parameters that
are commonly included for the existing compression strength
prediction formulas include RCT, ECT, flexural stiffness, box
dimension, board caliper and flute types. Notably, most of the
existing compression strength prediction models for corrugated
fiberboard containers are based on regular slotted container
(RSC; FEFCO 201) style boxes. Primarily, this is due to the
global adoption of this style of box, resulting from the effective
and efficient use of corrugated fiberboard, as well as its
generally acceptable performance when distributing packaged
products through the commonly used logistical strategies.
In addition, the RSC structural pattern is simple compared
to the complex geometry of die-cut boxes.

Among the several existing compression strength prediction
models, McKee’s formula is one of the most commonly cited
engineering models due to its acceptable approximation
and simplicity (Mckee et al., 1963). A simplified version of
McKee’s formula is presented in Eq. 1, based on an empirical
relationship between board caliper or board thickness,
geometric mean flexural stiffness and edgewise compression of
the board (McKee et al., 1963; Steadman, 2002):

C=5.8745 x Pm x \Zt (1)

where C is the box compression strength (measured in
kilogram-force, kgf) and Pm is the edge crush test (ECT)
result (measured in kgf per centimeter), Z is the box perimeter
(2 x length + 2 x width; measured in centimeters) and ¢ is the
thickness of the corrugated board (measured in centimeters).
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This simplified version of McKee’s formula is particularly
popular amongst engineers working at the design stage for
estimating corrugated fiberboard box strength in field use
(Dekker, 2005).

Numerical finite element method (FEM) or 3D digital image
stereo-correlation techniques have been widely researched
to overcome the problem of the earlier compression strength
prediction models being unable to provide a detailed analysis
of critical stress points of the structure and the related failure
characteristics (Beldie et al., 2001; Biancolini and Brutti, 2003;
Urbanik and Saliklis, 2003; Nordstrand, 2004; Han and Park, 2007;
Gospodinov et al., 2011; Vigui¢ et al., 2011; Djilali et al., 2012;
Bronlund et al., 2014; Zhang et al., 2014; Aslund et al., 2015;
Fadijia et al., 2018; Bai et al., 2019; Wang et al., 2019; Gu et al.,
2020). The FEM nonlinear model, which addresses the transfer of
material behavior from elastic to plastic, is very useful for structural
analysis of the corrugated fiberboard and related containers.
However, the complexity and non-uniform material properties
of corrugated fiberboard limit the prediction capability of this
approach for effective industry practice (Adamopoulos et al., 2016).

More recently, researchers have started exploring another
promising modelling technique, the artificial neural network
(ANN) approach, for strength property prediction of corrugated
fiberboard panels and containers, using tested data such as ECT
or board stiffness with the dimensions of the board and boxes as
the inputs (Adamopoulos et al., 2016; Archaviboonyobul, et al.,
2020; Chaveesuk et al., 2021; Gu et al., 2023). However, none
of the existing research was conducted to identify the possibility
of developing ANNs using a wider range of related parameters
to predict the ultimate compression strength of the corrugated
fiberboard such as fiber composition or grammage of the liner
or medium, flute type and printing appearance. Applying
related multiple parameters simultaneously for compression
strength prediction should be more accurate than using a few
laboratory tested input values. This concept is encouraging, as
such prediction models could effectively support the packaging
engineering goals of an optimal packaging cost to strength offset.

The working principle of ANNs can be found in many
available published articles, where the different networks of
ANNSs have been applied for pattern recognition, prediction and
modelling (Fausett, 1994; Haykin, 1999; Dreiseitll and Machado,
2002; Kumar and Paliwal, 2009). In theory, ANNs are composed
of a sequence of layers—the input, hidden (artificial neurons or
processing elements, PE) and output layers—that are connected
by coefficients (weights). ANNs work by connecting neurons
in a network and attempting to minimize the prediction error of
the output through adjustable weighted inputs and non-linear

transfer function. The accuracy of the prediction models depends
on the complexity of factors associated with the predicted values,
as well as the ANN structures (Chaveesuk et al., 2021; Gu et al.,
2023). ANNs are an interconnected group of nodes inspired by
a simplification of neurons in a human brain. ANNs increase
their capability by recognizing the data and relationship patterns
and are activated to learn through training, not from programming
(Haykin, 1999). The backpropagation network (BPN) and
radial basis function network (RBFN) categories are two types
of ANN applications that have been applied successfully, with
a BPN needing a longer training time, but the results can be
better globalized, whereas RBFN is generally powerful for
text classification with a shorter training time (Haykin, 1999;
Dreiseitll and Machado, 2002).

The current research aimed to explore the influence of
multiple factors related to the corrugated fiberboard material
and the design of corrugated fiberboard boxes on the top-to-
bottom compression strength. The input values of all the factors
considered are readily measured by packaging engineers without
requiring additional laboratory testing. The goal was to develop
an accurate BCT prediction model through ANN modelling
and using datasets of parameters derived from commercially
produced, single-wall and double-wall corrugated fiberboard
boxes in Thailand. The BPN approach (a feedforward multi-
layer neural network) was selected to design the prediction
model because of its globalization capability.

Materials and Methods
Materials

The commercially produced samples of corrugated fiberboard
boxes were procured from corrugated manufacturers in Thailand.
The tested single-wall and double-wall RSC style boxes (Fig.1C)
had no handholds or ventilation and were produced within
Thailand for various commercial products. The boxes were
randomly sampled and collected from different production
batches involving various specifications related to the material
and design parameters of the boxes. Input parameters that
were taken into consideration for the BCT prediction models
through this research are presented in Table 1 and Fig. 1.
All samples were conditioned at 27°C and 65% relative humidity
(RH; Sigma-II NS II-Q; Japan) according to ISO 2233 (2000)
before compression testing (ISO, 2000; Tappi, 2006). For this
research, 27°C and 65% RH was used to represent the hot, humid
storage conditions in Thailand and other tropical countries.
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Fig. 1 Corrugated fiberboard structure and dimensions of regular-slotted-container (RSC) corrugated box: (A) single wall; (B) double wall;

(C) dimensions

Table 1 Input parameters for compression strength prediction of corrugated boxes

Material and design parameter Input parameter (code)

Coding (units)

Box dimension Length (X1)
Width (X2)
Height (X3)

Board composition Outer liner composition (X4)

(mm)
(mm)
(mm)

Fully recycled = 1; partly recycled= 2

Outer liner grammage (X5) (g/m?)
Medium 1 composition (X6) Fully recycled= 1; partly recycled= 2
Medium 1 grammage (X7) (g/m?)

Type of Flute 1 (X8)
Inner liner 1 composition (X9)

B=1,C=2,E=3
Fully recycled = 1; partly recycled = 2

Inner liner 1 grammage (X10) (g/m?)

Medium 2 composition (X11) Fully recycled = 1; partly recycled = 2
Medium 2 grammage (X12) (g/m?)

Type of Flute 2 (X13) B=1,C=2

Inner liner 2 composition (X14)  Fully recycled liner = 1; partly recycled liner=2
Inner liner 2 grammage (X15) (g/m?)

Printing appearance Printing area (X16)

Printing position (X17)

None =0, 1=1-10%, 2=10-20%
None = 0; all sides panels = 1; all sides panels +top =2; all sides panels + top+

bottom =3

Box compression test data preparation

The BCT (measured in newtons) was used as the output
parameter for this study and the related testing was conducted
using a compression tester (Emerson Apparatus 7200; USA)
in accordance with TAPPI (2006). In total, 630 data series
including the BCT tested output parameters were selected for
the ANN model development.

Box compression test calculation and artificial neural network
model development

The BCT calculation was performed for the corrugated
fiberboard box samples in the validation set using McKee’s
simplified formula (Equation 1), with the results being used
as benchmarks with the laboratory test results. In addition,

the BCT prediction using the validation dataset derived from
the most accurate ANN model was compared with the test
results. The prediction accuracy of McKee’s simplified formula
and the ANN model was compared.

BPN models were developed using the 630 data series.
During the model development, all data series were broken
down into three sets, with 80%,10% and 10% for the training,
the test and validation sets, respectively. The training sets were
used to train and adjust the prediction weights in the neural
network. The test sets were used to minimize overfitting and
the validation set was used to validate the accuracy and to test
the generalization capability of the model. The BPN network
structure used is shown in Fig. 2.
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Fig. 2 BPN 17-13-1 network structure, where BCT = box container test

During the model development, the number of potential
hidden neurons was tested in the range 1-20, the learning rate
was 0.01-1.00 with the momentum factor between 0.1-1.0 and
the learning cycle, 1-2,000,000. Each cycle (1 epoch) covered
the entire data in the training set. The BPN artificial neural
network models were developed utilizing the NeuralWorks
Explorer software (USA). The input parameters used are
provided in Table 1. The only output parameter of interest
was the BCT value. For BPN, the hyperbolic tangent function
(Eq. 2) was chosen as the activation function:

Jo) =[1 = exp(*)[1+ exp("*)] 2

where x is the weighted sum of the input variable.
Prediction performance measurement

The prediction performance for the developed BPN models
were expressed in terms of mean absolute error (MAE),
root mean-squared error (RMSE), mean absolute percentage
error (MAPE) and coefficient of determination (R?), as shown
in Eq. 3-6.

MAE=%,| 0~ t|/n 3)
RMSE =+/(1/n) x Z&,(0 — t)? 4)
MAPE =[] [0 - tl/o| /n] x 100 (5)
R=1-[Si(0— 1 / Zi(o — 0)'] ©

Yie = Vor + f[Evpz)]
Y=Ffp) =

1-e 2y
1+e ™2V

where x = input
w = weight vector of the input variables
z = hidden neurons
v = weight vector of the hidden neurons

Y = output
5 i =117
z; = wy; + [Zwijxi] j=113
1— e % k=1
1+e72%

where o is the actual output, t is the predicted output and n
is the total number of training and test patterns.

Analysis of influence level caused by input parameters toward

box container test prediction

After the final BPN artificial neural network model had
been selected, the influence levels of the input parameters
on the output parameter were investigated using the Explain
function in the NeuralWorks Explorer software.

Results and Discussion

Artificial neural network model development and prediction
performance

The best neural network model for BCT prediction was
BPN17-13-1, with values for the MAE, RMSE, MAPE and R? of
243.63 N, 308.86 N, 7.99% and 0.982, respectively (Table 2).
The prediction performance was tested using the validation
dataset, consisting of 127 BCT test results of corrugated
fiberboard boxes. The BPN17-13-1 model was composed of 17
input parameters, 13 hidden layers and 1 output parameter of the
BCT value. This novel model had better prediction performance
than McKee’s formula, with the model producing values for the
MAE, RMSE, MAPE and R? 0f 1,322.03 N, 1,826.76 N, 37.16%
and 0.737, respectively (Fig. 3). The MAPE of the developed
BPN17-13-1 model was in the same range as those of similar
ANN prediction models that applied laboratory test inputs
such as ECT or stiffness (Chaveesuk et al., 2021; Gu et al., 2023).
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Table 2 Prediction performance of artificial neural network models in training and validation sets

Model Training set Validation set
MAE RMSE MAPE MAE RMSE MAPE R?

BPN 17-2-1 386.91 486.95 12.41% 0.955 481.79 604.27 14.46% 0.937
BPN 17-3-1 378.40 485.83 11.63% 0.956 468.24 586.15 14.11% 0.939
BPN 17-4-1 339.65 437.78 10.51% 0.964 414.26 553.32 13.30% 0.948
BPN 17-5-1 289.87 363.71 9.47% 0.975 377.42 476.52 11.63% 0.956
BPN 17-6-1 302.54 392.59 10.17% 0.970 396.37 516.13 12.66% 0.953
BPN 17-7-1 268.19 355.79 9.05% 0.976 332.44 427.66 10.25% 0.965
BPN 17-8-1 284.37 367.32 9.67% 0.974 370.57 499.33 10.87% 0.961
BPN 17-9-1 275.74 355.87 8.98% 0.976 326.65 417.78 10.58% 0.965
BPN 17-10-1 225.43 296.99 7.04% 0.983 318.56 405.39 10.38% 0.967
BPN 17-11-1 215.84 290.01 7.02% 0.984 341.60 442.84 10.40% 0.966
BPN 17-12-1 246.72 318.68 8.03% 0.981 350.66 461.96 10.49% 0.965
BPN 17-13-1 209.86 274.08 6.83% 0.986 243.63 308.86 7.99% 0.982
BPN 17-14-1 240.50 332.18 8.05% 0.979 356.55 504.89 12.33% 0.958
BPN 17-15-1 223.21 299.94 7.33% 0.983 302.54 392.59 10.17% 0.970
BPN 17-16-1 256.91 341.30 8.26% 0.978 398.90 535.66 12.84% 0.951
BPN 17-17-1 287.43 393.91 9.76% 0.973 389.14 536.52 12.80% 0.951
BPN 17-18-1 369.24 452.95 10.84% 0.961 438.32 567.79 13.44% 0.942
BPN 17-19-1 399.26 536.87 12.77% 0.952 479.45 599.54 14.57% 0.937
BPN 17-20-1 405.54 549.74 13.27% 0.949 486.84 617.55 14.79% 0.930

MAE = mean absolute error; RMSE = root mean-squared error; MAPE = mean absolute percentage error; R? = coefficient of determination.
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Fig. 3 Prediction performance based on box compression test (BCT): (A)
McKee formula; (B) BPN 17-13-1 model

In general, BPN is a universal approximator that can
theoretically approximate nonlinear relationships (Haykin,
1999). Therefore, based on the current result, ANN models
using BPN could better predict the BCT due to the complex
interaction of multiple parameters. The simplified McKee’s
formula (Eq. 1) uses ECT, board caliper and box perimeter to
predict the box compression strength and does not incorporate
bending stiffness directly into the calculation. As a result of
this trade-off for prediction simplicity, a higher predictive error
might be observed. Despite applying the original McKee’s
formula, the prediction performance might not improve
greatly, since it excludes many related design parameters from
the prediction such as box height, board composition and
printing characteristics. McKee’s model has some additional
limitations because it was developed based on square, single-
wall corrugated fiberboard boxes produced in the USA in the
early 1960s that might not have included higher preforming
fiberboard combinations (Mckee et al., 1963; Steadman,
2002). Hence, the BCT prediction based on the BPN17-13-1
model was more accurate and more generally applicable since
it included both single-wall and double-wall fiberboard boxes.
Furthermore, the model took into account various material
and design parameters synchronously.
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Influence level of material and design parameters on
compressive strength of corrugated fiberboard boxes

Based on the current results for double-wall corrugated
fiberboard boxes, type of flute 2 had the greatest influence on
BCT prediction, followed by box height, grammage of inner
liner 2, grammage of medium 2, type of flute 1, grammage
of inner liner 1 and grammage of outer liner, respectively
(Fig. 4). However, for the single-wall boxes, box height, type
of flute 1, grammage of inner liner 1 and grammage of outer
liner, respectively, were the major contributors. In most cases,
grammage had a greater role than fiber composition, especially
the grammage of medium 2, grammage of inner liner 2, and
the grammage of inner liner 1 that are glued together in the
board structure (Fig.1). However, the outcome might have
been different if the RH value were to affect the measurements,
which was not considered in the current study.

As reflected in Fig. 1B, the optimal sequence of flutes in
a double-wall structure requires the larger flute (flute 2, which
provides a higher compressive resistance), to be placed on the
inside, with the smaller flute (which provides higher resistance
to potential flute damage during printing) placed on the outside.
The current results validated this commonly used industry practice.

The current results were consistent with Adamopoulos et al.
(2016), who reported that the height of a corrugated fiberboard
box contributed more to the BCT than its length and width.
The influence levels of these important material and design
parameters on the eventual compression strength of corrugated

fiberboard boxes can be used by packaging engineers to
optimize the cost associated with altering the design parameters
and the resulting compression strength.

Effects of flute type

The developed BPN model indicated that the type of flute
2 accounted for 13.78% of the BCT prediction (Fig. 4). Based
on the validation dataset, there 64 data series of the single-wall
and 63 data series of double-wall types. During the model
development, the type of flute 2 parameter was set to 0 for
a single-wall box and to 1 or 2 for a double wall box having
a B or C flute as flute 2, respectively. All commercially
produced double-wall corrugated fiberboard boxes in Thailand
use the B or C flute type; hence, the type of flute 2 parameter
was always coded as 2. The BPN model developed in the
current study can be trained to have much higher BCT values
for double-wall cases. As a result, a higher calculation weight
was used for this parameter, resulting in the type of flute 2
parameter having the highest percentage influence in BCT,
specifically at least a 13.78% increase in the BCT prediction.
Further data analysis of the corrugated fiberboard box samples
with the same values as the other design parameters showed
that the BCT increased by 35.7% when switching from
a single-wall B flute to a double-wall BC flute box. However,
a switch from a single-wall B flute to a larger single-wall C
flute only increased the BCT by 17.2%. however, these results
were based on commercially produced samples in Thailand;

0.00% 2.00% 4.00% 6.00% 8.00% 10.00% 12.00% 14.00%

Type of flute2 (X13)
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Grammage of inner liner 2 (X15)
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Fig. 4 Influence of material and design parameters on compressive strength of corrugated fiberboard boxes
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thus, variation in results could be expected for samples obtained
from other sources. The influence of different flute sizes or flute
types were in agreement with other studies (Schaepe and Popil,
2006; Urbanik and Frank, 2006; Sohrabpour and Hellstrom,
2010; Popil, 2012; Syed and Bhoomkar, 2013; Adamopoulos
et al., 2016; Archaviboonyobul et al., 2020).

Effects of box dimensions

Based on the current results for the BPN ANN model, the
box dimensions greatly affected the BCT values. Box height
contributed the most towards the change in BCT, followed
by box length and box width, respectively. Numerous studies
reported that the box perimeter as well as the length-to-width
ratio affected its load carrying capability (Killicutt and Landt,
1952; Mckee et al., 1963; Kawanishi, 1989; Adamopoulos et al.,
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2016; Archaviboonyobul et al., 2020), while Zhou et al. (2012)
reported a negative contribution to the compression strength
from increasing box height or lowering the length-to-height
ratio. Based on the current BPN model, when the box height of
the square footprint (300 cm x 300 cm) boxes increased from
200 cm to 300 cm, the BCT increased by 13.6%. However,
when the height of the same samples increased further from
300 cm to 400 cm, the BCT increased only by 6.6%. The strength
augmentation from the increasing box height might have
some boundaries, with the results perhaps being influenced by
the flexural stiffness of the board panel and interaction effects
with other dimension parameters (length and width). Taller
boxes could improve the load resistance but may introduce
buckling at extreme heights. Based on the data series in the
current study, the perimeter-to-height ratio or length-to-height
ratio and BCT had low levels of linear correlation (Fig. 5)
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because these parameters exhibit nonlinear behavior.
The high predicted BCT accuracy was the result of the ANN
model including complex nonlinear relationships among the
parameters. However, understanding the linear relationship
among the dimension parameters and the BCT can be useful
especially for packaging engineers in adjusting the box
dimensions to accommodate distribution requirements while
maximizing the BCT value. Based on the linear relationship of
the dimension parameters of the boxes with the BCT, the current
results indicated that the box perimeter, box height, box length
and box width, had higher R? values than for the perimeter-
to-height ratio and length-to-height ratio. Samples in the
validation dataset had average perimeter and box height values
of 1,590 mm and 276 mm, respectively, with an average length-
to-width-to-height ratio of 1.7:1.2:1. In addition, the length-to-
height and perimeter-to-height ratios in this dataset were in the
ranges 0.9-3.6 and 3.0-13.3, respectively, and this ratio seemed
to have a slightly negative correlation with the BCT, indicating
that the lower the ratio, the marginally greater the BCT.

Effects of grammage and fiber composition

In the BPN17-13-1 model, the grammage of the liner and
medium of the corrugated fiberboard had a larger impact on
the BCT of the boxes compared to their composition (fully
or partially recycled pulp). The values for grammage of inner
liner 2 and grammage of medium 2 contributed 9.70% and
8.91%, respectively, to the box compression strength, which
was higher than the contribution by the values for grammage
of inner liner 1 (6.68%) and grammage of outer liner (6.40%)
(Fig. 4). For example, with the other parameters being the
same, if grammage of inner liner 2 were increased from 125 g/
m?to 175 g/m?, the predicted BCT would increase at an average
of 5.70%, perhaps because corrugating medium 2 was the main
top-load bearing structure and the inner liner 2 (glued to flute 2)
performed the critical function of supporting the flute strength
and integrity. However, bending failure could potentially
take place if there was an imbalance in strength between the
outer liner and the inner side of the corrugated board. These
results were in accordance with the laboratory-based test
results reported elsewhere that mentioned the importance of
the grammage of the liner or corrugating medium on board
strength (Schaepe and Popil, 2006; Popil and Hojjatie, 2010;
Popil, 2012; Syed and Bhoomkar, 2013). Furthermore, some
researchers have reported that the influence of liner or medium
grammage on ECT was non-linear (Popil, 2012; Syed and
Bhoomkar, 2013; Adamopoulos et al., 2016)

Two types of liners and mediums were investigated: fully
recycled pulp and partially recycled pulp. The influence
percentage of the composition of all inner liners and as well
as corrugating medium 2 was similar at approximately 4%.
Notably, the composition of the outer liner was slightly less
important than the inner liners. The influence percentage of
the composition of corrugating medium 1 was marginal at
around 1.29%. As a result, changing to fully recycled pulp for
these two layers might be possible, however, the quality of the
recycled pulp need to be controlled or monitored, as well as the
other strength properties.

Effects of printing area and printing position

All the fabricated corrugated board boxes were printed
using the flexography printing method. The printing area of
the corrugated fiberboard box samples was classified into
three groups: no printing; 0%—10%; and 10%-20% printing.
None of the samples had a printing area greater than 20% of
their outside surface area. Additionally, the printing positions
were separated into three groups: none; all sides and top;
and all sides plus top and bottom. The analysis indicated
that the printing area had a larger influence on the BCT than
the printing position. In addition, the printing position was
the least influencing parameter in the BCT compared to the
other material and design parameters. Based on the analysis,
changing the printing area from 0% to 20%, decreased the
predicted BCT by 3.06%. Furthermore, changing the printing
position from printing on all sides to all sides plus top and
bottom, the predicted BCT decreased by only 0.08%, implying
that additional printing on the top and bottom of the corrugated
fiberboard boxes did not greatly affect the BCT results, since
the maximum compression stress was normally on the side
panels.

Generally, high quality graphics involve large amounts of
print coverage and multiple colors. The effect of printing on the
reduction of BCT of the corrugated fiberboard boxes could be
reduced by using pre-printed liners (Cui et al., 2020). However,
this approach raises concerns associated with additional
conversion steps and higher costs. With pre-printed corrugated
containers, the linerboards are printed before being combined
with the single facer at the corrugator. This eliminates the
prospect of crushing the corrugated fiberboard due to the
pressure applied during the printing process.
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Conclusion

This study successfully achieved its goal of developing
a BPN ANN model to accurately predict the BCT for corrugated
fiberboard boxes. In addition, the model developed was capable
of identifying the influence levels of multiple material and
design input parameters related to the corrugated fiberboard
boxes. The BPN 17-13-1 model had the highest predicted
accuracy with values for R? and MAPE of 0.982 and the 7.99%,
respectively, compared to the simplified McKee’s formula
(R? and MAPE of 0.737 and 37.16%, respectively). Although
various materials and design parameters were considered,
future research could improve the prediction performance by
incorporating other factors into the BCT prediction models
such as humidity, storage time, stacking patterns or distribution
environment.
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