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The Cut Locus of Riemannian Manifolds: a Surface of Revolution
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Abstract

This article reviews the structure theorems of the cut locus for very familiar surfaces of revolution.
Some properties of the cut locus of a point of a Riemannian manifold are also discussed.
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1. Definition of a cut point and the cut locus

Let y:[0,a] > M denote a minimal geodesic segment emanating from a point p on a complete
connected Riemannian manifold M. The end point y (a) is called a cut point of p along the
minimal geodesic segment y if any geodesic extension 7 :[0,b] — M , where b > a, of y is not
minimal anymore.

Definition 1.1 The cut locus C P of a point p is the set of all cut points of p along minimal

geodesic segments emanating from p.

It is very difficult to determine the structure of the cut locus of a point in a Riemannian
manifold. The cut locus for a smooth surface is not a graph anymore, although it was proved by
Myers in [1] and [2] that the cut locus of a point in a compact real analytic surface is a finite
graph. In fact, Gluck and Singer [3] proved that there exists a 2-sphere of revolution admitting a
cut locus with infinitely many branches. Their result implies that one cannot improve the
following Theorem 1.3 without any additional assumption.

Theorem 1.2 [3] There exists a 2-sphere of revolution with positive Gaussian curvature such that
the cut locus of a point admits an infinitely many branches.

Hebda proved in [4] that the distance function p to the cut locus of a point (in a complete
2-dimensional Riemannian manifold) is absolutely continuous where p is finite. Hence, for any
pair of cut points of a point p can be connected by a rectifiable curve in C P if the pair is in the

same connected component.
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Theorem 1.3 [4] The cut locus of a point of a complete 2-dimensional (smooth) Riemannian
manifold is a local tree, and the distance function to the cut locus is absolutely continuous where p
is finite. In particular, the cut locus has a natural interior metric.

Remark 1.4 A topological space T is called a tree if for any two points p, q in T can be joined by
a unique continuous curve. A topological space X is called a local tree if for any point x € X and
any neighborhood V of x there exists a neighborhood U < V' of x which is a tree.

Remark 1.5 Hartman [5] studied detail differentiable structures of the cut locus of a simply closed
smooth curve in a complete Riemannian manifold homeomorphic to Euclidean plane. His work
was generalized to a simply closed curve in a 2-dimensional Riemannian manifold [6-8].

The cut locus of a point in a smooth Reimannian manifold cannot be a fractal set, i.e., the
Hausdorff dimension is an integer see [9].

2. A surface of revolution homeomorphic toEuclidean plane

Definition 2.1 A complete Riemannian manifold (M,g) homeomorphic to Euclidean plane is

called a surface of revolution if the manifold admits a point p, withC P =¢, such that the

Riemannian metric g is expressed as
g=dr’ +m(r)*do*

by making use of geodesic polar coordinates (r, 0) around p. The point p is called the vertex of the
manifold.

It is known that a complete Riemannian manifold M homeomorphic to Euclidean plane is
a surface of revolution with vertex p if and only if for each t > 0 the Gaussian curvature G is

constant on Sp t)={q€eM|d(p, q) =t}.

Definition 2.2 A complete Riemannian manifold homeomorphic to Euclidean plane is called a
von Mangoldt surface of revolution if the manifold admits a point p such that for any pair of
points x, y with d(p, x) > d(p, y), G(y) >G(x) holds. Here G denotes the Gaussian curvature of M.

Remark 2.3 A von Mangoldt surface of revolution is actually a surface of revolution, and a
surface of revolution with vertex p is a von Mangoldt surface of revolution if and only if the
Gaussian curvature is decreasing along each meridian, which means a geodesic emanating from
the vertex p.

Typical examples of a von Mangoldt surface of revolution are paraboloids and 2-sheeted
hyperboloids. Elerath [10] determined the structure of the cut locus for special classical surfaces of
revolution.

Theorem 2 .4 Let M(f) denote a surface of revolution defined by z = f( x2 + y2 ), where

f: R — (0,00) denotes a smooth even function. If the Gaussian curvature is decreasing along each
meridian, then for each point q of M (f), the cut locus Cq of ¢ is empty or a subset of the meridian

opposite to q.
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Remark 2.5 The Sturm comparison theorem is a key tool in the proof of Theorem 2.4. Typical
examples of a von Mangoldt surface are paraboloids (z = a(x” + y*)) and a connected component

of 2-sheeted hyperboloids (z = ay/x* + y* +1)

Theorem 2.6 Let (M,dr* +m(r)*d6*) be a von Mangoldt surface of revolution with vertex p.

Then the cut locus of a point q in M is either empty or a subset of the meridian opposite to g. More precisely,
either Cq =¢ or there exists a positive number t0 satisfying C p= {(r,0)|r 210,60 =7 +6(q)}

Definition 2.7 A point q of a surface of revolution (M ,dr? +d6%) homeomorphic to Euclidean
plane is called a pole if ex p,: "[; M — M is injective (or equivalently Cq=9¢.

It is trivial that the vertex p of a surface of revolution is a pole. It is known that the set of
poles of a surface of revolution forms a closed ball centered at the vertex and furthermore, we
obtain

Theorem 2.8 Let (M,dr* +d6%) denote a surface of revolution with vertex p. Then the set of
poles on M equals a closed ball centered at p and M admits a non-trivial pole if and only if

o0
lim inf _, m(r) is non-zero and J‘m(r)’2 dr is finite.
1

Example 2 .9 For a paraboloid of revolution, lim m(r) = J.m(r)_2 dr =00 Thus the vertex is
r—>0
1
a unique pole.

0

Example 2.10 For a 2-sheeted hyperboloid of revolution, lim m(r)=o0 and m(r)_2 dr is finite.
r—0
1

Hence any point sufficiently close to the vertex is a pole.

3. A surface of revolution homeomorphic to a 2-sphere

Definition 3.1 A Riemannian manifold (M, g) homeomorphic to a 2-sphere is called a 2-sphere of
revolution if M admits a point p with a single cut point q such that the Riemannian metric g is

expressed as g = dr® +m(r)*d@* on M\ {p, q} by using geodesic polar coordinates (r, 8) around
p- The point p and it’s unique cut point is called a pair of poles of the 2-sphere.

Theorem 3.2 Let (M,dr* + m(r)*d6*) denote a 2-sphere of revolution with a pair of poles p; q

satisfying the following two properties.
(3.1) M is symmetric with respect to the reflection fixing the equator r = 1/2<d (p, q).
(3.2) The Gaussian curvature of M is decreasing along a meridian from the point p to the
point on the equator.
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Then the cut locus of a point x € M | {p, q}, with 8(x) = 0 is either a subarc of the open

half opposite meridian @' (x) to x or a single point on the open half opposite meridian. Moreover,
if the cut locus of x is a single point, then the Gaussian curvature of M is constant.

Remark 3.3 A meridian of M means a periodic geodesic passing through p and ¢. For example,
071 (0)yuo (7)) U{p,q} is a meridian.

A typical 2-sphere of revolution satisfying (1.1) and (1.2) is an ellipsoid de-fined by

2 2 2
LY L Z 1 (0<a<b)
a b

Theorem 3.4 Let (M ,dr? + m(r)2 d 92) denote a 2-sphere of revolution with a pair of poles p, ¢
satisfying (1.1) such that

(3.3) the Gaussian curvature of M is increasing along a meridian from the point p to the
point on the equator.

Then, the cut locus of a point x € M | {p, ¢} is either a single point or a subarc of the
antipodal parallel » =d(p,q)—r(x) to x. Moreover, if the cut locus of x is a single point, then the
Gaussian curvature of M is constant.

A typical example of a 2-sphere of revolution satisfying (3.1) and (3.3) is an ellipsoid
defined by

2 2 2
X"+ z
J +b—2:1,(0<a<b)

a2

The structure of the cut locus of a general ellipsoid, i.e., a surface defined by
x*/a’ +y2 /b*+2z%/¢* =1, where 0 <a <b < c, has been determined by Itoh-Kiyohara [11].

The cut locus of a generic point of the ellipsoid is an arc. In [1 2] and [1 3], this result was
generalized to a Liouville surface and Liouville manifolds.

Open Problem Let (M,dr* + m(r)*d6*) denote a 2-sphere of revolution with a pair of poles p,
q. Suppose that a point x € M | {p, g/} is a pole, i.e., C, is a single point. Then, is any pointy € M
with d (p, y) <d(p, x) a pole?

Remark 3.5 This would be true if M satisfies (3.1), and m is strictly increasing on (0, m(x)). The
first claim of Theorem 2.8 is a non-compact version of this problem. From Theorem 3.4, it follows
that the cut locus of a point on the equator » = 1/2 « d(p, q) is a subset of the equator. This theorem
was generalized to a wider class of 2-spheres of revolution by Bonnard-Caillau-Sinclair —Tanaka [1].

Theorem 3.6 Let (M ,dr? + m(r)2 d 92) denote a 2-sphere of revolution satisfying (3.1). Suppose
that the cut locus of a point on the equator r = 1/2 «d(p, g) is a subset of the equator. Then, the cut
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locus of a point x €M \{p, g} is either a subarc of the antipodal parallel » =d(p,q)—r(x) toxora
single point on the antipodal parallel.

Remark 3.7 Theorems 3.4 and 3.6 were generalized for a class of cylinders of revolution by P.
Chitsakul [14], and [15] respectively.

Example 3.8 There exists a family {M 1 } , of 2-spheres of revolution satisfying both properties
in Theorem 3 .6, but the Gaussian curvature is not mono-tonic along the meridian. By using
geodesic polar coordinates (7, ) around a point p of the unit sphere S2 (1) we give a family of
Riemannian metrics

g, = dr’ + m/‘t(r)2 d6*, where (120) is a parameter, on the unit sphere. Here

my = A+ 1sinr/\1+ Acos r . Then My =(S>(1),dr" +m3(r)d6%)

satisfies both properties in Theorem 3 .6, but the Gaussian curvature is not monotonic along a
meridian if A > 2.

4. A surface of revolution homeomorphic to a 2-torus

Let M be a standard torus in 3-dimensional Euclidean space defined by

WX+ =Ry +22 =r*(R>r>0).

The surface M is given by rotating the (x, z)-plane curve {(x,0, z)/ (x—R*+2* =r?)
around the z-axis.

This surface has the following two properties. (4.4) It is symmetric with respect to the (x,
v)-plane, i.e., it has a reflective symmetry with respect to the plane.
(4.5) The Gaussian curvature is increasing from the point (R—r , 0, 0) to the point (R + r, 0, 0)
along the meridian defined by y = 0.

The structure of the cut locus for this torus is topologically complicated (see Figure 1).
If we state it roughly,

Theorem 4.1 A cut point of a point p = (x¢, 0, zp ), X9 > 0, on the torus is a point on the meridian
{(x, (x,0, z) €M |x < 0} opposite to p, a point on the antipodal parallel {(x, y,z) EM |z =-zy }, or
a point on a (piecewise C1 ) Jordan curve which intersects the meridian opposite to p at a single
point and is freely homotopic to each parallel.

Remark 4.2 The structure of the cut locus is determined for a class of 2-torus of revolution which
contains all standard tori in Euclidean space [16]. More precisely, let (S'x S, di* + m(t)* d6?)

denote a torus with warped product Riemannian metric d* +m(t)*d6*, where dt* and d6>

denote the Riemannian metric of a circle with length 2 a and 2 b respectively and m denotes a
positive smooth warping function on R satisfying the following two properties:

(4.4)m(—t)= m(t) =m(t+ 2a) for any real number t.

"

(4.5) The Gaussian curvature —m—(t) is increasing on [0,a].
m
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Figure 1. The structure of the cut locus
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