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AbstractArticle Info

Importance of the work: An accurate compression strength prediction model of regular-
slotted-container (RSC) corrugated boxes could be used as an effective packaging design 
tool for industry. 
Objectives: To apply material and design parameters for RSC corrugated box strength 
prediction using artificial backpropagation neural network modelling (BPN).
Materials and Methods: In total, 7 material and design factors from 630 commercially 
corrugated box samples in Thailand were recorded as input parameters along with their box 
compression test (BCT) values as output parameter. Data were randomly grouped during the model  
development based on a training set-to-test set-to-validation set ratio of 80:10:10, respectively.
Results: The backpropagation neural network BPN17-13-1 model (17 inputs, 13 hidden 
layers and 1 output) produced the highest prediction performance with a coefficient of 
determination (R2) value of 0.982 compared to calculations based on the simplified McKee’s 
formula that produced an R2 value of 0.737. Of the material parameters, flute 2 as well as 
grammage of the liner 2 and medium 2 had a greater influence on the predicted BCT than 
flute 1 and the grammage of the middle layer and outer liner. Fiber composition had less 
influence than the grammage factor. In the packaging design, the contributions to BCT 
of the height, length and width of the boxes were 9.94%, 5.62% and 1.64% respectively. 
Furthermore, the printing area contributed more toward BCT than the printing position. 
Main finding: The developed compression strength prediction model was more accurate 
than the simplified McKee’s formula applied in the industry. The important material 
parameters were the type of flute and the grammage. Furthermore, the important packaging 
design parameters were the box height, box length and printing area. 
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Introduction 

	 Corrugated fiberboard containers have been recognized 
as the most economical and efficient form of distribution 
packaging for a multitude of products since their introduction 
in the early 1900s (Foster, 1997). These containers can be 
constructed to provide optimal compression strength toward 
any specific distribution lane by modifying the fiberboard 
structure and flute size; selecting the optimum composition 
and grammage of the linerboard and corrugating medium; 
or maximizing the box strength through structural design; or  
a mixture of these factors (Foster, 1997; Steadman, 2002; 
Dekker, 2005; Frank, 2014). Additionally, the associated 
conversion and distribution processes influence the 
compressive strength and the overall performance of the 
corrugated fiberboard boxes during their logistical journey 
(Steadman 2002; Dekker, 2005; Frank, 2014). Converting 
processes relate to those used during the production of the 
containers such as printing/decorating and die cutting, while 
the distribution processes include ambient and physical factors 
such as humidity, temperature, stacking pattern and storage 
time. The relationship or influence levels of these multiple 
factors on the compressive strength of corrugated fiberboard 
containers is complex, making it challenging to predict and 
model. Understanding the influence of these factors toward the 
compression strength prediction of corrugated fiberboard boxes 
is essential since packaging engineers need to consider safety 
factors during the design stage to prevent potential damage to 
the boxes and the products. 
	 Laboratory-based physical testing to determine the 
compression strength of corrugated fiberboard containers 
is important for internal quality control as well as assuring 
compliance with various distribution standards. In addition, 
laboratory-based testing is critical in addressing the research 
objectives of optimizing the fiberboard component and 
minimizing the strength reduction potential. In this regard, 
compression strength of the corrugated fiberboard liners, cross 
direction edgewise compression strength of the corrugated 
fiberboard panels and the top-to-bottom compressive strength 
of the corrugated fiberboard containers are commonly elevated 
by ring crush test (RCT), edge crush test (ECT) and box 
compression test (BCT), respectively. Variation of up to 
30% among different test standards have been reported for 
the compressive strength values and this can further impede 
strength properties prediction (Steadman, 2002). Various 
studies have confirmed that RCT and ECT, as well as other 

design parameters, such as board caliper, box perimeter, shape 
and size of hand holes and ventilation holes, are substantially 
associated with the bending stiffness of the fiberboard panels 
and, ultimately, influence the strength properties including 
the BCT values of the containers (Killicutt and Landt, 1952; 
Mckee et al., 1963; Urbanik, 1997; Jinkarn et al., 2006; 
Urbanik and Frank, 2006; Singh et al., 2008; Sohrabpour and 
Hellström, 2010; Zhou et al., 2012; Opara and Pathare, 2014; 
Adamopoulos et al., 2016; Fadijia et al., 2016; Fadijia and Opara, 
2017; Fadijia et al., 2018; Archaviboonyobul et al., 2020).
	 Although physical testing using standard procedures 
provides useful BCT values for corrugated fiberboard containers, 
the major trade-offs include resources such as time and cost. 
Compression strength prediction of the corrugated fiberboard 
containers based on either linear or nonlinear mathematical 
models have been proposed to aid in more effective decision 
making related to the engineering design concept (Jinkarn  
et al., 2006; Adamopoulos et al., 2016; Archaviboonyobul et al., 
2020, Chaveesuk et al., 2021, Gu et al., 2023). Parameters that 
are commonly included for the existing compression strength 
prediction formulas include RCT, ECT, flexural stiffness, box 
dimension, board caliper and flute types. Notably, most of the 
existing compression strength prediction models for corrugated 
fiberboard containers are based on regular slotted container 
(RSC; FEFCO 201) style boxes. Primarily, this is due to the 
global adoption of this style of box, resulting from the effective 
and efficient use of corrugated fiberboard, as well as its 
generally acceptable performance when distributing packaged 
products through the commonly used logistical strategies.  
In addition, the RSC structural pattern is simple compared  
to the complex geometry of die-cut boxes.
	 Among the several existing compression strength prediction 
models, McKee’s formula is one of the most commonly cited 
engineering models due to its acceptable approximation 
and simplicity (Mckee et al., 1963). A simplified version of 
McKee’s formula is presented in Eq. 1, based on an empirical 
relationship between board caliper or board thickness, 
geometric mean flexural stiffness and edgewise compression of 
the board (McKee et al., 1963; Steadman, 2002): 

	 C = 5.8745 × Pm × �Zt 	 (1)
 			 
where C is the box compression strength (measured in 
kilogram-force, kgf) and Pm is the edge crush test (ECT) 
result (measured in kgf per centimeter), Z is the box perimeter 
(2 × length + 2 × width; measured in centimeters) and t is the 
thickness of the corrugated board (measured in centimeters).
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	 This simplified version of McKee’s formula is particularly 
popular amongst engineers working at the design stage for 
estimating corrugated fiberboard box strength in field use 
(Dekker, 2005).
	 Numerical finite element method (FEM) or 3D digital image 
stereo-correlation techniques have been widely researched  
to overcome the problem of the earlier compression strength 
prediction models being unable to provide a detailed analysis 
of critical stress points of the structure and the related failure 
characteristics (Beldie et al., 2001; Biancolini and Brutti, 2003; 
Urbanik and Saliklis, 2003; Nordstrand, 2004; Han and Park, 2007; 
Gospodinov et al., 2011; Viguié et al., 2011; Djilali et al., 2012; 
Bronlund et al., 2014; Zhang et al., 2014; Åslund et al., 2015;  
Fadijia et al., 2018; Bai et al., 2019; Wang et al., 2019; Gu et al., 
2020). The FEM nonlinear model, which addresses the transfer of 
material behavior from elastic to plastic, is very useful for structural 
analysis of the corrugated fiberboard and related containers. 
However, the complexity and non-uniform material properties  
of corrugated fiberboard limit the prediction capability of this 
approach for effective industry practice (Adamopoulos et al., 2016).
	 More recently, researchers have started exploring another 
promising modelling technique, the artif﻿icial neural network 
(ANN) approach, for strength property prediction of corrugated 
fiberboard panels and containers, using tested data such as ECT 
or board stiffness with the dimensions of the board and boxes as 
the inputs (Adamopoulos et al., 2016; Archaviboonyobul, et al., 
2020; Chaveesuk et al., 2021; Gu et al., 2023). However, none 
of the existing research was conducted to identify the possibility 
of developing ANNs using a wider range of related parameters 
to predict the ultimate compression strength of the corrugated 
fiberboard such as fiber composition or grammage of the liner 
or medium, flute type and printing appearance. Applying 
related multiple parameters simultaneously for compression 
strength prediction should be more accurate than using a few 
laboratory tested input values. This concept is encouraging, as 
such prediction models could effectively support the packaging 
engineering goals of an optimal packaging cost to strength offset.
	 The working principle of ANNs can be found in many 
available published articles, where the different networks of 
ANNs have been applied for pattern recognition, prediction and 
modelling (Fausett, 1994; Haykin, 1999; Dreiseitll and Machado, 
2002; Kumar and Paliwal, 2009). In theory, ANNs are composed 
of a sequence of layers—the input, hidden (artificial neurons or 
processing elements, PE) and output layers—that are connected 
by coefficients (weights). ANNs work by connecting neurons 
in a network and attempting to minimize the prediction error of 
the output through adjustable weighted inputs and non-linear 

transfer function. The accuracy of the prediction models depends 
on the complexity of factors associated with the predicted values, 
as well as the ANN structures (Chaveesuk et al., 2021; Gu et al., 
2023). ANNs are an interconnected group of nodes inspired by  
a simplification of neurons in a human brain. ANNs increase  
their capability by recognizing the data and relationship patterns 
and are activated to learn through training, not from programming 
(Haykin, 1999). The backpropagation network (BPN) and 
radial basis function network (RBFN) categories are two types 
of ANN applications that have been applied successfully, with 
a BPN needing a longer training time, but the results can be 
better globalized, whereas RBFN is generally powerful for 
text classification with a shorter training time (Haykin, 1999; 
Dreiseitll and Machado, 2002).
	 The current research aimed to explore the influence of 
multiple factors related to the corrugated fiberboard material 
and the design of corrugated fiberboard boxes on the top-to-
bottom compression strength. The input values of all the factors 
considered are readily measured by packaging engineers without 
requiring additional laboratory testing. The goal was to develop 
an accurate BCT prediction model through ANN modelling 
and using datasets of parameters derived from commercially 
produced, single-wall and double-wall corrugated fiberboard 
boxes in Thailand. The BPN approach (a feedforward multi-
layer neural network) was selected to design the prediction 
model because of its globalization capability.

Materials and Methods

Materials

	 The commercially produced samples of corrugated fiberboard 
boxes were procured from corrugated manufacturers in Thailand. 
The tested single-wall and double-wall RSC style boxes (Fig.1C) 
had no handholds or ventilation and were produced within 
Thailand for various commercial products. The boxes were 
randomly sampled and collected from different production 
batches involving various specifications related to the material 
and design parameters of the boxes. Input parameters that  
were taken into consideration for the BCT prediction models 
through this research are presented in Table 1 and Fig. 1.  
All samples were conditioned at 27ºC and 65% relative humidity 
(RH; Sigma-II NS II-Q; Japan) according to ISO 2233 (2000) 
before compression testing (ISO, 2000; Tappi, 2006). For this 
research, 27°C and 65% RH was used to represent the hot, humid 
storage conditions in Thailand and other tropical countries.
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Fig. 1	 Corrugated fiberboard structure and dimensions of regular-slotted-container (RSC) corrugated box: (A) single wall; (B) double wall;  
(C) dimensions

Table 1	 Input parameters for compression strength prediction of corrugated boxes
Material and design parameter Input parameter (code) Coding (units)
Box dimension Length (X1) (mm)

Width (X2) (mm)
Height (X3) (mm)

Board composition Outer liner composition (X4) Fully recycled = 1; partly recycled= 2
Outer liner grammage (X5) (g/m2)
Medium 1 composition (X6) Fully recycled= 1; partly recycled= 2
Medium 1 grammage (X7) (g/m2)
Type of Flute 1 (X8) B = 1, C = 2, E = 3
Inner liner 1 composition (X9) Fully recycled = 1; partly recycled = 2
Inner liner 1 grammage (X10) (g/m2)
Medium 2 composition (X11) Fully recycled = 1; partly recycled = 2
Medium 2 grammage (X12) (g/m2)
Type of Flute 2 (X13) B = 1, C = 2
Inner liner 2 composition (X14) Fully recycled liner = 1; partly recycled liner=2
Inner liner 2 grammage (X15) (g/m2)

Printing appearance Printing area (X16) None =0, 1=1–10%, 2=10–20%
Printing position (X17) None = 0; all sides panels = 1; all sides panels +top =2;  all sides panels + top+ 

bottom =3

Box compression test data preparation 

	 The BCT (measured in newtons) was used as the output 
parameter for this study and the related testing was conducted 
using a compression tester (Emerson Apparatus 7200; USA) 
in accordance with TAPPI (2006). In total, 630 data series 
including the BCT tested output parameters were selected for 
the ANN model development.

Box compression test calculation and artificial neural network 
model development

	 The BCT calculation was performed for the corrugated 
fiberboard box samples in the validation set using McKee’s 
simplified formula (Equation 1), with the results being used 
as benchmarks with the laboratory test results. In addition,  

the BCT prediction using the validation dataset derived from 
the most accurate ANN model was compared with the test 
results. The prediction accuracy of McKee’s simplified formula 
and the ANN model was compared.
	 BPN models were developed using the 630 data series. 
During the model development, all data series were broken 
down into three sets, with 80%,10% and 10% for the training, 
the test and validation sets, respectively. The training sets were 
used to train and adjust the prediction weights in the neural 
network. The test sets were used to minimize overfitting and 
the validation set was used to validate the accuracy and to test 
the generalization capability of the model. The BPN network 
structure used is shown in Fig. 2.
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Fig. 2	 BPN 17-13-1 network structure, where BCT = box container test

	 During the model development, the number of potential 
hidden neurons was tested in the range 1–20, the learning rate 
was 0.01–1.00 with the momentum factor between 0.1–1.0 and 
the learning cycle, 1–2,000,000. Each cycle (1 epoch) covered 
the entire data in the training set. The BPN artificial neural 
network models were developed utilizing the NeuralWorks 
Explorer software (USA). The input parameters used are 
provided in Table 1. The only output parameter of interest 
was the BCT value. For BPN, the hyperbolic tangent function  
(Eq. 2) was chosen as the activation function:

	 f(x) = [1 − exp(−2x)]/[1+ exp(−2x)]	 (2)

	 where x is the weighted sum of the input variable. 

Prediction performance measurement

	 The prediction performance for the developed BPN models 
were expressed in terms of mean absolute error (MAE),  
root mean-squared error (RMSE), mean absolute percentage 
error (MAPE) and coefficient of determination (R2), as shown 
in Eq. 3–6.

	 MAE = Σi=1 �o − t
 �/n

n 	 (3)

	 RMSE =�(1/n) × Σi=1(o − t)2 n 	 (4)

	 MAPE = [Σi=1 �[o − t]/o
 �]/n] × 100n 	 (5)

	 R2 = 1 − [Σi=1(o − t)2 / Σi=1(o − o)2]n n 	 (6)

	 where o is the actual output, t is the predicted output and n 
is the total number of training and test patterns.

Analysis of influence level caused by input parameters toward 
box container test prediction

	 After the final BPN artificial neural network model had 
been selected, the influence levels of the input parameters 
on the output parameter were investigated using the Explain 
function in the NeuralWorks Explorer software.

 
Results and Discussion

Artificial neural network model development and prediction 
performance

	 The best neural network model for BCT prediction was 
BPN17-13-1, with values for the MAE, RMSE, MAPE and R2 of  
243.63 N, 308.86 N, 7.99% and 0.982, respectively (Table 2).  
The prediction performance was tested using the validation 
dataset, consisting of 127 BCT test results of corrugated 
fiberboard boxes. The BPN17-13-1 model was composed of 17 
input parameters, 13 hidden layers and 1 output parameter of the 
BCT value. This novel model had better prediction performance 
than McKee’s formula, with the model producing values for the 
MAE, RMSE, MAPE and R2 of 1,322.03 N, 1,826.76 N, 37.16% 
and 0.737, respectively (Fig. 3). The MAPE of the developed 
BPN17-13-1 model was in the same range as those of similar 
ANN prediction models that applied laboratory test inputs  
such as ECT or stiffness (Chaveesuk et al., 2021; Gu et al., 2023).
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Fig. 3	 Prediction performance based on box compression test (BCT): (A) 
McKee formula; (B) BPN 17-13-1 model

Table 2	 Prediction performance of artificial neural network models in training and validation sets
Model Training set Validation set

MAE RMSE MAPE R2 MAE RMSE MAPE R2

BPN 17-2-1 386.91 486.95 12.41% 0.955 481.79 604.27 14.46% 0.937
BPN 17-3-1 378.40 485.83 11.63% 0.956 468.24 586.15 14.11% 0.939
BPN 17-4-1 339.65 437.78 10.51% 0.964 414.26 553.32 13.30% 0.948
BPN 17-5-1 289.87 363.71 9.47% 0.975 377.42 476.52 11.63% 0.956
BPN 17-6-1 302.54 392.59 10.17% 0.970 396.37 516.13 12.66% 0.953
BPN 17-7-1 268.19 355.79 9.05% 0.976 332.44 427.66 10.25% 0.965
BPN 17-8-1 284.37 367.32 9.67% 0.974 370.57 499.33 10.87% 0.961
BPN 17-9-1 275.74 355.87 8.98% 0.976 326.65 417.78 10.58% 0.965
BPN 17-10-1 225.43 296.99 7.04% 0.983 318.56 405.39 10.38% 0.967
BPN 17-11-1 215.84 290.01 7.02% 0.984 341.60 442.84 10.40% 0.966
BPN 17-12-1 246.72 318.68 8.03% 0.981 350.66 461.96 10.49% 0.965
BPN 17-13-1 209.86 274.08 6.83% 0.986 243.63 308.86 7.99% 0.982
BPN 17-14-1 240.50 332.18 8.05% 0.979 356.55 504.89 12.33% 0.958
BPN 17-15-1 223.21 299.94 7.33% 0.983 302.54 392.59 10.17% 0.970
BPN 17-16-1 256.91 341.30 8.26% 0.978 398.90 535.66 12.84% 0.951
BPN 17-17-1 287.43 393.91 9.76% 0.973 389.14 536.52 12.80% 0.951
BPN 17-18-1 369.24 452.95 10.84% 0.961 438.32 567.79 13.44% 0.942
BPN 17-19-1 399.26 536.87 12.77% 0.952 479.45 599.54 14.57% 0.937
BPN 17-20-1 405.54 549.74 13.27% 0.949 486.84 617.55 14.79% 0.930

MAE = mean absolute error; RMSE = root mean-squared error; MAPE = mean absolute percentage error; R2 = coefficient of determination.

	 In general, BPN is a universal approximator that can 
theoretically approximate nonlinear relationships (Haykin, 
1999). Therefore, based on the current result, ANN models 
using BPN could better predict the BCT due to the complex 
interaction of multiple parameters. The simplified McKee’s 
formula (Eq. 1) uses ECT, board caliper and box perimeter to 
predict the box compression strength and does not incorporate 
bending stiffness directly into the calculation. As a result of 
this trade-off for prediction simplicity, a higher predictive error 
might be observed. Despite applying the original McKee’s 
formula, the prediction performance might not improve 
greatly, since it excludes many related design parameters from 
the prediction such as box height, board composition and 
printing characteristics. McKee’s model has some additional 
limitations because it was developed based on square, single-
wall corrugated fiberboard boxes produced in the USA in the 
early 1960s that might not have included higher preforming 
fiberboard combinations (Mckee et al., 1963; Steadman, 
2002). Hence, the BCT prediction based on the BPN17-13-1 
model was more accurate and more generally applicable since  
it included both single-wall and double-wall fiberboard boxes. 
Furthermore, the model took into account various material  
and design parameters synchronously. 
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Influence level of material and design parameters on 
compressive strength of corrugated fiberboard boxes

	 Based on the current results for double-wall corrugated 
fiberboard boxes, type of flute 2 had the greatest influence on 
BCT prediction, followed by box height, grammage of inner 
liner 2, grammage of medium 2, type of flute 1, grammage  
of inner liner 1 and grammage of outer liner, respectively 
(Fig. 4). However, for the single-wall boxes, box height, type 
of flute 1, grammage of inner liner 1 and grammage of outer 
liner, respectively, were the major contributors. In most cases, 
grammage had a greater role than fiber composition, especially 
the grammage of medium 2, grammage of inner liner 2, and 
the grammage of inner liner 1 that are glued together in the 
board structure (Fig.1). However, the outcome might have 
been different if the RH value were to affect the measurements, 
which was not considered in the current study.
	 As reflected in Fig. 1B, the optimal sequence of flutes in  
a double-wall structure requires the larger flute (flute 2, which 
provides a higher compressive resistance), to be placed on the 
inside, with the smaller flute (which provides higher resistance 
to potential flute damage during printing) placed on the outside. 
The current results validated this commonly used industry practice.
	 The current results were consistent with Adamopoulos et al. 
(2016), who reported that the height of a corrugated fiberboard 
box contributed more to the BCT than its length and width. 
The influence levels of these important material and design 
parameters on the eventual compression strength of corrugated 

fiberboard boxes can be used by packaging engineers to 
optimize the cost associated with altering the design parameters 
and the resulting compression strength. 

Effects of flute type
 
	 The developed BPN model indicated that the type of flute 
2 accounted for 13.78% of the BCT prediction (Fig. 4). Based 
on the validation dataset, there 64 data series of the single-wall 
and 63 data series of double-wall types. During the model 
development, the type of flute 2 parameter was set to 0 for  
a single-wall box and to 1 or 2 for a double wall box having  
a B or C flute as flute 2, respectively. All commercially 
produced double-wall corrugated fiberboard boxes in Thailand 
use the B or C flute type; hence, the type of flute 2 parameter 
was always coded as 2. The BPN model developed in the 
current study can be trained to have much higher BCT values 
for double-wall cases. As a result, a higher calculation weight 
was used for this parameter, resulting in the type of flute 2 
parameter having the highest percentage influence in BCT, 
specifically at least a 13.78% increase in the BCT prediction. 
Further data analysis of the corrugated fiberboard box samples 
with the same values as the other design parameters showed 
that the BCT increased by 35.7% when switching from  
a single-wall B flute to a double-wall BC flute box. However,  
a switch from a single-wall B flute to a larger single-wall C  
flute only increased the BCT by 17.2%. however, these results 
were based on commercially produced samples in Thailand; 

Fig. 4	 Influence of material and design parameters on compressive strength of corrugated fiberboard boxes 
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thus, variation in results could be expected for samples obtained 
from other sources. The influence of different flute sizes or flute 
types were in agreement with other studies (Schaepe and Popil, 
2006; Urbanik and Frank, 2006; Sohrabpour and Hellström, 
2010; Popil, 2012; Syed and Bhoomkar, 2013; Adamopoulos  
et al., 2016; Archaviboonyobul et al., 2020).

Effects of box dimensions 
 
	 Based on the current results for the BPN ANN model, the 
box dimensions greatly affected the BCT values. Box height 
contributed the most towards the change in BCT, followed 
by box length and box width, respectively. Numerous studies 
reported that the box perimeter as well as the length-to-width 
ratio affected its load carrying capability (Killicutt and Landt, 
1952; Mckee et al., 1963; Kawanishi, 1989; Adamopoulos et al.,  

2016; Archaviboonyobul et al., 2020), while Zhou et al. (2012)
reported a negative contribution to the compression strength 
from increasing box height or lowering the length-to-height 
ratio. Based on the current BPN model, when the box height of 
the square footprint (300 cm × 300 cm) boxes increased from 
200 cm to 300 cm, the BCT increased by 13.6%. However, 
when the height of the same samples increased further from  
300 cm to 400 cm, the BCT increased only by 6.6%. The strength 
augmentation from the increasing box height might have  
some boundaries, with the results perhaps being influenced by 
the flexural stiffness of the board panel and interaction effects 
with other dimension parameters (length and width). Taller 
boxes could improve the load resistance but may introduce 
buckling at extreme heights. Based on the data series in the 
current study, the perimeter-to-height ratio or length-to-height 
ratio and BCT had low levels of linear correlation (Fig. 5)  

Fig. 5	 Linear relationship of box dimension parameters in box compression test (BCT): (A) BCT versus perimeter; (B) BCT versus box height; (C) BCT versus  
box length; (D) BCT versus box width; (E) BCT versus length-to-height ratio; (F) BCT versus perimeter-to height ratio, where R2 = coefficient of determination



9T. Archaviboonyobul et al. / Agr. Nat. Resour. 59 (2025) 590205

because these parameters exhibit nonlinear behavior.  
The high predicted BCT accuracy was the result of the ANN 
model including complex nonlinear relationships among the 
parameters. However, understanding the linear relationship 
among the dimension parameters and the BCT can be useful 
especially for packaging engineers in adjusting the box 
dimensions to accommodate distribution requirements while 
maximizing the BCT value. Based on the linear relationship of 
the dimension parameters of the boxes with the BCT, the current 
results indicated that the box perimeter, box height, box length 
and box width, had higher R2 values than for the perimeter- 
to-height ratio and length-to-height ratio. Samples in the 
validation dataset had average perimeter and box height values 
of 1,590 mm and 276 mm, respectively, with an average length-
to-width-to-height ratio of 1.7:1.2:1. In addition, the length-to-
height and perimeter-to-height ratios in this dataset were in the 
ranges 0.9–3.6 and 3.0–13.3, respectively, and this ratio seemed 
to have a slightly negative correlation with the BCT, indicating 
that the lower the ratio, the marginally greater the BCT.

Effects of grammage and fiber composition
 
	 In the BPN17-13-1 model, the grammage of the liner and 
medium of the corrugated fiberboard had a larger impact on 
the BCT of the boxes compared to their composition (fully 
or partially recycled pulp). The values for grammage of inner 
liner 2 and grammage of medium 2 contributed 9.70% and 
8.91%, respectively, to the box compression strength, which 
was higher than the contribution by the values for grammage 
of inner liner 1 (6.68%) and grammage of outer liner (6.40%) 
(Fig. 4). For example, with the other parameters being the 
same, if grammage of inner liner 2 were increased from 125 g/
m2 to 175 g/m2, the predicted BCT would increase at an average 
of 5.70%, perhaps because corrugating medium 2 was the main 
top-load bearing structure and the inner liner 2 (glued to flute 2) 
performed the critical function of supporting the flute strength 
and integrity. However, bending failure could potentially 
take place if there was an imbalance in strength between the 
outer liner and the inner side of the corrugated board. These 
results were in accordance with the laboratory-based test 
results reported elsewhere that mentioned the importance of 
the grammage of the liner or corrugating medium on board 
strength (Schaepe and Popil, 2006; Popil and Hojjatie, 2010; 
Popil, 2012; Syed and Bhoomkar, 2013). Furthermore, some 
researchers have reported that the influence of liner or medium 
grammage on ECT was non-linear (Popil, 2012; Syed and 
Bhoomkar, 2013; Adamopoulos et al., 2016)

	 Two types of liners and mediums were investigated: fully 
recycled pulp and partially recycled pulp. The influence 
percentage of the composition of all inner liners and as well 
as corrugating medium 2 was similar at approximately 4%. 
Notably, the composition of the outer liner was slightly less 
important than the inner liners. The influence percentage of 
the composition of corrugating medium 1 was marginal at 
around 1.29%. As a result, changing to fully recycled pulp for 
these two layers might be possible, however, the quality of the 
recycled pulp need to be controlled or monitored, as well as the 
other strength properties.

Effects of printing area and printing position 

	 All the fabricated corrugated board boxes were printed 
using the flexography printing method. The printing area of 
the corrugated fiberboard box samples was classified into 
three groups: no printing; 0%–10%; and 10%–20% printing. 
None of the samples had a printing area greater than 20% of 
their outside surface area. Additionally, the printing positions 
were separated into three groups: none; all sides and top; 
and all sides plus top and bottom. The analysis indicated 
that the printing area had a larger influence on the BCT than 
the printing position. In addition, the printing position was 
the least influencing parameter in the BCT compared to the 
other material and design parameters. Based on the analysis, 
changing the printing area from 0% to 20%, decreased the 
predicted BCT by 3.06%. Furthermore, changing the printing 
position from printing on all sides to all sides plus top and 
bottom, the predicted BCT decreased by only 0.08%, implying 
that additional printing on the top and bottom of the corrugated 
fiberboard boxes did not greatly affect the BCT results, since 
the maximum compression stress was normally on the side 
panels.
	 Generally, high quality graphics involve large amounts of 
print coverage and multiple colors. The effect of printing on the 
reduction of BCT of the corrugated fiberboard boxes could be 
reduced by using pre-printed liners (Cui et al., 2020). However, 
this approach raises concerns associated with additional 
conversion steps and higher costs. With pre-printed corrugated 
containers, the linerboards are printed before being combined 
with the single facer at the corrugator. This eliminates the 
prospect of crushing the corrugated fiberboard due to the 
pressure applied during the printing process.
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Conclusion

	 This study successfully achieved its goal of developing  
a BPN ANN model to accurately predict the BCT for corrugated 
fiberboard boxes. In addition, the model developed was capable 
of identifying the influence levels of multiple material and 
design input parameters related to the corrugated fiberboard 
boxes. The BPN 17-13-1 model had the highest predicted 
accuracy with values for R2 and MAPE of 0.982 and the 7.99%, 
respectively, compared to the simplified McKee’s formula 
(R2 and MAPE of 0.737 and 37.16%, respectively). Although 
various materials and design parameters were considered, 
future research could improve the prediction performance by 
incorporating other factors into the BCT prediction models 
such as humidity, storage time, stacking patterns or distribution 
environment.
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