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Importance of the work: Drought is a severe natural disaster that damages crop yields.

Objectives: To identify suitable meteorological drought and vegetation indices for
monitoring drought and crop yield in the Srepok basin, Vietnam.

Materials and Methods: The study used the standardized precipitation index (SPI),
effective drought index (EDI), vegetation health index (VHI), vegetation condition
index (VCI), temperature condition index (TCI) and crop yields from 2000 to 2022.
Simple and multiple correlation coefficients between these indices and crop yields were
analyzed.

Results: SPI had a better relationship with the vegetation indices and crop yields than
EDI. VHI, TCI and VCI, in descending order, had good relationships with meteorological
drought indices. The pairing of VHI and the SPI at a 6-month time scale (SPI6) was the
most suitable for monitoring drought in the study area during the dry season (February to
early May). The best choice for crop yields was the SPI at a 5-month time scale (SPIS),
taken at 9 mth and 3 mth before harvest for warning of the impact of drought on coffee
and winter-spring rice, respectively.

Main finding: In the Srepok River basin, the SPI6-VHI combination was most effective
for drought monitoring during February—May, while SPI5 with different lead times
(9 mth for coffee and 3 mth for rice) provided optimal yield forecasting.
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Introduction

Drought, a natural phenomenon that is difficult to predict,
is becoming more severe due to the effects of climate change
and human activity (Mishra and Singh, 2010; Mukherjee et al.,
2018). Studies have shown that drought has a serious impact
on many aspects of social life and the environment on a global
scale, with the level of impact varying by region (Leng et al.,
2015; Hamal et al., 2020). In particular, drought reduces soil
moisture and affects plant growth, reducing yields and food
security (Haile et al., 2020). Short-term drought can affect plant
growth and reproduction, while long-term drought can cause
larger changes in the structure and function of ecosystems
(Manatsa et al., 2010). Often, regions with a primarily nature-
based agricultural sector are severely affected by drought
(Miyan, 2015). Therefore, early detection and monitoring of
drought are essential to minimize economic and environmental
damage and ensure food security (Khoi et al., 2021).

The severity of drought has been quantified using many
drought indices based on climate variables such as precipitation,
temperature, and soil moisture (Mishra and Singh, 2010;
Zargar et al., 2011). Of these, several that have been widely
used are: the Palmer drought severity index (Palmer, 1965),
the standardized precipitation index (SPI; McKee et al., 1993),
the effective drought index (EDI; Byun and Wilhite, 1999)
and the standardized precipitation evapotranspiration index
(Vicente-Serrano et al., 2010). Huang et al. 9(2016) and Bhunia
et al. (2019) used the SPI to assess the severity and frequency
of droughts and indicated an increase in dry events. The SPI
allowed for adjusting the time scale, from short-term to long-
term, which helped to accurately reflect the impacts of drought
on vegetation and crop yields (Prajapati et al., 2021; Vélez-
Nicolas et al., 2022). In addition, the EDI was considered
a useful tool for quantifying short-term drought events in
Australia (Deo et al., 2016). The strength of the EDI was in its
ability to accurately analyze and detect the spatial and temporal
characteristics of drought; therefore, it was an effective tool
for capturing the changes in vegetation and crop yields due
to drought (Anshuka et al., 2021). Studies in India (Jain et al.,
2015) and South Korea (Kim et al., 2009) indicated that the
SPI and EDI provided more accurate and consistent results than
other drought indices, highlighting their importance in drought
monitoring and assessment.

Although meteorological drought indices are often effective
when applied to individual meteorological stations, they are not
very effective at the regional level (Son et al., 2012), mainly

due to the limited number of observation stations, which
means that the scope of the meteorological data collected is
not sufficient to support the timely identification, monitoring,
and decision-making regarding drought (AghaKouchak
et al., 2015). In large regions, the use of satellite data may be
a useful alternative, as they allow for drought monitoring on
a wide scale, especially in areas with sparse population density
and harsh environmental conditions (Himanshu et al., 2015).
Drought monitoring based on satellite-derived products is
considered to be useful and important (Tran et al., 2017).
In addition, agricultural monitoring systems have included
indices derived from the spectral reflectance of vegetation
to provide accurate and timely information about seasonal
plant growth (Thao et al., 2022). Many techniques have been
developed to describe agricultural drought based on satellite
data at regional and global scales, such as the normalized
difference vegetation index (NDVI) (Holben et al., 1980), the
vegetation condition index (VCI), the temperature condition
index (TCI) and the vegetation health index (VHI) (Kogan,
1995). Often, these indices are used to assess drought and crop
growth as well as to forecast early crop yields. For example,
Jiang et al. (2021) used the NDVI, VCI, TCI and VHI to assess
plant growth and drought conditions in the Jing-Jin-Ji region
of China; Kogan et al. (2012) used the VCI and the VHI to
forecast winter wheat, sorghum and corn yields from 3-4 mth
before harvest in Kansas, USA. Kloos et al. (2021) monitored
agricultural drought in Bavaria, Germany, using the TCI, the VCI
and the VHI. Additionally, Luong and Bui (2023) investigated
the use of the VCI, the TCI, the VHI and the temperature-
vegetation dryness index (TVDI) to identify the indicator
areas for predicting the winter—spring rice yield in the Central
Highlands, Vietnam. These studies reported clear correlations
between satellite-based vegetation indices and crop yields.

From the above reports, both meteorological drought
indices and satellite-based vegetation indices have shown
great potential for drought monitoring. However, the question
remains unanswered regarding which indices are suitable for
monitoring plant health and drought. In addition, the change
in vegetation cover and the severity of drought depend on
geographical and environmental factors such as land cover/
land use (LULC) and soil types (Usman et al., 2013; Vicente-
Serrano et al., 2020). Therefore, identifying areas sensitive
to changes in rainfall and climate conditions helps to provide
early warnings about drought and facilitates timely adaptation
measures.

The Central Highlands of Vietnam, covering an area
of 54,508 km?, has a tropical monsoon climate region and
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is heavily affected by the El Nifio phenomenon (Van Viet,
2021). The region has a dry season from December to early
May, during which only 10—15% of the total annual rainfall
occurs, leading to severe droughts in recent years such as
2002, 2004-2005, 2010 and 2015-2016 (Dinh et al., 2022).
Coffee and rice are the main crops in the Central Highlands,
with coffee covering 5,825 km? and accounting for about
10% of the region’s total area, making it the world’s most
concentrated coffee production area (Baker, 2016). Vietnam
ranks as the world’s second-largest coffee producer, with 86%
of production from the Central Highlands (Tiemann et al.,
2018). Coffee is highly sensitive to weather conditions and
drought (Venancio et al., 2020; Byrareddy et al., 2021; Dinh et
al., 2022); consequently, since 2014, drought has had a major
impact on coffee production, affecting flowering and ripening
processes and reducing yields by about 50% in severe drought
years (Le Nguyen and Nguyen, 2018). Rice is cultivated on
more than 1,500 km?, providing food for 6 million people.
It has two growing seasons: summer-autumn (May—September)
and winter-spring (December—April) (Chung et al., 2015). The
winter-spring season coincides with the dry period, resulting
in large crop yield fluctuations due to water scarcity. Research
from India and Thailand has demonstrated strong relationships
between rice yields and meteorological factors (Raja et al.,
2014; Prabnakorn et al., 2018), with both drought and humidity
affecting yields (Lavane et al., 2023). Given the major impact
of meteorological factors on coffee and rice yields, it is crucial
to determine appropriate drought indices, time scales and lag
times for early warning systems for the different crop types and
local conditions.

With these considerations in mind, the current study aimed
to identify the most suitable meteorological drought and
vegetation indices for monitoring drought and grain crop and
coffee yields in the Srepok River basin. The analysis included
common meteorological drought indices (SPI, EDI), vegetation
indices (VI; VCI, TCI, VHI) and coffee and winter-spring rice
yields. The specific research objectives were: 1) analyzing
the impact of drought on vegetation indices by la) analyzing
the correlation between meteorological drought indices and
vegetation indices for each LULC type in the Srepok River
basin; and 1b) analyzing the differences in values of vegetation
indices between dry and wet conditions; 2) identifying the
appropriate meteorological drought index, vegetation index
and indicator area for drought monitoring; 3) analyzing the
correlation between meteorological drought indices at different
time scales and lag times with coffee and rice yields; and 4)
identifying the suitable meteorological drought index at the
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appropriate time scale and lag time for early yield warning of
each crop type.

Materials and Methods

Study area

The Srepok River basin has an area of 30,942 km?, with
18,162 km? in Vietnam and 12,780 km? are in Cambodia.
It is a sub-basin of the Mekong River and is located in the
Central Highlands of Vietnam. The area is situated between
11°45'-13°15'N and 107°15'-109°E, with an elevation range of
140-2,406 m (Fig. 1). The study area is in the tropical monsoon
climate zone, with a climate divided into two seasons: the rainy
season and the dry season. The rainy season lasts for 6 mth,
from May to October, coinciding with the southwest monsoon
period. The dry season occurs from November to April, with
rainfall during this period accounting for approximately
10—25% of the total annual rainfall. This dry season often
leads to water shortages for agriculture. The basin has
a population of approximately 2.3 million people (GSO, 2018).
Agriculture is the main economic activity in the area, with
coffee and winter-spring rice as the primary crops. The region
experiences frequent droughts due to its tropical monsoon
climate, necessitating an evaluation of drought impacts on crop
yields.
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Fig. 1 Elevation map of the study area (Srepok River Basin in Vietnam),
illustrating terrain variation from lowlands (50 m) to highlands (up to
2,500 m), overlaid with weather station locations. The basin spans the
provinces of Dak Lak, Dak Nong and Lam Dong and borders Khanh Hoa.
Inset map shows the basin's location within Vietnam.
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Data

The analysis of the meteorological drought and vegetation
indices was based on the rainfall data from 14 monitoring
stations and NDVI and land surface temperature (LST) data
from the Moderate Resolution Imaging Spectroradiometer
(MODIS) products during the period 2000—2022. The rainfall
data were collected from meteorological stations in the study
area from 2000 to 2022 (Fig. 1). In total, 14 rainfall stations
were included in the analysis, with 5 stations located in the
Srepok area and 9 stations in the surrounding area.

The NDVI and LST data of the MODIS products were
collected via the website https://earthexplorer.usgs.gov/.
The NDVI data were extracted from the MODIS/Terra
Vegetation Indices 16-Day L3 Global 500 m version 6
(MOD13A1 v006) product, which had a spatial resolution of
463 m x 463 m and a temporal resolution of 16 d. The LST data
were taken from the MODIS/Terra Land Surface Temperature/
Emissivity 8-Day L3 Global 1 km version 6 (MOD11A2
v006) product, with a spatial resolution of 926.6 m x 926.6 m
and a temporal resolution of 8 d. The data were processed to
a common spatial and temporal resolution to ensure
compatibility for analysis. Temporal resolution calculations
were made on on a monthly basis. The monthly NDVI data

Remote sensing

16-day NDVI
463m x 463m

8-day LST
926m x 926m

Monthly NDVI
463m x 463m

Monthly LST
463m x 463m

Monthly vegetation indices (VIs)
(VCL T(‘“I, VHI)

Land use
(LU), vector

LU, raster; categories
463 m *x 463 m

LU, raster; quantifies
463 m T 463 m

were obtained using the maximum value composite method to
reduce the impact of atmospheric conditions (Holben, 1986;
Chu et al., 2019). The monthly average LST was calculated
and resampled using the bilinear method to match the spatial
resolution of NDVIL.

The crop yield data for coffee and rice were collected at
the district level from statistics compiled in offices of the Dak
Lak, Dak Nong and Lam Dong provinces from 2000 to 2022.
Additionally, a land use map of the Srepok Basin in 2015
was obtained from the Sub-National Institute of Agricultural
Planning and Projection.

Methods

The overall workflow is illustrated in Fig. 2, with additional
discussion below.

Meteorological drought indices and vegetation indices

The SPI was proposed by McKee et al. (1993). It is a widely
used drought index that is based on the distribution of rainfall.
The SPI is calculated at different time scales, from one to many
months. Let x be the rainfall corresponding to the selected time
step of any month in a year, then the SPI is calculated according
to the following steps.

Ground observation Crop yield

Precipitation data
of observation station

Crop yield data
of each province

Meteorological Drought Index

MDI (SPL EDI) Coffee yield

Rice yield

MDI (SPL, EDI) data;
time scale

! }

Computing differences between
vegetation index values

| |

Determining the best MDI (time scale), the best VI and the best LU

Computing correlation coefficient

Standardized Standardized
Coffee yield Rice yield

MDI (SPL, EDI) data;
time scale; lag time

Computing multiple correlation coefficient

Determining the best MDI (time scale, lag time)
with each crop

Fig. 2 Workflow diagram illustrating the integration of remote sensing data (NDVI, LST, and vegetation indices), ground observations (land use and

precipitation-based drought indices), and provincial crop yield records to identify the most suitable meteorological drought indices (MDI), vegetation

indices (VI), and land use categories for drought and crop yield monitoring in the Srepok River Basin, Vietnam.
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Determine the shape parameter (b) based on Equation (1)
and the scale parameter (a) based on Equation (2), according to
a gamma distribution:

p=(1+N1+4U/3)/ 4U (1)
a=X/p 2)

where X is the average value of X and U is a statistical
coefficient, defined using Equation (3):

U=In(X) - (In(X)/ n (3)

where n is the number of precipitation observations.
The gamma distribution function was calculated using
Equation (4):

G(x) = ([T xMa— 1) eA(—x)/B) dx)/(B o [(w)) “4)

where G(a) = (a - 1)!. Since the gamma function is not defined
for x = 0, and the precipitation distribution can contain zeros, the
cumulative probability was used, as shown in Equation (5):

HX) =q+ (1~ q9Gx) ®)

where ¢ is the probability corresponding to x = 0.

The SPI was defined based on transforming the cumulative
probability H(x) into a standardized random variable with
a mean of zero (Equation 6) and a variance of one, as shown in
(Equation 7):

SPI = (2,515517 +0,802583t + 0,010328t"2)/
(1+1,432788t +0,189269t"2 + 0,001308t"3 )—t 0<H(x)<0,5
SPI = t—(2,515517+0,802583t+0,010328t"2)/

(1+1,432788t+0,189269t°2+0,001308tA3 ) 05<Hx)<l  (6)

where
t=~In (1/(H(x)"2)) 0<H(x)<0,5
t="In(1/(1-Hx)?2) 05<Hx)<I (7)

The gamma distribution function was calculated using
the subroutine ‘cdfgam’ in the Cdflib.f90 package from
the Florida State University website (https://people.sc.fsu.
edu/~jburkardt/f src/cdflib/cdflib.html).

The EDI, as proposed by Byun and Wilhite (1999), is
a function of the precipitation needed for a return to normal
(PRN) and was calculated using Equation (8):

EDI, = PRN, / ST(PRN,) 8)
where

PRN =DEP, / (3_,(1/k)) 9)
DEP = EP — MEP (10)

and j is the calculation time, ST(PRN) is the standard
deviation of PRN, EP is the effective rainfall and MEP is the
average value of each EP day. Once the time step had been set,
the daily EP was calculated according to Equation (11):

EP,=Y [, P,)/n] (1

where i is the calculation period and P, is the rainfall on
day m - 1 (the day before). Daily rainfall data were used for
calculating the EDI, so it was necessary to average the daily
values to calculate the monthly £DI.

Next, the SPI and EDI calculated for each station were
interpolated using the IDW method to obtain a raster layer with
a spatial resolution of 463 m x 463 m. These two indices were
constructed for time scales from 1 mth to 13 mth.

VCI is the normalized value of NDVI over time
(F.N. Kogan, 1995), according to Equation (12):

VCI = 100* (NDVI, — NDVI,

min.

)/ (NDVI,,,~ NDVL,,,) (12)

where NDVI, is the NDVI value of a particular pixel in
a certain year at time i, while NDVI,,. and NDVI,,, are the
maximum and minimum NDVI values, respectively, over
a period of analysis. The numerator represents the difference
between the actual and minimum values of the NDVI and
reflects the state of plant growth and meteorological conditions.
The denominator’s maximum and minimum values indicate
the best and worst conditions, respectively, of change and
partly reflect the local vegetation’s condition. Hence, the VCI
encompasses both historical and real-time information about
the NDVI. The VCI ranges from 0 to 100, with lower values
indicating underdeveloped plants and higher levels of drought.
In the current study, the VCI was calculated for each month
from 2000 to 2022.

The TCI was created by Kogan (1995) and represents
the normalized value of LST over time, as shown in
Equation (13):

TCI = 100* (LST,,. — LST) / (LST,,. — LST,,) (13)
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The VHI was developed to assess plant health based on
a combination of the VCI and the TCI (Kogan, 2001), as shown
in Equation (14):

VHI = ocVCI + (1 — oc)TCI (14)
The VHI combines the information from the NDVI and

the LST, with the weight a typically set to 0.5, to evaluate the
health of vegetation.

Selecting a vegetation index and meteorological drought
index pair for crop monitoring

The criteria for selecting a vegetation index and
meteorological drought index pair was based on the best
Pearson’s correlation coefficient, with a clear difference in the
vegetation index values between dry and wet conditions.

Calculating difference in vegetation index value between
dry and wet conditions

Drought and wetness were determined by the meteorological
drought indices SPI and EDI. Typically, thresholds such
as -1, -1.5 and -2 represent drought levels ranging from
mild, to severe and to extremely severe, respectively, while
thresholds of 1, 1.5 and 2 represent wetness levels ranging from
slightly wet, to wet to extremely wet, respectively. There was
a substantial difference in the duration of drought and wetness
from applying these thresholds in the Srepok basin. In addition,
for simplicity, water availability was classified into three
groups: drought, normal and wet. In a drought month, the
drought indices were less than or equal to the 25" percentile.
Conversely, in a wet month, the drought indices were greater
than or equal to the 75" percentile.

Determining correlation between drought and vegetation
indices

Pearson’s correlation coefficient was used to determine
the correlation between the meteorological drought index
and the vegetation index, which was subsequently used as an
indicator of the impact of meteorological drought on vegetation.
The values of these indices can be based on grid cells or
averaged by land use type. In this case, the length of the time
series was equal to the number of years analyzed (23 yr).

The vegetation index with the highest Pearson correlation
coefficient was considered a suitable index for drought
assessment. In addition, because the vegetation indices of
different crop groups have different sensitivities to rainfall
variability, the correlation coefficient was determined

separately for each LULC type. The crop group with the
highest correlation coefficient was selected as the indicator
crop.

Determining correlation between drought index and crop
yield and selecting monitoring index for crop yield

Hiep et al. (2023) reported that perennial agriculture (PeA)
and paddy rice (PdR) were easily damaged by drought. PeA in
this area includes coffee, cashew, pepper and Macca, of which
robusta coffee is the main crop. In the past 20 years, coffee
yields in this area have tended to increase due to investments
in seed, fertilizer, water sources and improved agricultural
techniques (Van Viet and Thuy, 2023). In addition, according
to Hiep et al. (2023), the trends in the vegetation indices in this
area were quite clear. Taking these trends into account, instead
of the Pearson’s correlation coefficient, the current study
used a multiple correlation coefficient between crop yields
or vegetation indices (y) with meteorological drought index
(x) and a time variable (t). The meteorological drought index
along with its time scale with the highest multiple correlation
coefficient was considered as a suitable index for drought
monitoring. This coefficient was determined using Equation

(15):

R =@ +r2-2r rr)/(1-12) (15)

yX o ytoxt

where r,,, r,, and r,, are the Pearson’s correlation coefficients
between y and X, y and t, and x and t, respectively.

The analysis of the impact of drought on crop yields
used values averaged by district of the yield (y) and the
drought index (x). There were 19 districts within the basin.
Furthermore, when analyzing separately for each district, the
length of the series in Equation 15 was n =23 (23 yr). The data
from the districts were combined into a single series to ensure
the stability of the results. Therefore, the length of the analysis
series was n = 19 x 23 = 437. The y values between districts
were compared based on standardization to the same mean
value of 0 and SD value of 1.

Results and Discussion
Impact of drought on vegetation
The study analysis aimed to identify drought-sensitive

crops or crop groups and the most suitable meteorological and
remote sensing drought index pairs for monitoring land cover status.
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Difference in remote-sensing vegetation index values
between dry and wet conditions

The results of determining the difference in vegetation
index value between dry and wet conditions by land cover
types are presented in Fig. 3 based on the limits for the dry
and wet conditions corresponding to the threshold values
of the 25th and 75th percentiles, respectively; excluding
the blue areas, there were significant (p = 0.01) differences
in the vegetation index values between the dry and wet
conditions.
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As shown in Fig. 3, the vegetation indices under conditions
determined using the SPI were generally higher than those
determined based on the EDI. The difference was most
evident for the VHI. Based on these results, the SPI was
a good indicator of the wetness conditions and plant health.
In addition, Fig. 3 shows that PeA was most sensitive to
wetness conditions, with natural forests being less affected by
drought.

1234667 809101M1213 1234567 8910111213 12346678 910111213

EDI time scale (months)

Fig. 3 Differences between vegetation index values for dry and wet conditions, based on standardized precipitation index (SPI) and effective drought
index (EDI), where abbreviations for different land use/land change (LULC) types are provided in Table 1
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Table 1 Summary of land use andland cover types

Land use/land cover type ~ Abbreviation  Area (km?)  Area (%)
Perennial agriculture PeA 3400 28.9
Special-use forest SpF 2367 20.1
Production forest PdF 1970 16.8
Annual crops AnC 911 7.7
Protection forest PtF 868 7.4
Paddy rice PdR 508 4.3

Correlation coefficient analysis between meteorological
drought indices and vegetation indices

The Pearson’s correlation coefficient values between
vegetation indices by LULC type and the meteorological
drought index at different time scales are shown in Fig. 4.

Based on the results, the vegetation indices in coffee-
growing areas had the highest correlation coefficients, indicating

that they were the most sensitive to rainfall variability. The
crops consisting of protection forest (PtF), production forest
(PdF), annual crops (AnC) and paddy rice (PdR) all had similar
characteristics regarding the effects of rainfall variability on
their condition. Furthermore, as with this crop group, special-
use forests were affected by drought but with a different
distribution.

Both the EDI and SPI showed that the effects of rainfall
variability only had a significant impact on vegetation indices
in the period from January to May, with the most significant
impact from February to April (Fig. 3 and Fig. 4). This was
because February—April are the dry season months, when the
effect of drought can be severe if it follows a lack of rainfall at
the end of the previous rainy season.
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Fig. 4 Pearson’s correlation coefficient for standardized precipitation index (SPI) and effective drought index (EDI) by land use/land cover type and

drought index on time scales from 1 mth to 13 mth, where gray areas indicate p < 0.01
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In addition, the correlation coefficient was usually high
from February to April for the VCI, while it was usually high
in April and May for the TCI. This may have been be related
to: 1) the end of the dry season from February to April; 2) the
high temperature base in April and May (Fig. 5b), due to the
sun passing through its zenith; and 3) the effects of the lack of
rainfall at the end of the previous year’s rainy season on the
land cover at the end of the dry season in the following year.

700 (GYRR (B)

600 T
— | 26 T T
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2 m |BgT11D

100 BT & 09T

olad T I A
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Fig. 5 Climatic data for Serepok basin region: (A) precipitation; (B)
temperature, where the horizontal line within each box indicates the
median, while the upper and lower edges of the box represent the 75" and
25" percentiles, respectively, and the upper and lower ends of the whiskers
represent the maximum and minimum values

Compared to the VCI and the TCI, the VHI had a better
relationship with both the EDI and the SPI. In addition, the
VHI reflected the impact of drought on vegetation over a longer
period (from February to May). Therefore, the VHI was the
best choice among these vegetation indices for assessing the
vegetation health caused by rainfall variability. In addition,
Van Viet & Thuy (2023) reported that coffee yields in this area
had a better relationship with the VHI compared to the VCI and
the TCI, supporting the choice of the VHI.

A comparative analysis of Fig. 3 and Fig. 4 revealed notable
similarities. Specifically, similar results were produced from
using correlation analysis and difference analysis according
to wet and dry phases in selecting remote sensing indices.
The correlation analysis used the complete dataset, while the

(A) (B)
100 . 100 .

80 . . 80

60 60

VHI
VHI

40 40

¢ o
20 L Y= 11125+ 4657 20 y=1481x +45.43

=049 : r=0.70

-2 -1 0 1 2 -2 -1 0 1 2
SPI1 SPI5

Fig. 6 Correlation coefficients (r) for vegetation health index (VHI) on
perennial agriculture area with: (A) standardized precipitation index (SPI)
based on 1 mth data (SPI1); (B) SPI based on 5 mth data (SPI5)

phase analysis used only a part of the dataset. Therefore, the
reliability of the correlation analysis would be expected to be
better.

The most suitable meteorological drought index and its
time scale for monitoring crop conditions in this area were
determined using analysis of correlation coefficients between
the drought and vegetation indices from February to May,
when they had the strongest relationship. With these months,
the analyzed series had a length of 4 (months) x 23 (years) =
92. Fig. 6 illustrates the relationship between the VHI with the
SPI based on 1 mth data (SPI1) and the SPI based on 5 mth data
(SPIS). Fig. 7 summarizes the correlation coefficients between
vegetation indices of some LULC types with the SPI and the
EDI. Due to the similar characteristics of the LULC types, only
the data for PeA and AnC are presented.

According to Fig. 7, the SPI had a higher correlation
coefficient and a more pronounced peak than the EDI. Although
the difference in correlation coefficients was not significant,
the SPI was still a better choice than the EDI. Notably, SP16
had the highest correlation, indicating that SPI6 was the best
choice for assessing the impact of meteorological drought on
vegetation conditions, which aligned with other studies in this
basin regarding the effects of drought(Sam et al., 2019; Tram
et al., 2021). Since the vegetation indices used for analysis
were from February to May, SPI6 in this case was calculated
from the rainfall starting in September, as the month with
the highest rainfall (Fig. 5A), to May in the following year.
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Fig. 7 Correlation coefficients (r) between vegetation indices (VHI, VCI,
TCI) in perennial agriculture (PeA) and annual crop (AnC) areas and
meteorological drought indices (SPI, EDI) (p = 0.01)
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The vegetation indices for February and March were both
related to rainfall from September to November. Since rainfall
from December to March was not substantial, the vegetation
indices for April and May were related to the rainfall in
these two months. Similarly, Fig. 4 and Fig. 7 showed that
the relationship between vegetation indices with an increase
in the meteorological drought index, in the order TCI, VCI,
VHI. Thus, the pair of VHI and SP16 was the most suitable for
drought monitoring in this area.

The results from determining the correlation coefficient
between the VHI and SPI6 in the drought-sensitive period from
February to May by grid cells are shown in Fig. 8A. The results
from overlaying this with the LULC map (Fig. 8B) showed that
the correlation coefficient was often low outside the coffee-
growing area and high within. The mean and SD values of the
correlation coefficients for the main LULC types are shown in
Table 2.

Comparing the correlation coefficient values in Table 2
were quite low, compared to the values in Figs. 7A and 7CF for
SPI6, due to the difference in the input data in the calculation
of the correlation coefficient. In particular, the results in
Fig. 7 were calculated based on the average data for each LULC,
while the results in Table 2 were based on the calculation
using each grid cell. Due to the small area of a grid cell, the
associated data were often unstable, which resulted in a low
correlation coefficient.

According to Table 2, the degree of impact of drought on
VHI increased in the order special-use forest (SpF), PtF, PdF,
PdR, AnC, PeA. The first group (SpF, PtF and PdF) had a low
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correlation with the SPI. This group contains woody trees with
well-developed roots and high coverage, so they were less
affected by drought. In this group, SpF was the primary forest
with the highest coverage, as well as being the least affected by
drought. The low SD value (Table 2) indicated that the spatial
impact of drought on SpF was quite uniform.

The remaining group (PdR, AnC and PeA), was sensitive to
drought because each member involved water-loving crops with
short roots. PeA in this area included coffee, cashew, pepper
and Macca, with robusta coffee being the main crop. Coffee
is a water-loving crop and is sensitive to high temperatures.
Often, drought is associated with high temperatures, which
makes coffee more susceptible to adverse drought impacts.
AnC in this area included corn, cassava, vegetables, soybeans,
peanuts, sweet potatoes and sugarcane. While some of these
crops have better drought tolerance than PeA, overall there was
not much difference. PdR was the main food crop in this area.
It was given priority care and was also often located in places
with convenient water sources. Therefore, compared to PeA
and AnC, it was less affected by drought.

Table 2 Summary statistics of Pearson’s correlation coefficients (r)
between vegetation health index and standardized precipitation index by
land use land cover type (p = 0.01)

Land use land cover type Abbreviation Mean SD
Special-use forest SpF 0.31 0.06
Protection forest PtF 0.36 0.1
Production forest PdF 0.39 0.12
Paddy rice PdR 0.44 0.11
Annual crops AnC 0.46 0.13
Perennial agriculture PeA 0.49 0.11
(B)
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Fig. 8 (A) Correlation coefficient (r) between SPI based on 6 mth data (SP16) and VHI during the period from February to May (p = 0.01); (B) spatial

distribution of main land use land cover types (defined in Table 1)
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Relationship between coffee yield and meteorological drought
indices

According to Table 2 and Fig. 8, the vegetation index in
the coffee-growing areas was the most sensitive to rainfall
fluctuations. In other words, droughts significantly affected
the coffee yield. The relationship between coffee yield and
each meteorological drought index was determined based on
the multiple correlation coefficient. The multiple correlation
coefficient was determined for different time scales of the
meteorological drought indices and the time at which it is taken
before harvest (the lag time). In addition, to increasing the
reliability of the analysis, the data for calculating the multiple
correlation coefficient was connected between districts to
create a longer series. Fig. 9A illustrates the preparation of data
for calculating the multiple correlation coefficient with SPI3 at
a lag time of 10 months (SPI3 ).

The results of calculating the multiple correlation
coefficient (R) between coffee yield, the time variable and
the meteorological drought indices (SPI and EDI) are shown
in Figs. 9B and 9C, respectively. Based on these results, the
notable characteristics were: 1) the SPI had a higher correlation
coefficient than EDI; 2) the SPI at a time scale of 5 mth and
a lag time of 9 mth (SPI5,) and the EDI at a time scale of 6
mth and a lag time of 9 mth (EDI6 ) had the highest correlation
coefficient. The difference in the time scales of the SPI and
the EDI for the highest correlation coefficient was due to the
difference in the way these indices were calculated.

Because coffee was harvested in October, SPI5 , was
calculated from the precipitation from September to January
in the year of harvest, while EDI6, was calculated based on

the precipitation from August to January. These results showed
that precipitation from the middle of the rainy season to the
beginning of the dry season was an important factor contributing
to the coffee yield. According to Fig. 9B, the highest multiple
correlation coefficient did not differ significantly between
SPI3 ,and SPIS ,, indicating that the rainfall from November to
January in the harvest year played the most important role, with
the rainfall from September and October of the previous year
having a lower impact on the yield. The average rainfall during
these three months was only 166 mm and accounted for 7.2%
of annual rainfall (Fig. 5A); nonetheless, it determined the
soil moisture condition and the ability to irrigate coffee during
these months, as well as the following dry months. The analysis
of the multiple correlation coefficient between coffee yield, the
time variable and SPI1 or EDI1 showed that this coefficient
(significant at the 0.01 level), decreased in the order November,
October, September, December of the previous year and then
January of the harvest year (Fig. 10). Thus, November rainfall
was the most important for coffee yield.
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Fig. 10 Multiple correlation coefficient (R) between standardized coffee
yield, time variable and SPI based on 1 mth data (SPI1) or EDI based on 1
mth data (EDI1) taken from previous September to January of harvest year
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From the above results, SPI5 ,may be prioritized to analyze
the impact of drought on coffee productivity in this area.
Because SPI5, had a positive (and quite high) correlation
coefficient with crop yield, a lack of rainfall during the period
from September to January may seriously affect the coffee
yield. These findings were quite consistent with the study by
Viet and Thuy (2023), which used vegetation health indices to
forecast the coffee yield in this region.

Relationship between winter-spring rice yield and
meteorological drought indices

The Srepok River basin has two main rice seasons (winter-
spring and summer-autumn). Since only the winter-spring
season was significantly affected by drought, the analysis
below has focused on this season. Usually, the winter-spring
rice season in the Srepok River basin begins in early December
and ends in late March. Similar to coffee, the multiple
correlation coefficient between rice yield, the time variable and
meteorological drought indices was constructed to analyze the
effects of drought on rice yield. Drought indices at different
time scales were taken from 1 mth to a few months before
harvest. The results, which were significant at the 0.01 level,
are shown in Fig. 11.

A comparison of Figs. 7a, 7c and Fig. 4 showed that the role
of meteorological drought indices for rice and coffee was similar.
In addition, SPIS had the highest multiple correlation coefficient
when it was taken 3 mth before harvest (SPIS ), indicating that
rainfall from August to December had the best relationship with
the yield of winter-spring rice. Because winter-spring rice was
harvested in March, SPIS ; related to the rainfall from August
to January. This period coincided with the period when the
coffee yield was readily affected by drought (from September
to January), as mentioned above. These findings were consistent
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with other studies conducted in the Mekong Delta, Vietnam and
the Eastern Indian state of Odisha, which reported similar results
(Raja et al., 2014; Lavane et al., 2023).

It can be seen that rainfall in the period from September to
January was closely related to the yield of both coffee and rice.
The total rainfall in the winter-spring rice season in this basin
averaged about 240 mm, which was only 50% of the reference
evaporation and much lower than the water requirement of rice.
To meet the water requirement of rice, the remaining water was
taken from the surface water that was stored during the rainy
season, especially from September to the beginning of the dry
season.

Overall, the results revealed that: 1) the EDI was not
a priority option for monitoring rice and coffee yields; 2)
SPI5 had the highest correlation coefficient with coffee and
winter-spring rice; and 3) rainfall from the middle of the rainy
season to the beginning of the dry season was decisive in
achieving good yields of coffee and winter-spring rice.

Conclusion

Suitable meteorological drought and vegetation indices
were identified for monitoring drought impacts in the Srepok
River basin. Both statistical analyses of dry-wet phases
and correlation analyses demonstrated that rainfall deficits
significantly affected vegetation conditions and crop yields,
leading to the assessment of their relationships and performance.

Of the meteorological drought indices, the SPI had stronger
correlations with vegetation indices, coffee yield and winter-
spring rice yield than the EDI, making the former a better
choice for drought monitoring and yield prediction. Among the
vegetation indices, the VHI performed best, highlighting its
suitability for drought assessment.
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Fig. 11 Multiple correlation coefficients (R) between normalized rice yield, time variable and (A) the standardized precipitation index (SPI); (B)

effective drought index (EDI)
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Regarding time scales, SP16 showed a strong relationship
with the VHI from February to May, confirming this pair as
optimal for drought monitoring. The period from February to
early May was most affected by drought, influenced by rainfall
variations from the previous September, especially between
February and April.

The impact of drought on the VHI increased in the order
SpF, PtF, PdF, PdR, AnC, PeA, with PeA being most sensitive
to rainfall fluctuations, making it a key indicator for drought
assessment.

For coffee yield, SPI5 at 9 mth before harvest had the

highest correlation, emphasizing rainfall from September to
January—especially in November and October—as critical
factors. Similarly, for the winter-spring rice yield, SPI5 at 3 mth
before harvest was most effective, confirming its suitability for
forecasting yields of both perennial and annual crops.
This study had some limitations due to the small number of
vegetation and meteorological drought indices used in the
analysis. Other indices need to be considered for inclusion in
further studies.
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