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Abstract 

In 1981, a p-adic interpolation method based on divided differences was derived and was applied to 
derive, among other things, results on the number of zeros and the bound of certain p- adic 
exponential polynomials. Here, lower bounds for a p-adic exponential polynomial evaluated over 
some rational integers are derived using a method of van der Poorten. 
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1. Introduction 
 
In the paper , a p- adic interpolation method using divided differences [1] was developed, and was 
then applied to obtain results on the number of zeros and the bounds of the coefficients of p- adic 
exponential polynomials, as well as to obtain a p- adic analogue of Turán’s first main theorem on 
sums of powers. In this paper, we continue their investigation on p-adic exponential polynomials in 
the spirit of Turán’s main theorems. We shall establish lower bounds for a p- adic exponential 
polynomial, evaluated over some rational integers, in terms of its derivatives at the origin, its 
functional values at some other rational integral points, and its coefficients. Since the technique 
employed in Laohakosol and Pitman [1] to derive p- adic Turán’s first main theorem does not 
generalize to exponential polynomials, we thus have to use different methods. The approach we 
adopt here is van der Poorten's method of evaluating determinants as appeared in van der Poorten 
[2,3]. 
 
Notation. The following will be standard throughout the entire paper: 
 1. pa fixed rational prime, 
 2. | |p the p-adic valuation so normalized that | | 1/pp p , 

 3. p  the field of p-adic numbers, that is the completion of   (the field of rational numbers) 

with respect to the p-adic valuation | |p ,  

 4. p the completion of the algebraic closure of p  
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We shall always be working in p . In a few places, we find it useful to derive certain estimates via 

Schnirelman integrals. We use the symbol 
,a R
  to denote the Schnirelman integral over the circle 

in p with center a and radius R. For the definition and basis properties of Schnirelman integral, 

we refer to the appendix of Adams [4]. 
 
 

2. Preliminaries 
 
The following lemma, due essentially to van der Poorten [2], is simple but quite fundamental for 
our investigation. 

Lemma 1. Let E be a function of the form 

1

( ) ( )
M

k k
k

E z b g z


   

where 1 2, , , Mb b b are constants in p and 1 2, , , Mg g g are functions analytic on some domain G 

of p . Further let 1 2, , , Mz z z be points of G; let 1 2, , , Ms s s  be non-negative integers; and let 

1 2( , , , )LH Y Y Y be a form linear in 1 2, , ,  (1 ).LY Y Y L M   Finally denote by  (1 , )ij i j M   the 

cofactor of ( ) ( )is
j ig z  in the determinant 

( )
1 ,( )| |is

j i j i Mg z    . 

Then there is an integer v such that1 v M  and 

(1) (2) ( )( )

1 (1) (2) ( )

, , ,
( )

max , , , /

| ( ) || |
| ( ) |

v j j j L ps
v p

i M ij ij ij L p

H b b b
E z

H 




    
 

where 1 (1) ( ) .j j L M     

Proof By differentiating at 1 2, , , Mz z z , we obtain a system of M linear equations in 1 2, , , Mb b b
of the forms 

( ) ( )

1

( ) ( ) ( 1,2, , ),i i

M
s s

k k i i
k

b g z E z i M


    

which we may solve by 
Cramer's rule to obtain 
 
 

Thus 

( )
(1) (2) ( ) (1) (2) ( )

1

( , , , ) ( , , , ) ( ),i

M
s

j j j L ij ij ij L i
i

H b b b H E z


        

and so 
( )

(1) (2) ( ) (1) (2) ( )
1 1

( , , , ) max ( , , , ) max ( ) .| | | | | |vs
j j j L p ij ij ij L p v p

v M v M
H b b b H E z

   
        

 Note that the result remains meaningful though trivial even if the denominator on the 
right-hand side of the result should vanish, provided we then interpret the lower bound to be zero. 
Since we shall only be working with p-adic exponential polynomials, we shall first standardize our 
symbols. Let (1), (2), , ( )m    be non-negative integers with sum 

( )

1

( ) ( 1, 2, , ).i

M
s

k ik i
i

b E z k M


    
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and let ,1 ,1 ( )ksa k m s k    be M elements of p not all 0. Let ( 1, , )k k m    be distinct 

elements of p satisfying 
1/ ( 1)| 1 | ( 1, , ).p

k p p k m       

Therefore, each z
k is an analytic function of z in the domain  { ; | | 1}.p pz z  We shall consider 

exponential polynomials of the form 
( )

1

1 1

( ) (| | 1)
km

s z
ks k p

k s

E z a z z




 

   

so that we shall be applying Lemma 1 to the M functions 
1 ( 1, , ; 1, , ( )).s z

kz k m s k       

To avoid any ambiguity, with regard to the terminology in Lemma 1 for ( )jg z and the M functions 

 1  ( 1, , ; 1, , ( )),s z
kz k m s k      we define 

 (1) 1
1 1 2 1 (1) 1( ) , ( ) , , ( ) ,z z zg z g z z g z z

       

 (2) 1
(1) 1 2 (1) 2 2 (1) (2) 2( ) , ( ) , , ( ) ,z z zg z g z z g z z

     
       

    
 (1) ( 1) 1 (1) ( 1) 2( ) , ( ) ,z z

m m m mg z g z z            

    
 ( ) 1

(1) ( ) ( ) .m z
m mg z z 

  
   

We also find it more convenient to specify the notation in Lemma 1, keeping in mind that the method 
is also applicable to much more general cases. Thus from Lemma 1, we set as follows: 

1. n a fixed non-negative rational integer, 
2. ( 1, 2, , ),jz n j j M     

3. 0 ( 1, 2, , ),js j M    

4. r = a fixed positive rational integer 

Let 
( )

1 2
1 1

( 1)!
( , , , ) : (log ) ,

( )!

hm
r t

M h ht
h t

r
H Y Y Y y

r t



 

 


 

  

where 
 1 11 2 12 (1) 1, (1), , , ,Y y Y y Y y      

 (1) 1 21 (1) 2 22 (1) (2) 2, (2), , , ,Y y Y y Y y           

    
 (1) ( 1) 1 ,1 (1) ( 1) 2 ,2 (1) ( ) , ( ), , , .m m m m m m mY y Y y Y y                 

We consider such linear form H because of the following identity 
( )

( 1)
11 , ( )

1 1

( 1)!
( , , ) (log ) (0).

( )!

hm
r t r

m m h ht
h t

r
H a a a E

r t



   

 


  

  

1

( )
m

k

k M



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3. Main Results 

 
By Lemma 1, we must then consider the determinant 

1
,( ) (1 ,1 ( ),1 )| |t n j

h ht jn j h m t h j M            

(the numbering of row and column indexes is clear from the display of functions ( )jg z 's, and the 

linear form H in its cofactors). 
The crux of van der Poorten's method, and indeed the most difficult part, is to handle these 
determinants effectively. Consequently, we first compute these determinants. Since the arguments 
used in van der Poorten's sledge-hammer approach to evaluate these determinants are algebraic in 
nature, then they are also applicable in the p-adic case. We shall be brief here and refer to a more 
detailed discussion in van der Poorten [3]. We first let 

(1 ;1 ( ))ht h m t h      

be formal quantities. The next lemma, again due to van der Poorten [2], enables us to obtain nice 
identities later. Its proof is elementary, and can be found in van der Poorten [2]. 

Lemma 2. Denote by P the product 
( ) 1

1 1 1

( ),
km s

ks kl
k s l

P


 


  

   

and let 1R and 2R  be functions in the ( ,1 ( )),ht i h m t h     which are divisible by P. Then 

1
1( )

1

11 1 2all  all 
2

  
( )

/
lim lim .

  /( )

( )

( )ks k ks k

s
kskm

ks

sk sks ks
ks

ks

R
R P

R PR



   









  

 
          
  

  

(The limiting processes in Lemma 2 and in what follows can be thought of as those with respect to 
the p-adic topology.) 

Next, let Dbe the Vandermonde determinant 
( )

1
,

11

( ) ,| | ( )
km

n i n
ht ht i ks ks jr

sk jr ks

D


    

 

     

where jr ks means either j k or if ,j k then r s .A more explicit form is  
( ) ( )1 1

1

1 1 1 1 1

( ) ( ) ,( )
k km s k

n
ks ks kl ks jr

k s l j r

D
 

    
 



    

      

By direct differentiation (see also [6] or [7]), we get 

  1
,: ( )   (1 ,1 ( ),1 )| |t n i

h ht in i h m t h i M            

  
( )

1

1 11 ;1 ( )

lim ( )
ks k

km
s

ks
k s ksk m s k

D


 








    

 
   

  

( ) 1
( )

1 1 1

( 1)! ( ) .( )
km k

n s j
k k j

k j j

s


  




  

      (3.1) 

Denote by ,i htD and, respectively, ,i ht the cofactor of n i
ht  and, respectively, of 1( )t n i

hn i   in D 

and respectively in  . In a similar manner as we derived  from D, we also have 
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( )
1

, ,
1 1all  

  
lim .( )
ks k

km
s

i ht ks i ht
k s ksks

ks ht

D


 






 



 
     

 
  

By expanding the determinant D through its cofactors, we see that 

1
, ,1

1

(1 ,1 ( )),
M

i
ks ht ks i htn

iht

D
D k m s k  







      

(where ,ks ht is the usual Kronecker  ), which asserts that ,i htD  is exactly the coefficient of 1iz  in 

the polynomial 
( )

1
1 1

.( )
km

ks
n

k s ht ksht
ks ht

zD  
  

 



  

Thus for any u we have by the above expressions 
( )( ) ( )

1 1
, ,

1 11 1all  

  
lim ,( )
ks k

kh hm
u t s u
h i ht ks ht i ht

t tk s ksks

u D
 

 
  


 


  

 
    

   

and by Lemma 2, we see that it is the coefficient of 1iz  in the polynomial  

   
( )( )

1
1 1 1all  

1
lim .( )
ks k

kh m
ks

n u
t k s ht kshtks

ks ht

z

 


   

  





   (3.2) 

Similarly for r a positive integer, we get 

 
( )( ) ( )

1 1
, ,

1 11 1all 

( 1)!   
(log ) lim (log ) ,

( )!
( )

ks k

kh hm
r t s r

h i ht ks ht i ht
t tk s ksks

r
D

r t

 

 
  


  


  

  
     

   

which by Lemma 2 becomes the coefficient of 1iz  in the polynomial 

 
1 ( )( )

1
1 1 1all  

(log )
lim .( )
ks k

r kh m
ht ks

n
t k s ht kshtks

ks ht

z

 

 
 




  






   (3.3) 

From Lemma 1 and the shape of the linear form H, we must get a p-adic upper bound for the 
expression 

( )
,

1 1

( 1)!
: (log ) ,  (1 ).

( )!

hm
i htr t

i h
h t

r
q i M

r t



 

 


  

   

We have observed that iq  is exactly the coefficient of 1iz   in the polynomial 
1 ( )( )

1
1 1 1 1all  

(log )
( ) lim .( )

ks k

r kh mm
ht ks

n
h t k s ht kshtks

ks ht

z
Q z



 

 
 




   






   

At this point, we could of course derive a p-adic upper bound for the coefficients iq  directly from 

the shape of Q . However, a bound obtained in this way is weak and untidy. To obtain a clean and 

strong bound, we resort to the use of interpolation. Neglecting the limit for a moment, ( )Q z is 

exactly the polynomial of degree 1M   such that 

  
1

1

(log )
( ) ,1 ;1 ( ).

r
ht

ht n
ht

Q h m t h


 




       (3.4) 
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Taking the quantities ht as formally distinct, these conditions determine Q . We suppose that the 

distinct quantities ht  lie (p-adically) arbitrarily close to the (1 )h h m   . Still neglecting the 

limit in   ,Q z we write it as an interpolation series 

11 12 11 13 11 12 ( ) 11 , ( ) 1( ) ( ) ( )( ) ( ) ( )m m m mQ z b b z b z z b z z                   (3.5) 

By the conditions (3.4) defining Q, and by similar derivation as in Laohakosol and Pitman [1], we 
can represent the interpolation coefficients htb  as Schnirelman integrals 

1

11,
11

(log ) ( 1)
 (1 ,1 ( )),

( ) ( )

r

ht nR
ht

z z dz
b h m t h

z z z


 






    

  
 

where the integrals are taken along the circle with center 1 and radius R with 1/ ( 1) 1pp R    . Here, 

the lower bound for R guarantees that all ij ’s lie inside the circle, and the upper bound ensures that 

the point O lies outside. By uniform convergence (see [4]) of the series defining the integrals, the 
integrals all remain well-defined when the relevant limit is taken and indeed we can drop any implicit 
assumption that the h be distinct. We require by Lemma 1 to find an upper bound for the quantities 

 (1 ).i p
q i M   

Using the fact that | | 1j p  , from the equation (3.5), we have for 1 i M   
1

11,
11

1

(1) ( )

(log ) ( 1)
| | max | | max

( ) ( )

,
1

| |
r

i p ht ht p ht pnR
ht

r
r M

m

z z dz
q b

z z z

R R
R

R 

 











 

 

 


 
 

because | | | ( 1) (1 ) |p pz z R       . To get optimal bounds, we consider two separate 

cases.Case   .r M Since the inequality 

 ( 1, , )r M
i p

q R i M    

holds for all R satisfying 1/( 1) 1,pp R    taking here the limit as 1/ ( 1) ,pR p   we have in this case 
( )/ ( 1)| |   ( 1, , ).M r p

i pq R i M     

Case .r M In this case we take the limit as 1R   to get 

1  ( 1, , ).i p
q i M    

Hence, by Lemma 1, there exists a rational integer v such that 1 v M   and 
( )/ ( 1) ( 1)

( 1)

(0)   if   ,
( )

(0)                  if .

 

  

r M p r

p

p r

p

p E r M
E n v

E r M

  



   


 

We observe, moreover that by taking 1r   (and so r M ), and replacing n by n u  in (3.3), we 
obtain the expression (3.2). Consequently, the corresponding linear forms are 

( )
1

1 1

( ),
hm

u t
h ht

h t

H u a E u


 

 

    

( )
,1

1 1

 ( 1, , ),
hm

i htu t
i h

h t

q u i M


 

 


   

  

and the interpolation coefficients htb take the form 
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11,
11

( 1)
 (1 , 1 ( ))

( ) ( )ht nR
ht

z dz
b h m t h

z z z


 

     
  

 

with the same R as above. By the same arguments as for the case of iq , we see that 

1  ( 1, , ).i p
q i M     

Hence, we have proved 

Theorem 1. Let 1, , m   be distinct elements of p  satisfying 
1/ ( 1)| 1 |  ( 1, , ).p

j p p j m       

Denote by E the exponential polynomial 
( )

1

1 1

( )  (| | 1),
km

s z
ks k p

k s

E z a z z



 

   

where (1), , ( )m   are non-negative integers with sum M, and ksa  are constants in p  not all 

zero. Then for integers 0n  and 1,r   we have 
( )/ ( 1) ( 1)

( 1)1

(0)   if   ,
max ( )

(0)                  if   ,

 
 

r M p r

p

p rn v n M

p

p E r M
E v

E r M

  

   

  


 

and for any rational integer u n , we have 

1
max | ( ) | | ( ) | .p p

n v n M
E v E u

   
  

An immediate consequence is the following 

Corollary 1. Let the notation be as in Theorem 1. Then 

1
1

1

max .| | | |
m

v
k k p m p

n v n M
k

a a a
    

   

Before proceeding to our next result, we make the following remarks. 

Remarks. 

1. Corollary 1 is another version of p-adic Turán’s theorem. In this p-adic case, since | | 1j p    for 

all j, the distinction between the two main theorems of Turánin the classical case (see [5]) disappears. 

2. The condition that 1/ ( 1)| 1 | 1p
j p p      for all j is necessary to make z

j  a well-defined 

analytic function of z with | | 1pz  . It seems restrictive if one only aims at proving Corollary 1; 

indeed in Theorem 3 of Laohakosol and Pitman [1], there is no such restriction. However, by a result 
of Cassels [6] there are infinitely many p-adic fields p for which all j ’s ( 1, , )j m   can be 

embedded as p-adic units, i.e. | | 1j p  for all j. Moreover being p-adic units, by a well-known result 

(see [7]), there exists a positive integer d such that 
1/ ( 1)| 1 |   ( 1, , ).d p

j p p j m       

Consequently, by considering d
j  instead of ,j we have an abundant supply of p-adic fields to 

work with. 

3. It should be observed that the estimates in the p-adic case here are much easier to compute than 
the corresponding ones in the classical case; as a by-product we do not have to bound the values of 
r from above to get an optimal bound as in the classical case (see [2]). As to the values of n in 
Theorem 1, the condition 0n   is mainly imposed so that the determinants involved are non-zero. 
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4. The bounds obtained in Theorem 1 and Corollary 1 cannot in general be improved as the following 
examples show. 

 (i) Let 2p  , and let 

1( ) 1 (1 ) .zE z p    

 Then 

  2
1

0 1 0 2
max ( ) max | | ,| 2 | | || | ( )p p p p

v
E v p p p p

   
    

   (2 1)
1 1log(1 ) (0) (0) .| | | | | |p p pp E E      

 (ii) Let 2,p  and let 
2

2 ( ) (1 ) (1 ) .zE z p p     

 Then 

2
0 1 0 2

max ( ) 1 |1 1 .|| |p p
v

E v
   

    

Next, we prove 

Theorem 2. Let 1, , m  be distinct elements in p satisfying 
1/( 1)1   ( 1, , ).p

j p
p j m       

Let E be the exponential polynomial 
( )

1

1 1

( )  ( 1),
km

s z
ks k p

k s

E z a z z



 

   

where (1), , ( )m   are non-negative integers with sum M, and (1 ,1 ( ))ksa k m s k     are 

constants in p  not all zero. Further, let 

1 ,
min ,h j pj h m

j h

  
 



   

1
max ( ).

k m
k 

 
  

Then if n is a nonnegative integer, we have, for each (1 ,1 ( )),ht h m t h     
2 23 / 2 5 / 2 2 ( 1)/ 2( 1)

1
ma  x ( ) .m m m p

htp pn v n M
E v a p        

   
  

Remark The value of , though non-zero, is usually very small because 

1/ ( 1)0 | | | ( 1) ( 1) |  , .p
h j p h j p p h j                

Proof Here, we consider the linear form H in Lemma 1 to be a linear polynomial in one variable 
( )ht htH y y  

for a certain index ht . By Lemma 1, we need an upper bound for , /| |i ht p   because 

,
1 1
max ( )  max / .| | | |p ht p i ht pv M v M

E n v a
   

      

As pointed out in [2], the shape of this last polynomial is quite complicated, and we have no hope 
of using interpolation to derive a neat bound. Therefore, we instead compute directly a p-adic lower 
bound for  and an upper bound for , .i ht To obtain a p-adic upper bound for  

, ,i ht we note the following:  
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 first, a p-adic upper bound for the coefficients of (1 )jz j M   in 
( )

1 1

km
ks

k s ht ks
ks ht

z 
  



 
  

  is 

1;m    

 second, by the shape of D, and 1j p
   for all j , we get 1/ 1.n

ht p
D     

Thus, a p-adic upper bound for the coefficients (of jz ) in
( )

1

1 1

km
n ks

ht
k s ht ks

ks ht

z
D

 


 
 

 


 
  

  is 1m   . 

Now each partial derivative 




increases the p-adic upper bound for the coefficients at most by 

a factor of 1/ .  Therefore, a p-adic upper bound for the coefficients is  

  
( )

1 1 ( 2)( 1) ( )( ( ) 1)/2

1 1 1

km m
m s m m k k

k s k
ks ht


              

  


   

2 2( 2)( 1) ( 1) / 2 ( / 2) 5 /2 2 .m m m m m m                  
Now from the shape of  in equation (3.1), we have 

 

  2

( )
( 1)/ ( 1) (1) ( 1)

1 1

( )( ( ) 1)/2( 1) (1) ( 1) ( 1) / 2 ( 1)/2( 1)

1

.

km
s p k

kp
k s

m kk p k m m m p

k

p

p p


 

     



 

    

 

         



 

 



 

 

Combining these estimates, the required result follows. 

An immediate consequence of Theorem 2 is the following: 

Corollary 2. Let the notation be as in Theorem 2. Then for some positive integer (1 ),h h m   we have 

2(3 5 4) / 2

1
1

max    .
m

v m m
k k h pn v n m

k p

a a   

    

  
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