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Abstract

For bipartite graphs G,,G,, the bipartite Ramsey number br(G,,G,) is the smallest integer b
such that any subgraph G of the complete bipartite graph K , either G contains
a copy of G, or its complement relative to Ky, contains a copy of G, . We obtained lower bounds

of br(K,,:;K, ) for 6<n<10.
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1. Introduction

For a simple graph G with vertex set V(G) and edge set E(G). Let K, be a complete
bipartite graph with order m+n and size MN whose vertices can be partitioned into V, and V,,
[\/1| =m and |V2| =N respectively.

For convenience, let V(K )=V, LV, where V, ={u, [1<i<m}, V, :{Vj [1<j< n} ,
and E(K )= {uivj [1<i<m,1<j< n} . The neighborhood of a vertex VeV (G) is denoted by
N()={ueV(G)|ueEG)}.

*Corresponding author: ~ E-mail: numai_6060@hotmail.com

154



Current Applied Science and Technology Vol. 17 No. 2 Jul.-Dec. 2017

For bipartite graphs G,,G,, the bipartite Ramsey number br(G,,G,) is the smallest
integer b such that any subgraph G of the complete bipartite graph K, either G contains a
copy of G, or its complement relative to K, contains a copy of G, . The determination of exact

values of bipartite Ramsey numbers is very difficult. Beineke and Schwenk [1] defined the
bipartite Ramsey numbers and proved the following results :

br(K,,;K,,)=5,br(K,;K,,) =13, br(K,;;K,;) =17

and br(K

In Longani [2] proved that
br(K, ;K,,)=2n-1,br(K,,;K,,)=5 and br(K,;;K,;) =9, br(K,;;K,;)>15.

Hattingh and Henning [3] showed that
br(szz; K3!3) =9 and bl’(szz; K4’4) =14.

In Carnielli and Carmelo [4] proved that  br(K,,;K, )=n+q for therange q* —q+1<n<g’,

;Ki)=2n-1,br(K, ;K, )<4n-3,br(K, ;K, )<8n-5.

1,n> 2.n° 3,n°

where q is a prime power.

Goddard et al. [5] showed that
16 <br(K,,;K;5) <19 and br(K,,;K ) <25.

In 2011, Rui and Yongqi [6] proved that
br(K,,;C;)=5 and br(K,,;C, y=m+1 for m>4.

In 2016, Collins et al. [7], computed the smallest previously unknown bipartite Ramsey number,
br(K,,;K;5) =17 and proved that the lower bound 16 <br(K,,;K;;).

Our aims in the present paper are to obtain some new lower bounds of bipartite Ramsey
numbers br(K, ;K ), br(K, ;K ), br(K,,;Ky), br(K, ,;K,,), and br(K, ;K ,)

2. Lower Bounds of Some Bipartite Ramsey Numbers br(K, ;K )

In this section, we show the table of extremal graph that represent lower bound br(K,,; K ) and
establishes the figure of graph that contains no red K, , and blue K, ,. Moreover, we represent the
lower bound of bipartite Ramsey numbers br(K, ,;K ) by adjacency matrix for §<n<10.
Theorem 2.1. br(K, ;K ) >18.

Proof. To show that br(K,,;K,,)>17, consider the relationship between two proven ways, by
construct a bipartite graph G =(V, UV,,E) with |V1 (G)| = l\/2 (G)| =17 and each red edge joins
U € V(G) to v; €V,(G) . where j=i,i+1,i+3 and i+13 (modulo 17) for 1<i<17 as follows.
Let V,(K;;;,) ={U;,U,,...,u;,} and V,(K,;;;)={V,,V,,...,v;;} denote the partition sets of vertices
of K;;,,. The 2-coloring of the edges of K, ; using the colors red (R) and blue (B) shown in
Table 1 contains no red K, , and blue K. Thus br(K,,; K, )>18.
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Table 1. A graph showing br(K, ,;K ) >17

v] 0

v12

V13

Vig

vlS

vl()

vl7

Theorem 2.2. br(K,,;K,,)>21.

(V, UV,,E) with 40

Proof. To show that br(K,,;K;,)>20, consider a bipartite graph G

vertices in Figure 1.

Figure 1. Bipartite graph on 40 vertices without K, ,
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Let white vertices be vertices in V, and black vertices be vertices inV, . Then each edge joins u,

to V;,Vi,;,V,,; and Vv, (modulo 20) for 1<i<20 as shown in Figure 1. We can verify that the
graph in Figure 1 does not contain K, ,. Also, we can verify that the complement of the graph in
Figure 1 does not contain K, . So, we conclude that there is neither K,, as a subgraph of G

nor K, as a subgraph of its complement relative to K, ,, . Therefore, the theorem is proved.

Theorem 2.3. br(K,,; K ) >26.
Proof. Let H, be a bipartite graph with 50 vertices and H, be complement of H, relative to
Kys.,5 - We will show that br(K, ,;Kg) >25 by representing the graph H, and H, in the forms
of adjacency matrices, A(H,) and A(H,).

We construct a graph H, with |V1(H1)| = [\/2(H1)| =25and E(H)) = {uivj lj= kmodZS}
vk e{i,i+1,i+5,i+17,i+23} and 1<i, j<25.Then

0 M, 0 M,

AH) = M and A(H,)= MT o
1 2

where

e e = = e e = = e S === R e R )
(=l R = = = R e = R === R e R e R )
O 00 - 00000 —~,0 =~ 000 —~0 0000 o oCQ
S O = O OO0 O o0 O = = 000 =00 oo oo o o o
S ) O O 00 O - O = = O 00 -0 o000 oo oo o oo
- 0 0 00 Q0 =0 = = 0 00 - 00000 Qo0 C o oCQ
S ©C OO0 O = O = = O 0O 0O = O 0O o0 0 o0 oo o0 o o o =
(= = =R R R = I = =l e = =l = i i R e R
O 00— 0O = = 0 00~ 00000000 Qo0 0C —o 0
S O = O = = O O O = O O 0O 0 O o0 o0 o o0 o o0 =0 o O
(= = = =L =R = R = e R R R P O = =l = R R i =
-0 = - 0O 0 0 - 0 0000000000 —~0 0o oCQ
S = = O O O = O O 0 O O 0 0 o0 o0 0 o0 =0 0o o o =
L == == L = =R = = I = =l = = = e e e =
- 0 0O 0O~ 0O 00 00000000 —~0 0000 — o —~

O OO0~ 0O 0000000000~ 00000 = O = —
= i — ==l = e R e e e e = T~ == = e R e ]
(= = == = e = = = = = == e T e ]
- 0 0 0 0 0000000 ~0 0000~ = —~,00C0Q
=R =l R e I = R e R e e R R
(==l ==l R R L = R R R == R R ]
O 0 000 0000~ 00000~ ——~000Q —o o
e e = = L = e T = e S T ==l = L R e i )
(=Rl = =R R R e = L = R R T R R e = 4
O 0 00 00—~ 0 0000 ~,0O =000 —~0 0 oo CQ

and
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Figure 2. Matrices M, and M, show that a lower bound of bipartite Ramsey number

br(K, ,; K, ,) > 28

M, =
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Figure 3. Matrices M, and M, show that a lower bound of bipartite Ramsey number

br(K, 1K, ) >31

Using the same technique, that we use in the proof of Theorem 2.3, we can obtain the

following results.

Theorem 2.4. br(K,,;K,,)>29

and

Theorem 2.5. br(K, ,;K,;,,) > 32

We can establish lower bounds of bipartite Ramsey numbers and as shown in Figure 2

and Figure 3, respectively.
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