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Abstract 
 
For bipartite graphs 1 2,G G , the bipartite Ramsey number 1 2( , )br G G  is the smallest integer b  

such that any subgraph G  of the complete bipartite graph ,b bK , either G  contains  

a copy of 1G  or its complement relative to ,b bK  contains a copy of 2G . We obtained lower bounds 

of 2,2 ,( ; )n nbr K K  for 6 10 n . 

 
Keywords: Bipartite Ramsey numbers, lower bounds, graphs. 

 
 

1. Introduction 
 
For a simple graph G  with vertex set ( )V G  and edge set ( )E G .  Let ,m nK  be a complete 

bipartite graph with order m n  and size mn  whose vertices can be partitioned into 1V  and 2V , 

1 V m  and 2 V n  respectively.  

 For convenience, let , 1 2( )  m nV K V V  where  1 |1  iV u i m ,  2 |1  jV v j n , 

and  ,( ) |1 ,1    m n i jE K u v i m j n . The neighborhood of a vertex ( )v V G  is denoted by 

 ( ) ( ) | ( )  N v u V G uv E G . 
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 For bipartite graphs 1 2,G G , the bipartite Ramsey number 1 2( , )br G G  is the smallest 

integer b  such that any subgraph G  of the complete bipartite graph ,b bK , either G  contains a 

copy of 1G  or its complement relative to ,b bK  contains a copy of 2G . The determination of exact 

values of bipartite Ramsey numbers is very difficult. Beineke and Schwenk [1] defined the 
bipartite Ramsey numbers and proved the following results :  

                  2,2 2,2 2,4 2,4 3,3 3,3( ; ) 5, ( ; ) 13, ( ; ) 17br K K br K K br K K    

and                             1, 1, 2, 2, 3, 3,( ; ) 2 1, ( ; ) 4 3, ( ; ) 8 5n n n n n nbr K K n br K K n br K K n      . 

In Longani [2] proved that 

1, 1, 2,2 2,2( ; ) 2 1, ( ; ) 5n nbr K K n br K K            and        2,3 2,3 3,3 3,3( ; ) 9, ( ; ) 15br K K br K K  . 

Hattingh and Henning [3] showed that 
               2,2 3,3( ; ) 9br K K        and      2,2 4,4( ; ) 14br K K  . 

In Carnielli and Carmelo [4] proved that     2,2 1,( ; )nbr K K n q     for the range 2 21q q n q    , 

where q  is a prime power. 

Goddard et al. [5] showed that 
      2,2 5,516 ( ; ) 19br K K    and 2,2 6,6( ; ) 25br K K  . 

In 2011, Rui and Yongqi [6] proved that 

2,2 6( ; ) 5br K C   and 2,2 2( ; ) 1mbr K C m   for 4m  . 

In 2016, Collins et al. [7], computed the smallest previously unknown bipartite Ramsey number, 

2,2 5,5( ; ) 17br K K   and proved that the lower bound 2,2 5,516 ( ; )br K K . 

Our aims in the present paper are to obtain some new lower bounds of bipartite Ramsey 
numbers 2,2 6,6 2,2 7,7 2,2 8,8 2,2 9,9( ; ), ( ; ), ( ; ), ( ; ),br K K br K K br K K br K K  and  2,2 10,10( ; )br K K  

 
 

2. Lower Bounds of Some Bipartite Ramsey Numbers 
2,2 ,( ; )n nbr K K  

 
In this section, we show the table of extremal graph that represent lower bound 2,2 6,6( ; )br K K  and 

establishes the figure of graph that contains no red 2,2K  and blue 7,7K . Moreover, we represent the 

lower bound of bipartite Ramsey numbers 2,2 ,( ; )n nbr K K  by adjacency matrix for 8 10n  . 

Theorem 2.1. 2,2 6,6( ; ) 18br K K  . 

Proof. To show that 2,2 6,6( ; ) 17br K K  , consider the relationship between two proven ways, by 

construct a bipartite graph  1 2 ,G V V E   with 1 2( ) ( ) 17V G V G   and each red edge joins 

1 ( )iu V G  to 2 ( )jv V G . where , 1, 3j i i i    and 13i   (modulo 17) for 1 17i   as follows. 

Let  1 17,17 1 2 17( ) , , ,V K u u u   and  2 17,17 1 2 17( ) , , ,V K v v v   denote the partition sets of vertices 

of 17,17K . The 2-coloring of the edges of 17,17K  using the colors red (R) and blue (B) shown in 

Table 1 contains no red 2,2K  and blue 6,6K . Thus 2,2 6,6( ; ) 18br K K  . 
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Table 1. A graph showing 2,2 6,6( ; ) 17br K K   
 

1u
 

2u
 

3u
 

4u
 

5u
 

6u
 

7u
 

8u
 

9u
 

10u
 

11u
 

12u
 

13u
 

14u
 

15u
 

16u
 

17u
 

1v  R B B B R B B B B B B B B B R B R 

2v  R R B B B R B B B B B B B B B R B 

3v  B R R B B B R B B B B B B B B B R 

4v  R B R R B B B R B B B B B B B B B 

5v  B R B R R B B B R B B B B B B B B 

6v  B B R B R R B B B R B B B B B B B 

7v  B B B R B R R B B B R B B B B B B 

8v  B B B B R B R R B B B R B B B B B 

9v  B B B B B R B R R B B B R B B B B 

10v  B B B B B B R B R R B B B R B B B 

11v  B B B B B B B R B R R B B B R B B 

12v  B B B B B B B B R B R R B B B R B 

13v  B B B B B B B B B R B R R B B B R 

14v  R B B B B B B B B B R B R R B B B 

15v  B R B B B B B B B B B R B R R B B 

16v  B 
 

B R B B B B B B B B B R B R R B 

17v  B B B R B B B B B B B B B R B R R 

 

Theorem 2.2. 2,2 7,7( ; ) 21br K K  . 

Proof. To show that 2,2 7,7( ; ) 20br K K  , consider a bipartite graph  1 2 ,G V V E   with 40 

vertices in Figure 1.  

 
Figure 1. Bipartite graph on 40 vertices without 2,2K  
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Let white vertices be vertices in 1V  and black vertices be vertices in 2V . Then each edge joins 1u  

to 1 1 3, ,i iv v v   and 16iv   (modulo 20) for 1 20i   as shown in Figure 1. We can verify that the 

graph in Figure 1 does not contain 2,2K . Also, we can verify that the complement of the graph in 

Figure 1 does not  contain 7,7K . So, we conclude that  there is neither 2,2K  as a subgraph of G  

nor 7,7K  as a subgraph of its complement relative to 20,20K . Therefore, the theorem is proved. 

 
Theorem 2.3. 2,2 8,8( ; ) 26br K K  . 

Proof. Let 1H  be a bipartite graph with 50 vertices and 2H  be complement of 1H  relative to

25,25K . We will show that 2,2 8,8( ; ) 25br K K   by representing the graph 1H  and 2H  in the forms 

of adjacency matrices, 1( )A H  and 2( )A H . 

 We construct a graph 1H  with 1 1 2 1( ) ( ) 25V H V H   and  1( ) | mod 25i jE H u v j k 

 , 1, 5, 17, 23k i i i i i       and 1 , 25i j  . Then 

1
1

1

0
( )

0T

M
A H

M

 
  
 

   and   2
2

2

0
( )

0T

M
A H

M

 
  
 

 

 
where 
 

1

1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1

1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0

0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0

M 

0 1 0

0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1

1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

 
and 
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2

0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0

0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1

1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0

0 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1

1 0 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1

1 1 0 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1

1 1 1 0 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1

1 1 1 1 0 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1

M 

1 0 1

1 1 1 1 1 0 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 0 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1

1 0 1 1 1 1 1 0 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1

1 1 0 1 1 1 1 1 0 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1

1 1 1 0 1 1 1 1 1 0 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1

1 1 1 1 0 1 1 1 1 1 0 1 0 0 1 1 1 0 1 1 1 1 1 1 1

1 1 1 1 1 0 1 1 1 1 1 0 1 0 0 1 1 1 0 1 1 1 1 1 1

1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 0 1 1 1 0 1 1 1 1 1

1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 0 1 1 1 0 1 1 1 1

1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 0 1 1 1 0 1 1 1

1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 0 1 1 1 0 1 1

1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 0 1 1 1 0 1

1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 0 1 1 1 0

0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 0 1 1 1

1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 0 1 1

1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 0 1

1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

 
From 1M , 2M  , 1( )A H  , and 2( )A H  above, it can be verified that 1H  contains no monochromatic

2,2K , and 2H  contains no monochromatic 8,8K  . Thus 2,2 8,8( ; ) 26br K K  . 

 

1

1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1

1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0

0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0

M 

0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1





























 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


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2

0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0

0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1

1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0

0 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1

1 0 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1

1 1 0 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1

1 1 1 0 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1

1

M 

1 1 1 0 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1

1 1 1 1 1 0 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 0 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 1 1 1 1 1 0 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 0 1 1 1 1 1 0 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 0 1 1 1 1 1 0 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 0 1 1 1 1 1 0 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 0 1 1 1 1 1 0 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 0 1 1 1 0 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 0 1 1 1 0 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 0 1 1 1 0 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 0 1 1 1 0 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 0 1 1 1 0 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 0 1 1 1 0 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 0 1 1 1 0 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 0 1 1 1 0

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 0 1 1 1

1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 0 1 1

1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 0 1

1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 0





























 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
Figure 2. Matrices 1M  and 2M  show that a lower bound of bipartite Ramsey number 

2,2 9,9( ; ) 28br K K   

1

1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1

1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0

0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 1 0 1 1 0 0 0 1

M 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1
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2

0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0

0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1

1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0

0 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1

1 0 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1

1 1 0 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1

1 1 1 0 1 0 0 1 1 1 0

M 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1

1 1 1 1 0 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1

1 1 1 1 1 0 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 0 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 1 1 1 1 1 0 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 0 1 1 1 1 1 0 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 0 1 1 1 1 1 0 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 0 1 1 1 1 1 0 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 0 1 1 1 1 1 0 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 0 1 1 1 0 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 0 1 1 1 0 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 0 1 1 1 0 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 0 1 1 1 0 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 0 1 1 1 0 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 0 1 1 1 0 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 0 1 1 1 0 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 0 1 1 1 0

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 0 1 1 1

1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 0 1 1

1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 0 1

1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 0
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Figure 3. Matrices 1M  and 2M  show that a lower bound of bipartite Ramsey number 

2,2 10,10( ; ) 31br K K   

 
 Using the same technique, that we use in the proof of Theorem 2.3, we can obtain the 
following results. 
 
Theorem 2.4. 2,2 9,9( ; ) 29br K K   

and 

Theorem 2.5. 2,2 10,10( ; ) 32br K K   

 We can establish lower bounds of bipartite Ramsey numbers and as shown in Figure 2 
and Figure 3, respectively. 
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