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Abstract

In 1981, a p-adic interpolation method based on divided differences was derived and was applied to
derive, among other things, results on the number of zeros and the bound of certain p- adic
exponential polynomials. Here, lower bounds for a p-adic exponential polynomial evaluated over
some rational integers are derived using a method of van der Poorten.

Keywords: p-adic exponential polynomial, Turan’s theorem

1. Introduction

In the paper , a p-adic interpolation method using divided differences [1] was developed, and was
then applied to obtain results on the number of zeros and the bounds of the coefficients of p-adic
exponential polynomials, as well as to obtain a p-adic analogue of Turan’s first main theorem on
sums of powers. In this paper, we continue their investigation on p-adic exponential polynomials in
the spirit of Turdn’s main theorems. We shall establish lower bounds for a p-adic exponential
polynomial, evaluated over some rational integers, in terms of its derivatives at the origin, its
functional values at some other rational integral points, and its coefficients. Since the technique
employed in Laohakosol and Pitman [1] to derive p-adic Turan’s first main theorem does not
generalize to exponential polynomials, we thus have to use different methods. The approach we
adopt here is van der Poorten's method of evaluating determinants as appeared in van der Poorten
[2,3].

Notation. The following will be standard throughout the entire paper:
1. pa fixed rational prime,
2.|-], the p-adic valuation so normalized that| p| =1/p,

3.Q, the field of p-adic numbers, that is the completion of Q (the field of rational numbers)
with respect to the p-adic valuation |- |,

4.C  the completion of the algebraic closure of Q,
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We shall always be working in C . Ina few places, we find it useful to derive certain estimates via

Schnirelman integrals. We use the symbol J to denote the Schnirelman integral over the circle
a,R

in C, with center a and radius R. For the definition and basis properties of Schnirelman integral,

we refer to the appendix of Adams [4].

2. Preliminaries

The following lemma, due essentially to van der Poorten [2], is simple but quite fundamental for
our investigation.

Lemma 1. Let E be a function of the form
M
E(2)= Zbk O« (2)
k=1

where by,b,,...,b,, are constants in (Cp and g,,9,,...,d, are functions analytic on some domain G
of C,. Further let z,,z,,...,2,, be points of G; let s,s,,...,S,, be non-negative integers; and let
H(,,Y,,....Y )beaformlinearin Y,,Y,,....Y, (1<L<M).Finally denote by Ay (1<i, j<M)the
cofactor of g{%’(z) in the determinant

A=g()
Then there is an integer v such that1 <v <M and

1<j,i<M *

‘H(bj(l)’ i@ J(L))‘
‘H(AIJ(I)’ ij(2)2 " ii(L))/A‘P

‘ E(S")(Zv) ‘pz
max 1<isM

where 1< j(D<...< J(L) <M.

Proof By differentiating at z,,2,,...,2,, , we obtain a system of M linear equations in b,b,,...,0,,
of the forms

M
Zbkgﬁsn(zi) = E<si>(zi) i=12,...M),
k=1

which we may solve by
M ' .
bA= D AED(Z) (k=12,...,M). Cramer's rule to obtain

i=1

Thus
N )
Si
H(bj)5bji)-+505))A = Zl: H(Qji0)» B> By )BT ()
iz
and so
| H®;0),0;0),- 1<L>)A‘ < max ‘ H (A0 By By ‘p max |

Note that the result remains meaningful though trivial even if the denominator on the
right-hand side of the result should vanish, provided we then interpret the lower bound to be zero.
Since we shall only be working with p-adic exponential polynomials, we shall first standardize our

symbols. Let p(1), o(2),..., o(M) be non-negative integers with sum
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3 pk) =M

and let a1 <k <m,1<s< p(k) be M elements of C not all 0. Let ¢, (K=1,...,m) be distinct
elements of C , satisfying

| —1[,< p """ (k=1,...,m).
Therefore, each ¢ is an analytic function of z in the domain {ze C;|z|,<1}. We shall consider

exponential polynomials of the form
pk)

E@=) > az e (z],<1)

k=1 s=

so that we shall be applying Lemma 1 to the M functions
o (k=1,...,m;s=1,..., p(k)).
To avoid any ambiguity, with regard to the terminology in Lemma 1 for g,(z) and the M functions
2o} (k=1,...,m;s=1,..., p(k)), we define

9,(2)=a/.0,(2) = 2¢/,....,9,,(2) = 27",

_ 2 _ o2 __p@)- 2
gp(1)+l(z) =a, ’gp(1)+2(z) =1a,,..., gp(l)+p(2)(z) =" a,,

g p)+...+p(m— 1)+1(Z) arrng p()+..+p(m— 1)+2(Z) m’

p(m)-1_z
gp(1)+ +p(m)(z) =17 am'

We also find it more convenient to specify the notation in Lemma 1, keeping in mind that the method
is also applicable to much more general cases. Thus from Lemma 1, we set as follows:

1. n a fixed non-negative rational integer,

2.z;=n+j (j=12,...,M),

3.5;=0 (j=12,....M),

4. r = a fixed positive rational integer

Let
m p(h)(r .
— r-
HY, Y00 =Y ((log e )™ Yy
et = (1 t)
where
Y = y”sY = Yias-- p(l) Y1p<1)’
Yp(l)+1 = y21’ p(h+2 — =Y. p(l)+p(2) =Y, p(2)°
Yp<1)+...+p(m—1)+1 = ym,l’Yp(l)Jr..Hrp(mfl)JrZ = ym,z,...,Y

py+tpm) = Ymp(m):

We consider such linear form H because of the following identity

m W (r _1) r-t (r—l)
H(an»---»am,p(m)):hz;tz:,( _t)'(logah) ay = (0).
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3. Main Results

By Lemma 1, we must then consider the determinant
A=+ e |, d<hsmi<t<ph),l<j<M)

(the numbering of row and column indexes is clear from the display of functions g;(z)'s, and the

linear form H in its cofactors).

The crux of van der Poorten's method, and indeed the most difficult part, is to handle these
determinants effectively. Consequently, we first compute these determinants. Since the arguments
used in van der Poorten's sledge-hammer approach to evaluate these determinants are algebraic in
nature, then they are also applicable in the p-adic case. We shall be brief here and refer to a more
detailed discussion in van der Poorten [3]. We first let

a, 1£h<m; 1<t < p(h))

be formal quantities. The next lemma, again due to van der Poorten [2], enables us to obtain nice
identities later. Its proof is elementary, and can be found in van der Poorten [2].

Lemma 2. Denote by P the product

m pk) s—

P= H (s — ),

k=1 s=I |

1
and let R and R, be functions in the ¢, (i <h<m, 1<t < p(h)), which are divisible by P. Then

3
m ﬁk)((aks aaks) )Rl _ h (RI/PJ

lim .
s > s >
ks | k=l s=l ((aks s-1 Qs ¢ R, /P

(The limiting processes in Lemma 2 and in what follows can be thought of as those with respect to
the p-adic topology.)

Next, let Dbe the Vandermonde determinant
m p(k)

ht,i ™ H Z (O!an H (aks ajl’))

k=1 s=1 jr<ks

— | an+|

where jr <ks means either j <k orif j=Kk,then r <s.A more explicit form is

m_pk) k-1 p(k)

D= HH(anHH(aks akI)HH(aks a,r))

k=1 s=1 j=1 r=l1
By direct differentiation (see also [6] or [7]), we get
A=+ |, A<h<mi<t<ph),l1<i<M)

n+|

= Jim (ﬂﬁ:( ks) jD

1<k<m 1<s<p(k)

m pk) k-1 .

= TIIT(e -1 J (et — ;)" ") (3.1)

k=1 j=1 j=1

Denote by D, and, respectively, A, the cofactor of ey and, respectively, of (n+i) """ in D

and respectively in A. In a similar manner as we derived A from D, we also have
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m pk)

Ay = lim H (aks

Ol A)llk

i,ht‘

By expanding the determinant D through its cofactors, we see that

M .
%5ks,ht = Za:«s_l D, (I<k<m,1<s< p(k)),

ht i=1
(where 6, , is the usual Kronecker ¢ ), which asserts that D, is exactly the coefficient of Z'in

the polynomial
D m 2Kk

DT,

nt k=l s=1 O — O
ks=ht

Thus for any u we have by the above expressions

p(h) . m_pk) . ph)
u - S— u
o Z U~ A, = lim HH(aks Z D,
t=1 t=1

(Zk %llk
allks  \ k=L s=1 s

and by Lemma 2, we see that it is the coefﬁcient of 2" in the polynomial
() m_ pk)

hm Az n+l uH ( - akS ) (32)

t=1 Opy k=1 s=1 Oy = O
all ks=ht

Similarly for r a positive integer, we get

p(h)(r_ ! - m_pk) o ph) -
Z (logey,) " A, = lim HH(aks ) Z(logam) D

T (r-u! ek \ k=1 s=1 s t=1

which by Lemma 2 becomes the coefficient of z' in the polynomial

h) m k
lim A/i (log"n‘ﬂﬁ) Hﬁ( 2% ) (3.3

Qs Q|
kasll ksk K= kssst:n ks

From Lemma 1 and the shape of the linear form H, we must get a p-adic upper bound for the
expression

m_p(h) A'ht .
ZZ 3: oga,) —, (ISi<M).

We have observed that ¢, is exactly the coefficient of z'

in the polynomial
m_ p(k)

n & (log e, )™ -
Q)= Jim 35 CEE ] (%)
“ilks* h=1 =1 I
At this point, we could of course derive a p-adic upper bound for the coefficients ¢, directly from
the shape of Q . However, a bound obtained in this way is weak and untidy. To obtain a clean and
strong bound, we resort to the use of interpolation. Neglecting the limit for a moment, Q(2) is

exactly the polynomial of degree M —1 such that
l r-1
Qe ) = 1%8%) | chcmia<t< p(h). (3.4)

n+l
ht
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Taking the quantities «,, as formally distinct, these conditions determine Q . We suppose that the
distinct quantities «, lie (p-adically) arbitrarily close to the ¢;, (1<h<m). Still neglecting the
limit in Q(z), we write it as an interpolation series

Q(2)=b, +b,(z~a, ) +b,(z2-a, )Z~a,)+...+b,  (Z—)...(Z= ) (3.5)

By the conditions (3.4) defining Q, and by similar derivation as in Laohakosol and Pitman [1], we
can represent the interpolation coefficients by, as Schnirelman integrals

B (logz) ' (z-1)dz
LR Zn+](z _all)”'(z _aht)

(I<sh<m,1<t< p(h)),

ht

where the integrals are taken along the circle with center 1 and radius R with p™/*"" <R < 1. Here,
the lower bound for R guarantees that all ¢; ’s lie inside the circle, and the upper bound ensures that

the point O lies outside. By uniform convergence (see [4]) of the series defining the integrals, the
integrals all remain well-defined when the relevant limit is taken and indeed we can drop any implicit
assumption that the o), be distinct. We require by Lemma 1 to find an upper bound for the quantities

la|, a<i<m).
Using the fact that |« | =1, from the equation (3.5), we have for 1<i<M
(logz)™'(z-1)dz
n+1(z_all)'“(z_ah1)

s |p:maxm|bm‘p:maxht” ‘p

1,R z
< R™'R _prm
= 1. RPD*rp(m) >
because |z-a|,=[(z-1)+(1-a)|,=R . To get optimal bounds, we consider two separate
cases.Caser > M.Since the inequality
|qi|p <R™ (i=1,..,M)

holds for all R satisfying p™"/*"" < R <1, taking here the limit as R — p™"*"", we have in this case
[g;[,< RM-PD (G =1,...,M).
Caser < M. In this case we take the limit as R — 1 to get
|qi|p <1 (i=1,...,M).
Hence, by Lemma 1, there exists a rational integer v such that 1<v<M and
(r=M)/(p-) | (r-D) ifr>M
p [ETN@) i r>M,

E(n+v) >
B+, |E(H>(0)|p if r<M.

We observe, moreover that by taking r =1 (and sor <M ), and replacing nby n—u in (3.3), we

obtain the expression (3.2). Consequently, the corresponding linear forms are
m_ph)

H'=> > apua, =E(),

h=1 t=1

m_p(h)

G=3 Y M =M,

h=1 t=1
and the interpolation coefficients by, take the form
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-1
b = . (2=Dd (<hsm1<t< p(h)
"Rz (Z_all)"'(z_aht)
with the same R as above. By the same arguments as for the case of ¢, , we see that

|qi’|p <1 (i=1...,M).

Hence, we have proved

Theorem 1. Let «,..., ¢, be distinct elements of C | satisfying
la;=1],< p™"®*P (j=1,...,m).

Denote by E the exponential polynomial
m_pk)

E@=) > a2 e (z],<),

k=1 s=1
where p(1),..., p(m) are non-negative integers with sum M, and a,, are constants in C not all
zero. Then for integers n>0and r >1, we have

p(M (oD |E(H>(())| if r>M,
max |E(V)|p 2 p

n+lsv<n+M

|E”’”(0)|p ifr<m,

and for any rational integer u <n, we have
max [E(V)[,Z[E()], .

n+lsv<n+M

An immediate consequence is the following

Corollary 1. Let the notation be as in Theorem 1. Then

m
max ‘Zaka: |p2|a1+...+am o
P

n+l<v<n+M

Before proceeding to our next result, we make the following remarks.
Remarks.

1. Corollary 1 is another version of p-adic Turan’s theorem. In this p-adic case, since |a; |,=1 for
all j, the distinction between the two main theorems of Turanin the classical case (see [5]) disappears.
2. The condition that |er; —1],< p™"*"" =1 for all j is necessary to make o a well-defined
analytic function of z with [ z[,<1. It seems restrictive if one only aims at proving Corollary 1;
indeed in Theorem 3 of Laohakosol and Pitman [1], there is no such restriction. However, by a result
of Cassels [6] there are infinitely many p-adic fields Q, for which all &;’s (j=1,...,m) can be
embedded as p-adic units, i.e. | ; |,=1 forall j. Moreover being p-adic units, by a well-known result
(see [7]), there exists a positive integer d such that
laf =1],< p™"* (j=1,...,m).

Consequently, by considering af instead of «;, we have an abundant supply of p-adic fields to
work with.

3. It should be observed that the estimates in the p-adic case here are much easier to compute than
the corresponding ones in the classical case; as a by-product we do not have to bound the values of
r from above to get an optimal bound as in the classical case (see [2]). As to the values of n in
Theorem 1, the condition n >0 is mainly imposed so that the determinants involved are non-zero.
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4. The bounds obtained in Theorem 1 and Corollary 1 cannot in general be improved as the following
examples show.

(i) Let p=2,andlet

E(2)=1-(+p).
Then

E,(v)|,=max(| p|,.| p>+2p1,) =] pl,

=|1og1+ p)|,=| E/(O) |, =| EC" (0, -

max

0+1<v<0+2

(i) Let p = 2,and let
E,(2)=(+p)’ +(1-p)".
Then

max

0+1<v<0+2

E,(v)|,=1=[1+1],.

Next, we prove

Theorem 2. Let ..., be distinct elements in C  satisfying
|aj —1|p <p "V (j=1,...,m).

Let E be the exponential polynomial

m_pk)
E2) =D 3.2 e (7] <),

k=1 s=1
where p(1),..., p(m) are non-negative integers with sum M, and a,, (1<k <m,1<s< p(k)) are

constants in Cp not all zero. Further, let

0= min
1<j,h<m
j=h
p =max p(k).
Then if n is a nonnegative integer, we have, for each ht (1<h<m,1<t < p(h)),

E(V)|p > |am|p 53m2p2/2—5mp/2+2 p—mp(p—l)/z(p—l).

ah—aj|p,

max

n+lsvsn+M

Remark The value of &, though non-zero, is usually very small because

0<o<|a,—a;l,=|(a,-D—(a; =D [, < p™"*™" h=].

Proof Here, we consider the linear form H in Lemma 1 to be a linear polynomial in one variable
H(Yn) = Vi

for a certain index ht. By Lemma 1, we need an upper bound for ‘ Ay /A |p because

pax| B>, may
As pointed out in [2], the shape of this last polynomial is quite complicated, and we have no hope
of using interpolation to derive a neat bound. Therefore, we instead compute directly a p-adic lower
bound for Aand an upper bound for A; ;. To obtain a p-adic upper bound for

AIA | -

A, > we note the following:
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, . m pK) (7 o
e first, a p-adic upper bound for the coefficients of z! (1< j< M) in H —F |is
k=l s=1 \ Oy — s
ks=ht
5—mp+] .

n+l1

e second, by the shape of D, and |0zj|p =1 forall j, we get |D/0‘m <1

p

) m_pk) _
Thus, a p-adic upper bound for the coefficients (of z') in Dah’t”’IH H [&J is g™,

k=1 s=1 \ @nt — U
ks=ht

. o 0 . : .
Now each partial derivative aa— increases the p-adic upper bound for the coefficients at most by
a

a factor of 1/ 6. Therefore, a p-adic upper bound for the coefficients is
m_pk)

m
HHé'fmpﬁ-lfsﬂ < Sme+2mo-1) 5PINp(O+/2
k=1

k=1 s=I
ks=ht

— — — — 2 2 —
Sé'( mp+2)(Mp 1)5 p(p+hym/2 —5" (m?+m/2)+5mp/2 2'
Now from the shape of Ain equation (3.1), we have

|A| > lﬂ[ﬁ( p(‘SH)/(P—l)é‘p(l)+-+p(k_1))
p k

k=1 s=1

m
> H( p—(p<k>—1)/2< p=D) §P+-+p(k=1) )"“” > 5m(m-1)p2/z p-mp(p—wz(p—l)
k=1
Combining these estimates, the required result follows.
An immediate consequence of Theorem 2 is the following:

Corollary 2. Let the notation be as in Theorem 2. Then for some positive integer h (1< h <m), we have
max z aka;/ 5(3m3—5m+4)/2.
n+1<v<n+m k=1

> |ah|p
p
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