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Abstract 
 
The genetics of populations with discrete generations were studied in this paper. We explored the 
change of the relative frequencies of genes based on the Hardy-Weinberg law. The difference 
equations were formulated for describing their changes. The stability theorem was used for 
analysis. The numerical simulations were found with the different situations. 
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1. Introduction 
 
Population genetics is the study of variation of genetics within population and with the 
examination and modelling of changes in the frequencies of genes and alleles in populations over 
space and time. Many genes found within a population, will occur in a number of different forms 
(or alleles). Difference equations were used for investigating and predicting the occurrence of 
specific alleles or combinations of alleles in populations, based on developments in the molecular 
understanding of genetics [1]. The development of population genetics with mathematical models 
was occurred long time ago. The early phase was discovered by Fisher, Haldane, and Wright. 
Their theories had relevant with medical genetics and evolutionary biology. They are worth for 
illustrating the translation of population genetics to mathematical models. The stability of 
equilibrium points was also relevant in their studies [2]. The gene pool of the population is the 
collection of all alleles of all genes found within a freely interbreeding population. Each member 
of the population receives its alleles from other members of the gene pool (its parent) and passes 
them on to other members of the gene pool (its offspring). We studied the variation in alleles and 
genotypes within the gene pool and how this variation changes from one generation to the next 
generation. The population size, mutation, genetic drift, natural selection, environmental diversity, 
migration and non-randommating patterns were influence to the genetic diversity within a gene 
pool [3]. The genetics problem is important because it can help human to face with current 
environmental variability as same as to reduce potentially effects of closed relative breeding. In 
1999, Chen et al. [4] presented a differential equation model for gene expression and analyzed 
their model. In 2014, Sargolzaie and Miri-Moghaddam [5] analyzed regression equations  
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of differential diagnosis of β-thalassemia trait and iron deficiency anemia in Southeast Iran. In the 
same year (2014), Sirachainan et al. [6] formulated the mathematical formula for differentiating 
Thalassemia trait and iron deficiency anemia in school age children. In this study, the population 
was supposed to satisfy the Hardy–Weinberg equilibrium model theorem, this stated that allele and 
genotype frequencies in a population remained constant from generation to generation in the 
absence of other evolutionary influences. The difference equations were used to explain this 
phenomena because it could predict the frequency of human genotype for the next generation. 

 
 

2. Materials and Methods 
 
In this study, there were two alleles, a and A. The population can pass from one generation to the 
next. Thus there are three combinations: AA, aa and aA. AA and aa were called homozygous. aA 
were called heterozygous. If mating is random and all genotypes were equally fit (had an equal 
probability of surviving to produce offspring). The gene frequencies did not change. This 
corresponded to the Hardy-Weinberg law. Let N be the size of population, p as the frequency of 
allele A and q as the frequency of allele a [7]. 
 p  =  total size of A alleles / 2N 
 q  =  total size of a alleles / 2N 
 where p + q = 1. The equations based on the following assumptions [8-13]: 

i) There were no mutations. 
ii) Mating was random. 
iii) There was no variation of the number of progeny from parents of different  

          genotypes. 
iv) Progeny had equally likely to survive. 

 Let x be the frequency of AA genotype, 
 y be the frequency of aA genotype, 

 z be the frequency of aa genotype then  x + y + z = 1. It can be seen that  
 p  =      x  + 1/2y 
 q  =   1/2y +  z. 

 Note that aA was equivalent to Aa. 
 The frequencies of each parent for particular genotypes were shown in Table 1.  

 
Table 1. Mating table 
 

Father Mother Frequencies 
AA AA x2

AA Aa xy 
AA aa xz 
Aa AA yx 
Aa Aa y2 
Aa aa yz 
aa AA zx 
aa Aa zy 
aa aa z2 

 
 When there was the mating between father and mother, there were four possible 
combinations. Cases of heterozygous parents and homozygous parents were shown in Figure 1. 
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(a) 

 
(b) 

 
Figure 1. Offspring diagram 

(a) Offspring of heterozygous parents (Aa×Aa) 
(b) Offspring of homozygous parents (AA×AA) 

 
The offspring table was shown in Table 2. 
 
Table 2. Offspring table 
 

Type of 
Parents 

Offspring Total frequencies 
AA aA aa  

AA×AA x2 0 0 x2 
AA×Aa xy xy 0 2xy 
AA×aa 0 2xz 0 2xz 
Aa×Aa y2/4 y2/2 y2/4 y2 
Aa×aa 0 yz yz 2yz 
aa×aa 0 0 z2 z2 

 x2+ xy 
+ y2/4 

xy+2xz 
+ y2/2+ yz 

y2/4+ 
yz+z2 

x2+2xy 
+2xz+y2 

+2yz+z2 
 
The total frequency of offspring for each pair of parent can be shown in Table 2. They obtained 
from the possible combinations as shown in Figure 1. The n-th generation frequencies of each 
genotype (AA, aA and aa) were derived from the total frequencies of genotype for each pair of 
parent as shown in Table 2. The n-th generation frequency of each genotype can be shown in the 
form of difference equations (1): 
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By using standard dynamical modelling method, we need to find equilibrium points and determine 
their stabilities [5]. Equilibrium points (x*,y*,z*) of our equations (1) were found by setting  
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and v was any real number. 
 The stability of each equilibrium point can be determined by checking the modulus of 
eigenvalues. If the modulus of each eigenvalue is not greater than 1, then that equilibrium point is 
stable [5].  
Let  
 

),,(1 nnnn zyxfx   

),,(1 nnnn zyxgy   

),,(1 nnnn zyxhz   

 
and 
 


















*)*,*,(*)*,*,(*)*,*,(

*)*,*,(*)*,*,(*)*,*,(

*)*,*,(*)*,*,(*)*,*,(

zyxhzyxhzyxh

zyxgzyxgzyxg

zyxfzyxfzyxf

D

zyx

zyx

zyx

, then equilibrium point *)*,*,( zyx  is stable if  

 
each eigenvalue )( has modulus not greater than 1. Each eigenvalue can be calculated from 

solving  
0)(  IDDet . 
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From equations (1), we can have 
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We check the modulus of eigenvalues for each equilibrium point which was defined in equations 
(2), we found that all eigenvalues had modulus not greater than 1 as we can see in Table 3. 
Therefore each equilibrium point was stable. 
 
Table 3. Eigenvalues of each equilibrium point. 
 

 
 

3. Results and Discussion  
 
In this section, we simulated our difference equations (1) by using numerical method with the 
difference initial conditions. The program Mathematica (Wolfram Research, Champaign, IL) was 
used for simulating the numerical results. The initial conditions were randomly selected and it can 
be separated into 5 cases. The numerical results were shown in Figures 2-6. 
 

 
 
Figure 2. Case 1: numerical simulations from our difference equations (1) with x(0) = 0.10, 

y(0) = 0.50,z(0) = 0.40.  The solutions converged to )z,,(x *
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where = 0.1225,  = 0.455 and  = 0.4225 

 
 
Figure 3. Case 2: numerical simulations from our difference equations (1) with x(0) = 0.50, y(0) = 

0.10, z(0) = 0.40. The solutions converged to )z,,(x *
2

*
2

*
2 y , where *

2x = 0.3025, *
2y = 0.495 and 

*
2z = 0.2025 

 

 
 
Figure 4. Case 3: numerical simulations from our difference equations (1) with x(0) = 0.40,  

y(0) = 0.10, z(0) = 0.50.The solutions converged to )z,,(x *
1

*
1
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1 y ,  where *

1x = 

0.2025, *
1y = 0.495 and *

1z = 0.3025 

 

 
 
Figure 5. Case 4: numerical simulations from our difference equations (1) with x(0) = 0,  
y(0) = 0, z(0) = 1.The solutions converged to (0,0,1) 
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Figure 6. Case 5: numerical simulations from our difference equations (1) with x(0) = 1, y(0) = 0, 
z(0) = 0.The solutions converged to (1,0,0) 
 
In this paper, we applied difference equations for describing the population genetics. The 
difference equations used in this study obtained from Keshet [7]. They were formed by using the 
idea of neutral Wright-Fisher model [14]. It stated that the genotype frequency of generation n+1 
was formed from generation n. The numerical simulations were used to support the analytical 
results. The meaning of figure 2 to figure 6 can be explained as follows: 
Case 1: if frequency of AA genotype, aA genotype, aa genotype of parent were 0.10, 0.50 and 
0.40, respectively, then the frequencies of AA genotype, aA genotype, aa genotype for each 
offspring are 0.1225, 0.455, 0.4225, respectively, as shown in figure 2. The solutions converged to 
the third equilibrium point. 
Case 2: if frequency of AA genotype, aA genotype, aa genotype of parent were 0.50, 0.10 and 
0.40, respectively, then the frequencies of AA genotype, aA genotype, aa genotype for each 
offspring are 0.3025, 0.495, 0.2025, respectively, as shown in figure 3. The solutions converged to 
the fourth equilibrium point. 
Case 3: if frequency of AA genotype, aA genotype, aa genotype of parent were 0.40, 0.10 and 
0.50, respectively, then the frequencies of AA genotype, aA genotype, aa genotype for each 
offspring are 0.2025, 0.495, 0.3025, respectively, as shown in figure 4. The solutions converged to 
the third equilibrium point. 
Case 4: if frequency of AA genotype, aA genotype, aa genotype of parent were 0, 0 and 1, 
respectively, then the frequencies of AA genotype, aA genotype, aa genotype for each offspring  
are 0, 0, 1, respectively, as shown in figure 5. The solutions converged to the first equilibrium 
point. 
Case 5: if frequency of AA genotype, aA genotype, aa genotype of parent were 1, 0 and 0, 
respectively, then the frequencies of AA genotype, aA genotype, aa genotype for each off spring 
are 1, 0, 0, respectively, as shown in figure 6. The solutions converged to the second equilibrium 
point.  
 The organism had two copies of the same allele for a gene. If it carried two copies of the 
same dominant allele, it can be homozygous dominant. If it carried two copies of the same 
recessive allele, it can be homozygous recessive. Heterozygous means that an organism had two 
different alleles of a gene. For case 1, 2 and 3, the frequency of each genotype for offspring was 
depend on the frequency of his/her parent. It can be seen that for case 4 and case 5, the frequency 
of homozygous dominant for parent was 1, and then the frequency of homozygous dominant for 
offspring is also 1. If the frequency of homozygous recessive for parent was 1, then the frequency 
of homozygous recessive for offspring was also 1. We can see that in each case, it converged to 
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the equilibrium solutions. Thus, the numerical results corresponded to the standard dynamical 
modeling theorem [7]. 

4. Conclusions 
 
Genetics was the science of heredity which originated in the 19th century. Using the difference 
equations for population genetics, we described how organism population reproduce and 
propagate various properties to their offspring. The changes in the gene pool through the 
generations can be found from iterating difference equations (1) with the different initial values. 

Convergence of the n-th generation frequency of each genotype )z,y,(x nnn to either (0,0,1) or 

(1,0,0) was based on the initial value )z,y,(x 000 . If )z,y,(x 000  was closer to (0,0,1), then 

)z,y,(x nnn converged to the equilibrium point (0,0,1). If )z,y,(x 000  was closer to (1,0,0), then 

)z,y,(x nnn converged to the equilibrium point (1,0,0). Based on the likelihood of mating, we can 

determine the probability of a given match resulting in offspring of a given genotype. The results 
of our difference equations could predict the occurrence of the frequency genotype for the next 
generations. 
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