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Abstract

The genetics of populations with discrete generations were studied in this paper. We explored the
change of the relative frequencies of genes based on the Hardy-Weinberg law. The difference
equations were formulated for describing their changes. The stability theorem was used for
analysis. The numerical simulations were found with the different situations.
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1. Introduction

Population genetics is the study of variation of genetics within population and with the
examination and modelling of changes in the frequencies of genes and alleles in populations over
space and time. Many genes found within a population, will occur in a number of different forms
(or alleles). Difference equations were used for investigating and predicting the occurrence of
specific alleles or combinations of alleles in populations, based on developments in the molecular
understanding of genetics [1]. The development of population genetics with mathematical models
was occurred long time ago. The early phase was discovered by Fisher, Haldane, and Wright.
Their theories had relevant with medical genetics and evolutionary biology. They are worth for
illustrating the translation of population genetics to mathematical models. The stability of
equilibrium points was also relevant in their studies [2]. The gene pool of the population is the
collection of all alleles of all genes found within a freely interbreeding population. Each member
of the population receives its alleles from other members of the gene pool (its parent) and passes
them on to other members of the gene pool (its offspring). We studied the variation in alleles and
genotypes within the gene pool and how this variation changes from one generation to the next
generation. The population size, mutation, genetic drift, natural selection, environmental diversity,
migration and non-randommating patterns were influence to the genetic diversity within a gene
pool [3]. The genetics problem is important because it can help human to face with current
environmental variability as same as to reduce potentially effects of closed relative breeding. In
1999, Chen et al. [4] presented a differential equation model for gene expression and analyzed
their model. In 2014, Sargolzaie and Miri-Moghaddam [5] analyzed regression equations
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of differential diagnosis of f-thalassemia trait and iron deficiency anemia in Southeast Iran. In the
same year (2014), Sirachainan et al. [6] formulated the mathematical formula for differentiating
Thalassemia trait and iron deficiency anemia in school age children. In this study, the population
was supposed to satisfy the Hardy—Weinberg equilibrium model theorem, this stated that allele and
genotype frequencies in a population remained constant from generation to generation in the
absence of other evolutionary influences. The difference equations were used to explain this
phenomena because it could predict the frequency of human genotype for the next generation.

2. Materials and Methods

In this study, there were two alleles, a and A. The population can pass from one generation to the
next. Thus there are three combinations: AA, aa and aA. AA and aa were called homozygous. aA
were called heterozygous. If mating is random and all genotypes were equally fit (had an equal
probability of surviving to produce offspring). The gene frequencies did not change. This
corresponded to the Hardy-Weinberg law. Let N be the size of population, p as the frequency of
allele A and q as the frequency of allele a [7].

p = total size of A alleles / 2N

q = total size of a alleles / 2N

where p + q = 1. The equations based on the following assumptions [8-13]:

i)  There were no mutations.

i) Mating was random.

iii) There was no variation of the number of progeny from parents of different

genotypes.

iv) Progeny had equally likely to survive.

Let x be the frequency of AA genotype,

y be the frequency of aA genotype,

z be the frequency of aa genotype then x +y + z = 1. It can be seen that

p= x+12y

q= 12y+ z

Note that aA was equivalent to Aa.

The frequencies of each parent for particular genotypes were shown in Table 1.

Table 1. Mating table

Father Mother Frequencies

AA AA x?
AA Aa Xy
AA aa XZ

Aa AA yX

Aa Aa y?

Aa aa yz

aa AA zZX

aa Aa zy

aa aa 72

When there was the mating between father and mother, there were four possible
combinations. Cases of heterozygous parents and homozygous parents were shown in Figure 1.
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Figure 1. Offspring diagram

(a) Offspring of heterozygous parents (AaxAa)
(b) Offspring of homozygous parents (AAXAA)

The offspring table was shown in Table 2.

Table 2. Offspring table

Type of Offspring Total frequencies
Parents AA aA aa
AAXAA x2 0 0 x2
AAxAa Xy Xy 0 2xy
AAxaa 0 2xz 0 2xz
AaxAa v*/4 y*/2 v*/4 y?
Aaxaa 0 yz yz 2yz
aaxaa 0 0 7 72
x*+ xy Xy+2xz y24+ xH2xy
+ y2/4 +y¥ 2+ yz yz+z? +2xz+y?
+2yz+7?

The total frequency of offspring for each pair of parent can be shown in Table 2. They obtained
from the possible combinations as shown in Figure 1. The n-th generation frequencies of each
genotype (AA, aA and aa) were derived from the total frequencies of genotype for each pair of
parent as shown in Table 2. The n-th generation frequency of each genotype can be shown in the

form of difference equations (1):
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2 2
Xne1 = Xn T XnpYn+Yn/4
2
Ynel = XnYn +2XnZn+Yn /24 Yniy (1
2 2
Zny1 = Yn/4+YnZnt12;

By using standard dynamical modelling method, we need to find equilibrium points and determine
their stabilities [5]. Equilibrium points (x*,y*,z*) of our equations (1) were found by setting
Xnel =Xn = X*Yne1 = Yn=Y* 24 =2, =2% into equations (1), then the possible non-zero

equilibrium points were (0,0,1), (1,0,0), (x|, Y;,z;)and (x5,Y,,z,)where
X = %(1—«/1 —2v -v),
7, = %(1+\/1—2v -v),

*
Y1 =v,

X =%(1+\/1—2v -v),
z =%(1—\/1—2v—v),

*
Yo =V

2

and v was any real number.
The stability of each equilibrium point can be determined by checking the modulus of
eigenvalues. If the modulus of each eigenvalue is not greater than 1, then that equilibrium point is

stable [5].

Let
Xne1 = F(Xns Yns2Zn)
Yna = g(xn: Yn> Zn)
Znt1 = N(Xn, YnsZn)

and

fX(X*’ y*,Z*) fy(X*a y*’Z*) fZ(X*’ y*,Z*)
D=| gyx(X*,y*,2%) gy (X*,y*,z%) g,(X*,y*,z*) |, then equilibrium point (x*,y*,z*) is stable if
hX(X*a y*,Z*) hy(X*a y*aZ*) hZ(X*’ y*,Z*)

each eigenvalue (A) has modulus not greater than 1. Each eigenvalue can be calculated from

solving
Det(D-Al)=0.
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From equations (1), we can have
2X*+y*
D=| y*+2z*
0

XE+y*/2 0
X*4y*4z* 2xXFLy* |
y*/2+z* y*42z%*

We check the modulus of eigenvalues for each equilibrium point which was defined in equations
(2), we found that all eigenvalues had modulus not greater than 1 as we can see in Table 3.
Therefore each equilibrium point was stable.

Table 3. Eigenvalues of each equilibrium point.

Equilibrium
point (ep.)

Eigenvalues (A, (1=1,2,3)

First ep.

A =-1,A,=0,A,=1
0.0.1) 1 2 3

Second ep.

A=-1,A,=0, A,=1
(1,0,0) oo s

Third ep.

* * *
(X1,Y1-21)

A =V1-2v, ?\.2:—%(\/1+2V +/1-2v), 7\.3:%(\/1+2V—\/1—2V)

Fourth ep.

* * *
(x2,Y2,23)

A= -12v, k2=-%(\/1+2v —J1-2v), k3=%(\/1+2v +4/1-2v)

3. Results and Discussion

In this section, we simulated our difference equations (1) by using numerical method with the
difference initial conditions. The program Mathematica (Wolfram Research, Champaign, IL) was
used for simulating the numerical results. The initial conditions were randomly selected and it can
be separated into 5 cases. The numerical results were shown in Figures 2-6.
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Figure 2. Case 1: numerical simulations from our difference equations (1) with x(0) = 0.10,

% % *
y(0) = 0.50,z(0) = 0.40. The solutions converged to (X1, Y1 ,Z] ),

56



KMITL Sci. Tech. J. Vol. 16 No. 2 Jul.-Dec. 2016

where = 0.1225, =0.455 and = 0.4225
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Figure 3. Case 2: numerical simulations from our difference equations (1) with x(0) = 0.50, y(0) =

* * k * *
0.10, z(0) = 0.40. The solutions converged to (X5, Y2,Z7 ), where X»=0.3025, Y, =0.495 and
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Figure 4. Case 3: numerical simulations from our difference equations (1) with x(0) = 0.40,

* * * *
y(0) = 0.10, z(0) = 0.50.The solutions converged to (X|, Yj ,Z] ), where X| =

* *
0.2025, y; =0.495 and Z| =0.3025
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Figure 5. Case 4: numerical simulations from our difference equations (1) with x(0) =0,
y(0) =0, z(0) = 1.The solutions converged to (0,0,1)
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Figure 6. Case 5: numerical simulations from our difference equations (1) with x(0) = 1, y(0) = 0,
7(0) = 0.The solutions converged to (1,0,0)

In this paper, we applied difference equations for describing the population genetics. The
difference equations used in this study obtained from Keshet [7]. They were formed by using the
idea of neutral Wright-Fisher model [14]. It stated that the genotype frequency of generation n+1
was formed from generation n. The numerical simulations were used to support the analytical
results. The meaning of figure 2 to figure 6 can be explained as follows:

Case 1: if frequency of AA genotype, aA genotype, aa genotype of parent were 0.10, 0.50 and
0.40, respectively, then the frequencies of AA genotype, aA genotype, aa genotype for each
offspring are 0.1225, 0.455, 0.4225, respectively, as shown in figure 2. The solutions converged to
the third equilibrium point.

Case 2: if frequency of AA genotype, aA genotype, aa genotype of parent were 0.50, 0.10 and
0.40, respectively, then the frequencies of AA genotype, aA genotype, aa genotype for each
offspring are 0.3025, 0.495, 0.2025, respectively, as shown in figure 3. The solutions converged to
the fourth equilibrium point.

Case 3: if frequency of AA genotype, aA genotype, aa genotype of parent were 0.40, 0.10 and
0.50, respectively, then the frequencies of AA genotype, aA genotype, aa genotype for each
offspring are 0.2025, 0.495, 0.3025, respectively, as shown in figure 4. The solutions converged to
the third equilibrium point.

Case 4: if frequency of AA genotype, aA genotype, aa genotype of parent were 0, 0 and 1,
respectively, then the frequencies of AA genotype, aA genotype, aa genotype for each offspring
are 0, 0, 1, respectively, as shown in figure 5. The solutions converged to the first equilibrium
point.

Case 5: if frequency of AA genotype, aA genotype, aa genotype of parent were 1, 0 and O,
respectively, then the frequencies of AA genotype, aA genotype, aa genotype for each off spring
are 1, 0, 0, respectively, as shown in figure 6. The solutions converged to the second equilibrium
point.

The organism had two copies of the same allele for a gene. If it carried two copies of the
same dominant allele, it can be homozygous dominant. If it carried two copies of the same
recessive allele, it can be homozygous recessive. Heterozygous means that an organism had two
different alleles of a gene. For case 1, 2 and 3, the frequency of each genotype for offspring was
depend on the frequency of his/her parent. It can be seen that for case 4 and case 5, the frequency
of homozygous dominant for parent was 1, and then the frequency of homozygous dominant for
offspring is also 1. If the frequency of homozygous recessive for parent was 1, then the frequency
of homozygous recessive for offspring was also 1. We can see that in each case, it converged to
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the equilibrium solutions. Thus, the numerical results corresponded to the standard dynamical
modeling theorem [7].

4. Conclusions

Genetics was the science of heredity which originated in the 19th century. Using the difference
equations for population genetics, we described how organism population reproduce and
propagate various properties to their offspring. The changes in the gene pool through the
generations can be found from iterating difference equations (1) with the different initial values.

Convergence of the n-th generation frequency of each genotype (x,,¥,,z,)to either (0,0,1) or
(1,0,0) was based on the initial value (xq,yq,2o)- If (Xg,Y0,2zg) Was closer to (0,0,1), then
(Xp»Yn-Zy ) converged to the equilibrium point (0,0,1). If (x¢,yg,z¢) was closer to (1,0,0), then
(Xp»>Yn»Zy) converged to the equilibrium point (1,0,0). Based on the likelihood of mating, we can

determine the probability of a given match resulting in offspring of a given genotype. The results
of our difference equations could predict the occurrence of the frequency genotype for the next
generations.
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