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AbstractArticle Info

Importance of the work: Drought is a severe natural disaster that damages crop yields.
Objectives: To identify suitable meteorological drought and vegetation indices for 
monitoring drought and crop yield in the Srepok basin, Vietnam.
Materials and Methods: The study used the standardized precipitation index (SPI), 
effective drought index (EDI), vegetation health index (VHI), vegetation condition  
index (VCI), temperature condition index (TCI) and crop yields from 2000 to 2022.  
Simple and multiple correlation coefficients between these indices and crop yields were 
analyzed.
Results: SPI had a better relationship with the vegetation indices and crop yields than 
EDI. VHI, TCI and VCI, in descending order, had good relationships with meteorological 
drought indices. The pairing of VHI and the SPI at a 6-month time scale (SPI6) was the 
most suitable for monitoring drought in the study area during the dry season (February to 
early May). The best choice for crop yields was the SPI at a 5-month time scale (SPI5), 
taken at 9 mth and 3 mth before harvest for warning of the impact of drought on coffee 
and winter-spring rice, respectively.
Main finding: In the Srepok River basin, the SPI6-VHI combination was most effective 
for drought monitoring during February–May, while SPI5 with different lead times  
(9 mth for coffee and 3 mth for rice) provided optimal yield forecasting.
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Introduction 

	 Drought, a natural phenomenon that is difficult to predict, 
is becoming more severe due to the effects of climate change 
and human activity (Mishra and Singh, 2010; Mukherjee et al., 
2018). Studies have shown that drought has a serious impact 
on many aspects of social life and the environment on a global 
scale, with the level of impact varying by region (Leng et al., 
2015; Hamal et al., 2020). In particular, drought reduces soil 
moisture and affects plant growth, reducing yields and food 
security (Haile et al., 2020). Short-term drought can affect plant 
growth and reproduction, while long-term drought can cause 
larger changes in the structure and function of ecosystems 
(Manatsa et al., 2010). Often, regions with a primarily nature-
based agricultural sector are severely affected by drought 
(Miyan, 2015). Therefore, early detection and monitoring of 
drought are essential to minimize economic and environmental 
damage and ensure food security (Khoi et al., 2021).
	 The severity of drought has been quantified using many 
drought indices based on climate variables such as precipitation, 
temperature, and soil moisture (Mishra and Singh, 2010; 
Zargar et al., 2011). Of these, several that have been widely 
used are: the Palmer drought severity index (Palmer, 1965), 
the standardized precipitation index (SPI; McKee et al., 1993), 
the effective drought index (EDI; Byun and Wilhite, 1999) 
and the standardized precipitation evapotranspiration index 
(Vicente-Serrano et al., 2010). Huang et al. 9(2016) and Bhunia 
et al. (2019) used the SPI to assess the severity and frequency 
of droughts and indicated an increase in dry events. The SPI 
allowed for adjusting the time scale, from short-term to long-
term, which helped to accurately reflect the impacts of drought 
on vegetation and crop yields (Prajapati et al., 2021; Vélez-
Nicolás et al., 2022). In addition, the EDI was considered 
a useful tool for quantifying short-term drought events in 
Australia (Deo et al., 2016). The strength of the EDI was in its 
ability to accurately analyze and detect the spatial and temporal 
characteristics of drought; therefore, it was an effective tool 
for capturing the changes in vegetation and crop yields due 
to drought (Anshuka et al., 2021). Studies in India (Jain et al., 
2015) and South Korea (Kim et al., 2009) indicated that the 
SPI and EDI provided more accurate and consistent results than 
other drought indices, highlighting their importance in drought 
monitoring and assessment.
	 Although meteorological drought indices are often effective 
when applied to individual meteorological stations, they are not 
very effective at the regional level (Son et al., 2012), mainly  

due to the limited number of observation stations, which 
means that the scope of the meteorological data collected is 
not sufficient to support the timely identification, monitoring, 
and decision-making regarding drought (AghaKouchak  
et al., 2015). In large regions, the use of satellite data may be 
a useful alternative, as they allow for drought monitoring on  
a wide scale, especially in areas with sparse population density 
and harsh environmental conditions (Himanshu et al., 2015). 
Drought monitoring based on satellite-derived products is 
considered to be useful and important (Tran et al., 2017).  
In addition, agricultural monitoring systems have included 
indices derived from the spectral reflectance of vegetation 
to provide accurate and timely information about seasonal 
plant growth (Thao et al., 2022). Many techniques have been 
developed to describe agricultural drought based on satellite 
data at regional and global scales, such as the normalized 
difference vegetation index (NDVI) (Holben et al., 1980), the 
vegetation condition index (VCI), the temperature condition 
index (TCI) and the vegetation health index (VHI) (Kogan, 
1995). Often, these indices are used to assess drought and crop 
growth as well as to forecast early crop yields. For example, 
Jiang et al. (2021) used the NDVI, VCI, TCI and VHI to assess  
plant growth and drought conditions in the Jing-Jin-Ji region 
of China; Kogan et al. (2012) used the VCI and the VHI to 
forecast winter wheat, sorghum and corn yields from 3–4 mth 
before harvest in Kansas, USA. Kloos et al. (2021) monitored 
agricultural drought in Bavaria, Germany, using the TCI, the VCI 
and the VHI. Additionally, Luong and Bui (2023) investigated 
the use of the VCI, the TCI, the VHI and the temperature-
vegetation dryness index (TVDI) to identify the indicator 
areas for predicting the winter–spring rice yield in the Central 
Highlands, Vietnam. These studies reported clear correlations 
between satellite-based vegetation indices and crop yields.
	 From the above reports, both meteorological drought 
indices and satellite-based vegetation indices have shown 
great potential for drought monitoring. However, the question 
remains unanswered regarding which indices are suitable for 
monitoring plant health and drought. In addition, the change 
in vegetation cover and the severity of drought depend on 
geographical and environmental factors such as land cover/
land use (LULC) and soil types (Usman et al., 2013; Vicente-
Serrano et al., 2020). Therefore, identifying areas sensitive 
to changes in rainfall and climate conditions helps to provide 
early warnings about drought and facilitates timely adaptation 
measures.
	 The Central Highlands of Vietnam, covering an area 
of 54,508 km2, has a tropical monsoon climate region and 
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is heavily affected by the El Niño phenomenon (Van Viet, 
2021). The region has a dry season from December to early 
May, during which only 10−15% of the total annual rainfall 
occurs, leading to severe droughts in recent years such as 
2002, 2004−2005, 2010 and 2015−2016 (Dinh et al., 2022). 
Coffee and rice are the main crops in the Central Highlands, 
with coffee covering 5,825 km2 and accounting for about 
10% of the region’s total area, making it the world’s most 
concentrated coffee production area (Baker, 2016). Vietnam 
ranks as the world’s second-largest coffee producer, with 86% 
of production from the Central Highlands (Tiemann et al., 
2018). Coffee is highly sensitive to weather conditions and 
drought (Venancio et al., 2020; Byrareddy et al., 2021; Dinh et 
al., 2022); consequently, since 2014, drought has had a major 
impact on coffee production, affecting flowering and ripening 
processes and reducing yields by about 50% in severe drought 
years (Le Nguyen and Nguyen, 2018). Rice is cultivated on 
more than 1,500 km2, providing food for 6 million people.  
It has two growing seasons: summer-autumn (May–September) 
and winter-spring (December–April) (Chung et al., 2015). The 
winter-spring season coincides with the dry period, resulting 
in large crop yield fluctuations due to water scarcity. Research 
from India and Thailand has demonstrated strong relationships 
between rice yields and meteorological factors (Raja et al., 
2014; Prabnakorn et al., 2018), with both drought and humidity 
affecting yields (Lavane et al., 2023). Given the major impact 
of meteorological factors on coffee and rice yields, it is crucial 
to determine appropriate drought indices, time scales and lag 
times for early warning systems for the different crop types and 
local conditions.
	 With these considerations in mind, the current study aimed 
to identify the most suitable meteorological drought and 
vegetation indices for monitoring drought and grain crop and 
coffee yields in the Srepok River basin. The analysis included 
common meteorological drought indices (SPI, EDI), vegetation 
indices (VI; VCI, TCI, VHI) and coffee and winter-spring rice 
yields. The specific research objectives were: 1) analyzing 
the impact of drought on vegetation indices by 1a) analyzing 
the correlation between meteorological drought indices and 
vegetation indices for each LULC type in the Srepok River 
basin; and 1b) analyzing the differences in values of vegetation 
indices between dry and wet conditions; 2) identifying the 
appropriate meteorological drought index, vegetation index 
and indicator area for drought monitoring; 3) analyzing the 
correlation between meteorological drought indices at different 
time scales and lag times with coffee and rice yields; and 4) 
identifying the suitable meteorological drought index at the 

appropriate time scale and lag time for early yield warning of 
each crop type.

Materials and Methods

Study area

	 The Srepok River basin has an area of 30,942 km2, with 
18,162 km2 in Vietnam and 12,780 km2 are in Cambodia. 
It is a sub-basin of the Mekong River and is located in the 
Central Highlands of Vietnam. The area is situated between 
11°45′–13°15′N and 107°15′–109°E, with an elevation range of 
140–2,406 m (Fig. 1). The study area is in the tropical monsoon 
climate zone, with a climate divided into two seasons: the rainy 
season and the dry season. The rainy season lasts for 6 mth, 
from May to October, coinciding with the southwest monsoon 
period. The dry season occurs from November to April, with 
rainfall during this period accounting for approximately 
10−25% of the total annual rainfall. This dry season often 
leads to water shortages for agriculture. The basin has  
a population of approximately 2.3 million people (GSO, 2018). 
Agriculture is the main economic activity in the area, with 
coffee and winter-spring rice as the primary crops. The region 
experiences frequent droughts due to its tropical monsoon 
climate, necessitating an evaluation of drought impacts on crop 
yields.

Fig. 1	 Elevation map of the study area (Srepok River Basin in Vietnam), 
illustrating terrain variation from lowlands (50 m) to highlands (up to 
2,500 m), overlaid with weather station locations. The basin spans the 
provinces of Dak Lak, Dak Nong and Lam Dong and borders Khanh Hoa. 
Inset map shows the basin's location within Vietnam. 
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Data 

	 The analysis of the meteorological drought and vegetation 
indices was based on the rainfall data from 14 monitoring 
stations and NDVI and land surface temperature (LST) data 
from the Moderate Resolution Imaging Spectroradiometer 
(MODIS) products during the period 2000−2022. The rainfall 
data were collected from meteorological stations in the study 
area from 2000 to 2022 (Fig. 1). In total, 14 rainfall stations 
were included in the analysis, with 5 stations located in the 
Srepok area and 9 stations in the surrounding area.
	 The NDVI and LST data of the MODIS products were 
collected via the website https://earthexplorer.usgs.gov/.  
The NDVI data were extracted from the MODIS/Terra 
Vegetation Indices 16-Day L3 Global 500 m version 6 
(MOD13A1 v006) product, which had a spatial resolution of 
463 m × 463 m and a temporal resolution of 16 d. The LST data 
were taken from the MODIS/Terra Land Surface Temperature/
Emissivity 8-Day L3 Global 1 km version 6 (MOD11A2 
v006) product, with a spatial resolution of 926.6 m × 926.6 m 
and a temporal resolution of 8 d. The data were processed to  
a common spatial and temporal resolution to ensure 
compatibility for analysis. Temporal resolution calculations 
were made on on a monthly basis. The monthly NDVI data 

were obtained using the maximum value composite method to 
reduce the impact of atmospheric conditions (Holben, 1986; 
Chu et al., 2019). The monthly average LST was calculated 
and resampled using the bilinear method to match the spatial 
resolution of NDVI.
	 The crop yield data for coffee and rice were collected at 
the district level from statistics compiled in offices of the Dak 
Lak, Dak Nong and Lam Dong provinces from 2000 to 2022. 
Additionally, a land use map of the Srepok Basin in 2015 
was obtained from the Sub-National Institute of Agricultural 
Planning and Projection.

Methods

	 The overall workflow is illustrated in Fig. 2, with additional 
discussion below.

	 Meteorological drought indices and vegetation indices
	 The SPI was proposed by McKee et al. (1993). It is a widely 
used drought index that is based on the distribution of rainfall. 
The SPI is calculated at different time scales, from one to many 
months. Let x be the rainfall corresponding to the selected time 
step of any month in a year, then the SPI is calculated according 
to the following steps.

Fig. 2	 Workflow diagram illustrating the integration of remote sensing data (NDVI, LST, and vegetation indices), ground observations (land use and 
precipitation-based drought indices), and provincial crop yield records to identify the most suitable meteorological drought indices (MDI), vegetation 
indices (VI), and land use categories for drought and crop yield monitoring in the Srepok River Basin, Vietnam. 
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	 Determine the shape parameter (b) based on Equation (1) 
and the scale parameter (a) based on Equation (2), according to 
a gamma distribution:

	 β = (1+ �1+4U / 3) / 4U 	 (1)

	 α�= X / β	 (2)

	 where X  is the average value of X and U is a statistical 
coefficient, defined using Equation (3):

	 U = ln(X) � (ln(X) / n	 (3)

	 where n is the number of precipitation observations.
	 The gamma distribution function was calculated using 
Equation (4):

	 G(x) = (���x^(α − 1) e^((−x)/β) dx)/(β^α Γ(α))x
0

	 (4)

	 where G(a) = (a - 1)!. Since the gamma function is not defined 
for x = 0, and the precipitation distribution can contain zeros, the 
cumulative probability was used, as shown in Equation (5):

	 H(x) = q + (1 − q)G(x)	 (5)

	 where q is the probability corresponding to x = 0.
	 The SPI was defined based on transforming the cumulative 
probability H(x) into a standardized random variable with  
a mean of zero (Equation 6) and a variance of one, as shown in 
(Equation 7):
	  

	
SPI = t−(2,515517+0,802583t+0,010328t^2)/
  (1+1,432788t+0,189269t^2+0,001308t^3 ) 0,5<H(x)≤1

SPI = (2,515517 + 0,802583t + 0,010328t^2)/
  (1 + 1,432788t + 0,189269t^2 + 0,001308t^3 )−t 0<H(x)≤0,5

         (6)

	 where
								      

	
t = �ln (1 / (H(x)^2))  0 < H(x) � 0,5

t = �ln (1 / (1 ��H(x))^2)) 0,5 < H(x) � 1	 (7)

	 The gamma distribution function was calculated using 
the subroutine ‘cdfgam’ in the Cdflib.f90 package from 
the Florida State University website (https://people.sc.fsu.
edu/~jburkardt/f_src/cdflib/cdflib.html).
	 The EDI, as proposed by Byun and Wilhite (1999), is  
a function of the precipitation needed for a return to normal 
(PRN) and was calculated using Equation (8):

	 EDIj = PRNj / ST(PRNj)	 (8)

	 where

	 PRN
j 
= DEP

j
 / (∑

k=1
(1/k))  

j 	 (9)

	 DEP = EP − MEP	 (10)

	 and j is the calculation time, ST(PRN) is the standard 
deviation of PRN, EP is the effective rainfall and MEP is the 
average value of each EP day. Once the time step had been set, 
the daily EP was calculated according to Equation (11):

	 EPi = ∑n=1
[(∑m=1

 Pm) / n]
i n 	 (11)

	 where i is the calculation period and Pm is the rainfall on 
day m - 1 (the day before). Daily rainfall data were used for 
calculating the EDI, so it was necessary to average the daily 
values to calculate the monthly EDI.
	 Next, the SPI and EDI calculated for each station were 
interpolated using the IDW method to obtain a raster layer with 
a spatial resolution of 463 m × 463 m. These two indices were 
constructed for time scales from 1 mth to 13 mth.
	 VCI is the normalized value of NDVI over time  
(F.N. Kogan, 1995), according to Equation (12):

	 VCI = 100* (NDVIi − NDVImin) / (NDVImax − NDVImin)  (12)

	 where NDVIi is the NDVI value of a particular pixel in 
a certain year at time i, while NDVImax and NDVImin are the 
maximum and minimum NDVI values, respectively, over  
a period of analysis. The numerator represents the difference 
between the actual and minimum values of the NDVI and 
reflects the state of plant growth and meteorological conditions. 
The denominator’s maximum and minimum values indicate 
the best and worst conditions, respectively, of change and 
partly reflect the local vegetation’s condition. Hence, the VCI 
encompasses both historical and real-time information about 
the NDVI. The VCI ranges from 0 to 100, with lower values 
indicating underdeveloped plants and higher levels of drought. 
In the current study, the VCI was calculated for each month 
from 2000 to 2022.
	 The TCI was created by Kogan (1995) and represents  
the normalized value of LST over time, as shown in  
Equation (13):

	 TCI = 100* (LSTmax − LSTi) / (LSTmax − LSTmin)	 (13)
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	 The VHI was developed to assess plant health based on  
a combination of the VCI and the TCI (Kogan, 2001), as shown 
in Equation (14):

	 VHI = ∝VCI + (1 − ∝)TCI	 (14)

	 The VHI combines the information from the NDVI and 
the LST, with the weight α typically set to 0.5, to evaluate the 
health of vegetation. 

	 Selecting a vegetation index and meteorological drought 
index pair for crop monitoring
	 The criteria for selecting a vegetation index and 
meteorological drought index pair was based on the best 
Pearson’s correlation coefficient, with a clear difference in the 
vegetation index values between dry and wet conditions.
	
	 Calculating difference in vegetation index value between 
dry and wet conditions
	 Drought and wetness were determined by the meteorological 
drought indices SPI and EDI. Typically, thresholds such 
as -1, -1.5 and -2 represent drought levels ranging from 
mild, to severe and to extremely severe, respectively, while 
thresholds of 1, 1.5 and 2 represent wetness levels ranging from 
slightly wet, to wet to extremely wet, respectively. There was  
a substantial difference in the duration of drought and wetness 
from applying these thresholds in the Srepok basin. In addition, 
for simplicity, water availability was classified into three 
groups: drought, normal and wet. In a drought month, the 
drought indices were less than or equal to the 25th percentile. 
Conversely, in a wet month, the drought indices were greater 
than or equal to the 75th percentile.

	 Determining correlation between drought and vegetation 
indices
	 Pearson’s correlation coefficient was used to determine  
the correlation between the meteorological drought index 
and the vegetation index, which was subsequently used as an 
indicator of the impact of meteorological drought on vegetation.  
The values of these indices can be based on grid cells or 
averaged by land use type. In this case, the length of the time 
series was equal to the number of years analyzed (23 yr).
	 The vegetation index with the highest Pearson correlation 
coefficient was considered a suitable index for drought 
assessment. In addition, because the vegetation indices of 
different crop groups have different sensitivities to rainfall 
variability, the correlation coefficient was determined 

separately for each LULC type. The crop group with the 
highest correlation coefficient was selected as the indicator 
crop.

	 Determining correlation between drought index and crop 
yield and selecting monitoring index for crop yield
	 Hiep et al. (2023) reported that perennial agriculture (PeA) 
and paddy rice (PdR) were easily damaged by drought. PeA in 
this area includes coffee, cashew, pepper and Macca, of which 
robusta coffee is the main crop. In the past 20 years, coffee 
yields in this area have tended to increase due to investments 
in seed, fertilizer, water sources and improved agricultural 
techniques (Van Viet and Thuy, 2023). In addition, according 
to Hiep et al. (2023), the trends in the vegetation indices in this 
area were quite clear. Taking these trends into account, instead 
of the Pearson’s correlation coefficient, the current study 
used a multiple correlation coefficient between crop yields 
or vegetation indices (y) with meteorological drought index 
(x) and a time variable (t). The meteorological drought index 
along with its time scale with the highest multiple correlation 
coefficient was considered as a suitable index for drought 
monitoring. This coefficient was determined using Equation 
(15):

	 R
y.xt

 = �(r
yx

 + r
yt 

− 2r
yx 

r
yt 

r
xt
) / (1 − r

xt
)2 2 2 	 (15)

	 where ryx, ryt and rxt are the Pearson’s correlation coefficients 
between y and x, y and t, and x and t, respectively.
	 The analysis of the impact of drought on crop yields 
used values averaged by district of the yield (y) and the 
drought index (x). There were 19 districts within the basin. 
Furthermore, when analyzing separately for each district, the 
length of the series in Equation 15 was n = 23 (23 yr). The data 
from the districts were combined into a single series to ensure 
the stability of the results. Therefore, the length of the analysis 
series was n = 19 × 23 = 437. The y values between districts 
were compared based on standardization to the same mean 
value of 0 and SD value of 1.

Results and Discussion

Impact of drought on vegetation

	 The study analysis aimed to identify drought-sensitive 
crops or crop groups and the most suitable meteorological and 
remote sensing drought index pairs for monitoring land cover status.
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	 Difference in remote-sensing vegetation index values 
between dry and wet conditions
	 The results of determining the difference in vegetation 
index value between dry and wet conditions by land cover 
types are presented in Fig. 3 based on the limits for the dry 
and wet conditions corresponding to the threshold values  
of the 25th and 75th percentiles, respectively; excluding  
the blue areas, there were significant (p = 0.01) differences  
in the vegetation index values between the dry and wet 
conditions.

	 As shown in Fig. 3, the vegetation indices under conditions 
determined using the SPI were generally higher than those 
determined based on the EDI. The difference was most 
evident for the VHI. Based on these results, the SPI was  
a good indicator of the wetness conditions and plant health.  
In addition, Fig. 3 shows that PeA was most sensitive to 
wetness conditions, with natural forests being less affected by 
drought.

Fig. 3	 Differences between vegetation index values for dry and wet conditions, based on standardized precipitation index (SPI) and effective drought 
index (EDI), where abbreviations for different land use/land change (LULC) types are provided in Table 1
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	 Correlation coefficient analysis between meteorological 
drought indices and vegetation indices
	 The Pearson’s correlation coefficient values between 
vegetation indices by LULC type and the meteorological 
drought index at different time scales are shown in Fig. 4. 
	 Based on the results, the vegetation indices in coffee-
growing areas had the highest correlation coefficients, indicating 

that they were the most sensitive to rainfall variability. The 
crops consisting of protection forest (PtF), production forest 
(PdF), annual crops (AnC) and paddy rice (PdR) all had similar 
characteristics regarding the effects of rainfall variability on 
their condition. Furthermore, as with this crop group, special-
use forests were affected by drought but with a different 
distribution.
	 Both the EDI and SPI showed that the effects of rainfall 
variability only had a significant impact on vegetation indices 
in the period from January to May, with the most significant 
impact from February to April (Fig. 3 and Fig. 4). This was 
because February–April are the dry season months, when the 
effect of drought can be severe if it follows a lack of rainfall at 
the end of the previous rainy season.

Table 1	 Summary of land use andland cover types
Land use/land cover type Abbreviation Area (km2) Area (%)
Perennial agriculture PeA 3400 28.9
Special-use forest SpF 2367 20.1
Production forest PdF 1970 16.8
Annual crops AnC 911 7.7
Protection forest PtF 868 7.4
Paddy rice PdR 508 4.3

Fig. 4	 Pearson’s correlation coefficient for standardized precipitation index (SPI) and effective drought index (EDI) by land use/land cover type and 
drought index on time scales from 1 mth to 13 mth, where gray areas indicate p ≤ 0.01 
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	 In addition, the correlation coefficient was usually high 
from February to April for the VCI, while it was usually high 
in April and May for the TCI. This may have been be related 
to: 1) the end of the dry season from February to April; 2) the 
high temperature base in April and May (Fig. 5b), due to the 
sun passing through its zenith; and 3) the effects of the lack of 
rainfall at the end of the previous year’s rainy season on the 
land cover at the end of the dry season in the following year.

phase analysis used only a part of the dataset. Therefore, the 
reliability of the correlation analysis would be expected to be 
better.
	 The most suitable meteorological drought index and its 
time scale for monitoring crop conditions in this area were 
determined using analysis of correlation coefficients between 
the drought and vegetation indices from February to May, 
when they had the strongest relationship. With these months, 
the analyzed series had a length of 4 (months) × 23 (years) = 
92. Fig. 6 illustrates the relationship between the VHI with the 
SPI based on 1 mth data (SPI1) and the SPI based on 5 mth data 
(SPI5). Fig. 7 summarizes the correlation coefficients between 
vegetation indices of some LULC types with the SPI and the 
EDI. Due to the similar characteristics of the LULC types, only 
the data for PeA and AnC are presented.
	 According to Fig. 7, the SPI had a higher correlation 
coefficient and a more pronounced peak than the EDI. Although 
the difference in correlation coefficients was not significant, 
the SPI was still a better choice than the EDI. Notably, SPI6 
had the highest correlation, indicating that SPI6 was the best 
choice for assessing the impact of meteorological drought on 
vegetation conditions, which aligned with other studies in this 
basin regarding the effects of drought(Sam et al., 2019; Tram 
et al., 2021). Since the vegetation indices used for analysis 
were from February to May, SPI6 in this case was calculated 
from the rainfall starting in September, as the month with 
the highest rainfall (Fig. 5A), to May in the following year. 

Fig. 5	 Climatic data for Serepok basin region: (A) precipitation; (B) 
temperature, where the horizontal line within each box indicates the 
median, while the upper and lower edges of the box represent the 75th and 
25th percentiles, respectively, and the upper and lower ends of the whiskers 
represent the maximum and minimum values 

Fig. 6	 Correlation coefficients (r) for vegetation health index (VHI) on 
perennial agriculture area with: (A) standardized precipitation index (SPI) 
based on 1 mth data (SPI1); (B) SPI based on 5 mth data (SPI5)
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	 Compared to the VCI and the TCI, the VHI had a better 
relationship with both the EDI and the SPI. In addition, the 
VHI reflected the impact of drought on vegetation over a longer 
period (from February to May). Therefore, the VHI was the 
best choice among these vegetation indices for assessing the 
vegetation health caused by rainfall variability. In addition,  
Van Viet & Thuy (2023) reported that coffee yields in this area 
had a better relationship with the VHI compared to the VCI and 
the TCI, supporting the choice of the VHI.
	 A comparative analysis of Fig. 3 and Fig. 4 revealed notable 
similarities. Specifically, similar results were produced from 
using correlation analysis and difference analysis according 
to wet and dry phases in selecting remote sensing indices. 
The correlation analysis used the complete dataset, while the 
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Fig. 7	 Correlation coefficients (r) between vegetation indices (VHI, VCI, 
TCI) in perennial agriculture (PeA) and annual crop (AnC) areas and 
meteorological drought indices (SPI, EDI) (p = 0.01)
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The vegetation indices for February and March were both 
related to rainfall from September to November. Since rainfall 
from December to March was not substantial, the vegetation 
indices for April and May were related to the rainfall in 
these two months. Similarly, Fig. 4 and Fig. 7 showed that 
the relationship between vegetation indices with an increase 
in the meteorological drought index, in the order TCI, VCI, 
VHI. Thus, the pair of VHI and SPI6 was the most suitable for 
drought monitoring in this area.
	 The results from determining the correlation coefficient 
between the VHI and SPI6 in the drought-sensitive period from 
February to May by grid cells are shown in Fig. 8A. The results 
from overlaying this with the LULC map (Fig. 8B) showed that 
the correlation coefficient was often low outside the coffee-
growing area and high within. The mean and SD values of the 
correlation coefficients for the main LULC types are shown in 
Table 2.
	 Comparing the correlation coefficient values in Table 2 
were quite low, compared to the values in Figs. 7A and 7CF for 
SPI6, due to the difference in the input data in the calculation 
of the correlation coefficient. In particular, the results in  
Fig. 7 were calculated based on the average data for each LULC, 
while the results in Table 2 were based on the calculation 
using each grid cell. Due to the small area of a grid cell, the 
associated data were often unstable, which resulted in a low 
correlation coefficient.
	 According to Table 2, the degree of impact of drought on 
VHI increased in the order special-use forest (SpF), PtF, PdF, 
PdR, AnC, PeA. The first group (SpF, PtF and PdF) had a low 

correlation with the SPI. This group contains woody trees with 
well-developed roots and high coverage, so they were less 
affected by drought. In this group, SpF was the primary forest 
with the highest coverage, as well as being the least affected by 
drought. The low SD value (Table 2) indicated that the spatial 
impact of drought on SpF was quite uniform.
	 The remaining group (PdR, AnC and PeA), was sensitive to 
drought because each member involved water-loving crops with 
short roots. PeA in this area included coffee, cashew, pepper 
and Macca, with robusta coffee being the main crop. Coffee 
is a water-loving crop and is sensitive to high temperatures. 
Often, drought is associated with high temperatures, which 
makes coffee more susceptible to adverse drought impacts. 
AnC in this area included corn, cassava, vegetables, soybeans, 
peanuts, sweet potatoes and sugarcane. While some of these 
crops have better drought tolerance than PeA, overall there was 
not much difference. PdR was the main food crop in this area. 
It was given priority care and was also often located in places 
with convenient water sources. Therefore, compared to PeA 
and AnC, it was less affected by drought.

Fig. 8	 (A) Correlation coefficient (r) between SPI based on 6 mth data (SPI6) and VHI during the period from February to May (p = 0.01); (B) spatial 
distribution of main land use land cover types (defined in Table 1)

Table 2	 Summary statistics of Pearson’s correlation coefficients (r) 
between vegetation health index and standardized precipitation index by 
land use land cover type (p = 0.01) 

Land use land cover type Abbreviation Mean SD
Special-use forest SpF 0.31 0.06
Protection forest PtF 0.36 0.1
Production forest PdF 0.39 0.12
Paddy rice PdR 0.44 0.11
Annual crops AnC 0.46 0.13
Perennial agriculture PeA 0.49 0.11
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Relationship between coffee yield and meteorological drought 
indices

	 According to Table 2 and Fig. 8, the vegetation index in 
the coffee-growing areas was the most sensitive to rainfall 
fluctuations. In other words, droughts significantly affected 
the coffee yield. The relationship between coffee yield and 
each meteorological drought index was determined based on 
the multiple correlation coefficient. The multiple correlation 
coefficient was determined for different time scales of the 
meteorological drought indices and the time at which it is taken 
before harvest (the lag time). In addition, to increasing the 
reliability of the analysis, the data for calculating the multiple 
correlation coefficient was connected between districts to 
create a longer series. Fig. 9A illustrates the preparation of data 
for calculating the multiple correlation coefficient with SPI3 at 
a lag time of 10 months (SPI3-10).
	 The results of calculating the multiple correlation 
coefficient (R) between coffee yield, the time variable and 
the meteorological drought indices (SPI and EDI) are shown 
in Figs. 9B and 9C, respectively. Based on these results, the 
notable characteristics were: 1) the SPI had a higher correlation 
coefficient than EDI; 2) the SPI at a time scale of 5 mth and  
a lag time of 9 mth (SPI5-9) and the EDI at a time scale of 6 
mth and a lag time of 9 mth (EDI6-9) had the highest correlation 
coefficient. The difference in the time scales of the SPI and 
the EDI for the highest correlation coefficient was due to the 
difference in the way these indices were calculated.
 	 Because coffee was harvested in October, SPI5-9 was 
calculated from the precipitation from September to January 
in the year of harvest, while EDI6-9 was calculated based on 

Fig. 9	 (A) Simple correlation coefficient (r) between standardized coffee yield and SPI3 at a lag time of 10 mth; (B) multiple correlation coefficient (R) 
between standardized coffee yield, time variable and SPIx; (C) multiple correlation coefficient (R) between standardized coffee yield, time variable and 
EDIx, where SPIx and EDIx represent the standardized precipitation index and effective drought index, respectively, with scale time x ranging from 3 to 
7 mth. All correlations are significant at the 0.01 level

Fig. 10	 Multiple correlation coefficient (R) between standardized coffee 
yield, time variable and SPI based on 1 mth data (SPI1) or EDI based on 1 
mth data (EDI1) taken from previous September to January of harvest year

the precipitation from August to January. These results showed 
that precipitation from the middle of the rainy season to the 
beginning of the dry season was an important factor contributing 
to the coffee yield. According to Fig. 9B, the highest multiple 
correlation coefficient did not differ significantly between 
SPI3-9 and SPI5-9, indicating that the rainfall from November to 
January in the harvest year played the most important role, with 
the rainfall from September and October of the previous year 
having a lower impact on the yield. The average rainfall during 
these three months was only 166 mm and accounted for 7.2% 
of annual rainfall (Fig. 5A); nonetheless, it determined the 
soil moisture condition and the ability to irrigate coffee during 
these months, as well as the following dry months. The analysis 
of the multiple correlation coefficient between coffee yield, the 
time variable and SPI1 or EDI1 showed that this coefficient 
(significant at the 0.01 level), decreased in the order November, 
October, September, December of the previous year and then 
January of the harvest year (Fig. 10). Thus, November rainfall 
was the most important for coffee yield.
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	 From the above results, SPI5-9 may be prioritized to analyze 
the impact of drought on coffee productivity in this area. 
Because SPI5-9 had a positive (and quite high) correlation 
coefficient with crop yield, a lack of rainfall during the period 
from September to January may seriously affect the coffee 
yield. These findings were quite consistent with the study by 
Viet and Thuy (2023), which used vegetation health indices to 
forecast the coffee yield in this region.

Relationship between winter-spring rice yield and 
meteorological drought indices

	 The Srepok River basin has two main rice seasons (winter-
spring and summer-autumn). Since only the winter-spring 
season was significantly affected by drought, the analysis 
below has focused on this season. Usually, the winter-spring 
rice season in the Srepok River basin begins in early December 
and ends in late March. Similar to coffee, the multiple 
correlation coefficient between rice yield, the time variable and 
meteorological drought indices was constructed to analyze the 
effects of drought on rice yield. Drought indices at different 
time scales were taken from 1 mth to a few months before 
harvest. The results, which were significant at the 0.01 level, 
are shown in Fig. 11.
	 A comparison of Figs. 7a, 7c and Fig. 4 showed that the role 
of meteorological drought indices for rice and coffee was similar. 
In addition, SPI5 had the highest multiple correlation coefficient 
when it was taken 3 mth before harvest (SPI5-3), indicating that 
rainfall from August to December had the best relationship with 
the yield of winter-spring rice. Because winter-spring rice was 
harvested in March, SPI5-3 related to the rainfall from August 
to January. This period coincided with the period when the 
coffee yield was readily affected by drought (from September 
to January), as mentioned above. These findings were consistent 

with other studies conducted in the Mekong Delta, Vietnam and 
the Eastern Indian state of Odisha, which reported similar results 
(Raja et al., 2014; Lavane et al., 2023).
	 It can be seen that rainfall in the period from September to 
January was closely related to the yield of both coffee and rice. 
The total rainfall in the winter-spring rice season in this basin 
averaged about 240 mm, which was only 50% of the reference 
evaporation and much lower than the water requirement of rice. 
To meet the water requirement of rice, the remaining water was 
taken from the surface water that was stored during the rainy 
season, especially from September to the beginning of the dry 
season.
	 Overall, the results revealed that: 1) the EDI was not  
a priority option for monitoring rice and coffee yields; 2)  
SPI5 had the highest correlation coefficient with coffee and 
winter-spring rice; and 3) rainfall from the middle of the rainy 
season to the beginning of the dry season was decisive in 
achieving good yields of coffee and winter-spring rice.

Conclusion

	 Suitable meteorological drought and vegetation indices 
were identified for monitoring drought impacts in the Srepok 
River basin. Both statistical analyses of dry-wet phases 
and correlation analyses demonstrated that rainfall deficits 
significantly affected vegetation conditions and crop yields, 
leading to the assessment of their relationships and performance.
	 Of the meteorological drought indices, the SPI had stronger 
correlations with vegetation indices, coffee yield and winter-
spring rice yield than the EDI, making the former a better 
choice for drought monitoring and yield prediction. Among the 
vegetation indices, the VHI performed best, highlighting its 
suitability for drought assessment.

Fig. 11	 Multiple correlation coefficients (R) between normalized rice yield, time variable and (A) the standardized precipitation index (SPI); (B) 
effective drought index (EDI)
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	 Regarding time scales, SPI6 showed a strong relationship 
with the VHI from February to May, confirming this pair as 
optimal for drought monitoring. The period from February to 
early May was most affected by drought, influenced by rainfall 
variations from the previous September, especially between 
February and April.
	 The impact of drought on the VHI increased in the order 
SpF, PtF, PdF, PdR, AnC, PeA, with PeA being most sensitive 
to rainfall fluctuations, making it a key indicator for drought 
assessment.
	 For coffee yield, SPI5 at 9 mth before harvest had the 
highest correlation, emphasizing rainfall from September to 
January—especially in November and October—as critical 
factors. Similarly, for the winter-spring rice yield, SPI5 at 3 mth 
before harvest was most effective, confirming its suitability for 
forecasting yields of both perennial and annual crops. 
This study had some limitations due to the small number of 
vegetation and meteorological drought indices used in the 
analysis. Other indices need to be considered for inclusion in 
further studies.
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