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ABSTRACT

In this paper, we will show that with proper
understanding of the concept of the invariance of the
“intervals” of events in Minkowski’s spacetime, the
problem of why (not the usual how) the “clock
paradox” phenomenon happens can be easily
understood without any confusion.

Keywords: Twin paradox, clock paradox, special
relativity, invariance of intervals

1. INTRODUCTION

It has been over a century now that Einstein
announced the theory of special relativity (SR) in
1905 [1]. Numerous experimental results exist that
show both the accuracy and correctness of the SR
theory. However, confusions still exist due to the
improper understanding of some aspects of the
theory. This is especially true concerning the so-
called problem of the “twin paradox”, or
equivalently, the problem of the “clock paradox”.
Many textbooks certainly contribute to such
confusions. Due to the nature of the topic, there are
literally hundreds of references up to now, and it
would be impractical to list them all here. Therefore,
most of the references listed in this paper are meant
to be examples only.

The “twin paradox” or the “clock paradox”
problems can be briefly stated as follows: The times
of two identical clocks are initially synchronized at
the same point and time (same event), then we move
one of the clocks away (usually at high speed to see
substantial effects) and then move it back again.
When we compare the elapse times of the two clocks
when they meet again at the same point, it turns out
that the elapsed time of the moving clock is slower
than that of the stationary clock. Thus, the
travelling twin is younger than the stationary twin.
Nowadays, this phenomenon can be shown
experimentally to be real to a very high degree of
accuracies [2,3], using atomic clocks and decays of
particles. We can also readily show using both the
algebraic approaches (via Doppler shifts of light
pulses) [4] and the geometric approaches (via
Minkowski spacetime diagrams) [5] that how such
phenomena arise. However, the explanation for why
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such phenomena happen is still lacking, giving rise
to still wide spread confusions to the readers.

Some authors [6] suggest that Einstein’s general
relativity (GR) is required in order to understand
the phenomenon. They insist that the moving clock
must experiences numerous accelerations and
decelerations in making the round trip, and the time
difference can be accounted for by using only GR.
This is not true. The effects of accelerations and
decelerations will certainly increase the time
difference from the value calculated by using SR
alone. However, as will be shown later, we can
configure situations whereby the moving clocks do
not experience any acceleration or deceleration
forces, at least in principle. So invoking GR does not
really help in showing why such a phenomenon
exists.

Many authors [7] in textbooks simply refuse to
comment on the reasons that why the elapsed times
of the two clocks are different. They just, more or
less, stated that the phenomenon is real, and leave it
at that [8]. At least one recent author [9] suggested
very briefly that something weird must have
happened during the acceleration and deceleration
phases of the traveling clock.

A large number of authors follow Feynman’s
opinion [10] that the problem is non-symmetric,
because the travelling clock feels the forces of
accelerations and decelerations, so it “knows” that it
is moving, and consequently slows down its rate of
time accordingly. Although the problem is certainly
non-symmetric, however, the non-symmetry is not
due only to the accelerations and decelerations, but
it is also a result of the events in the geometry of the
spacetime itself. We will also argue that non-
symmetry of frames of reference is not the cause of
the phenomenon, since the phenomenon still exists
during part of the arrangement where the two
frames are strictly inertial and symmetric.

Many authors in the past, before we can actually
conduct accurate experiments, simply refused to
believe that the times indicated by the two clocks
could be different [11]. Their opinions can now be
totally ignored as they were proven experimentally
to be wrong.

It is also interesting to note that FEinstein has
never directly answered the problem of the “clock
paradox” [12]. He simply stated that the problem is
due to the non-simultaneity of the events, and if the
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phenomenon is real then it is a very peculiar case. In
addition, Einstein suggested that using SR alone, the
problem could never be understood; in order to solve
the problem completely, GR is needed [13]. This is
true only if we want to take the effects of the
accelerations and decelerations into account.

Reference [14] gives a comprehensive catalogue of
the literature concerning the “clock paradox”
problem up to the year 1970, and also describes most
of the argument in support and in refute (which we
now know that they are wrong) of the phenomenon.
Interested readers should try to consult it.

It is the purpose of this paper to show that the
“clock paradox” phenomenon is a natural consequent
of one of Einstein’s postulates that speed of light in
empty space is constant or invariant with respect to
an observer in any inertial frame of reference,
resulting in the property of the invariance of the
intervals (see section 2). The author hopes also that
the following exposition will satisfy most readers on
the question of why such phenomenon happens, and
confusions, as far as this question is concerned, can
be eliminated once and for all.

In order to keep the paper reasonably short, the
author assumes that the readers are fairly
knowledgeable with the SR theory, and know
something about Minkowski’s spacetime diagrams,
and how to manipulate them. Especially how to read
times and distances from such diagrams.

2. THE CONCEPT OF THE INTERVALS

In this paper, we will show that with proper
understanding of the concept of the invariance of the
“intervals” of events in Minkowski’s spacetime, the
problem of why (not the usual how) the “clock

paradox” phenomenon happens can be easily
understood without any confusion.
I=(X>+T1%)" (1)

Where X is the value of the spatial distance and T =
jet, where j denotes a complex number, ¢ is the
speed of light in free space and ¢ is the time. It is
also evident that the value of T° is always negative.
We can further see that the value of I can be real or
complex depending upon the values of X? and T°.

Figure 1 shows a typical spacetime diagram,
where the two 45° dashed lines denote the worldlines
of photons moving to the right (+c) and the left (-c)
respectively, where c is the upper limit of the speed
of any particle. The four hyperbolic lines represent
the cases of I=+j, I=+1, are used to scale a unit
time and a unit distance lengths along the time and
the spatial axes in each appropriate quadrant
respectively.

The most important property of the interval, as
has been pointed out by Minkowski, is that it is
invariant with respect to coordinate transformations,
which can be easily proven algebraically [16].
Remember that in SR, we must use the set of
Lorentz transformation equations to transform the

T=jct

T =+j (1+ X 2)
(1=+)) \

Figure 1 A typical Minkowski’s spacetime diagram.
The two diagonal dashed lines are the worldlines of
photons travelling to the right (+c) and to the left (-c).
The four hyperbolic graphs are used for unit lengths
scaling of the axes in spacetime in each of its quadrant.

coordinates. As will be apparent later on, this
property holds the key to a deeper understanding of
the “clock paradox” problem. The author feels that
this invariant property of the interval has not been
emphasized enough in the literature or even in most
textbooks. In fact, starting off with the invariance of
intervals, most phenomena in SR can be derived
extremely easily. For students new to SR, they
should accept this property as one of the important
laws of nature, in the same way that they are told to
accept other laws of nature.

3. THE CASES
REFERENCE

OF TWO INERTIAL FRAMES OF

In order to gain a better insight into the “clock
paradox” problem; we will, firstly, consider the cases
of two inertial frames of reference. Strictly speaking,
observers in two inertial frames can meet at only one
common event, that is when the two observers are at
the same spatial coordinates at the same time, and
the two observers can wuse the opportunity to
synchronize their clocks. As they move apart, the
observer in each frame can measure the time of an
event in the other frame. The resulting
measurements will indicate to each observer that the
clock of the moving observer is slow by exactly the
same factor of (1 — v*/c?)"?, where v is the relative
speed between the two frames and c is the speed of
light in free space. So the natural question arises
that whose clock is correct? Because of the
symmetry of this effect, we usually referred to such
an arrangement as the symmetrical case. This is the
most important effect that renders confusions into
the phenomenon of the “clock paradox”. In most
textbooks students are told not to worry about it,
since the two observers in their inertial frames can
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never meet again. Therefore, there is no way for
them to compare their respective times. In fact,
there is a way for the two observers to compare their
times by transmitting their measured times of the
events to each other, say, by using encoded beams of
light. In any case, such questions are meaningless,
since the events in the two frames are different and
distinct. Therefore, each observer is measuring the
times of two separate situations, which should really
not lead to any paradox. The two observers
(assuming they are well educated) should also
understand perfectly well that the clock in the frame
which is moving relative to the observer’s own frame
appears to be slow because of the SR effect.

Next we will consider a more important case
which should lead to better insight for the “clock
paradox” problem, by still using two inertial frames
of reference, but there is only a single physical event
in one of the two frames, which can be shown
graphically using spacetime diagrams as in figures 2a
or 2b. Therefore, strictly speaking, the two inertial
frames are now non-symmetrical.

Figure 2a Shows two inertial frames of reference, where
the frame T-X is stationary and the frame T’-X’ is moving
to the right with a speed of 0.5774c.

In figure 2a, without any loss of generality, we
can let the frame T-X be a stationary frame, and
frame T-X’is moving to the right with a speed of,
say, approximately 0.5774c. Therefore, the angle
between the 7T and the 7’ axes, and the angle
between the X and the X’ axes are both 30°. We will
further let a be a physical event with an interval j1.5
situated on the 7T’ axis, which is the intersection of
the T’ axis with the hyperbolic line of constant
interval equals to j1.5. Therefore, the time of the
event as measured by an observer in the frame T-X’
is j1.5, while the spatial coordinate as measured by
the same observer is zero. It is immediately seen that
the interval of the event a, as measured by the
observer in the frame T-X’, is indeed jl1.5. The time
and the spatial coordinates of the event a, as
measured by the observer in the frame 7-X, are
approximately j1.84 and 1.06 respectively. It should
be noted from the spacetime diagram that these two
values are measured by drawing the lines parallel to
the X and the T axes, since in order to make the
measurement, the observer in the frame 7-X must

imagine that he is situated at the event a’s
coordinates. Do not confuse that the two parallel
lines represent some sort of remote measuring signal
beams! It is then quite straightforward to calculate
that as far as the observer in the frame 7T-X is
concerned, the interval value of the event a also
equals to j1.5.

Figure 2b Shows the opposite case of figure 2a, where
the frame T’-X’ is now stationary and the frame T-X is
moving to the left with a speed of 0.57

Figure 2b shows the case when we let the frame
T-X’ be stationary and the frame 7T-X is then
moving to the left with a speed of approximately
0.5774c instead. This is the reverse situation to the
case of figure 2a. The event a must remain on the
line of j1.5 interval. It is immediately seen that in
the frame T-X’, the time coordinate is j1.5 and the
spatial coordinate is zero, while in the frame 7T-X,
the time and the spatial coordinates remain
approximately equal to j1.84 and 1.06 respectively.

One of the obvious results from figures 2a and 2b
is that for any two inertial frames having coincident
events at their origins, and suppose there is only one
frame that possesses another physical event, say a,
along the time axis. The time of the event a as
measured by an observer in the event frame will be
the slowest (or the smallest value). This follows
immediately from the invariant property of the
interval. Since measurement from the other frame
will have non-zero time and spatial coordinates;
therefore, in order to keep the same value of
interval, the time coordinate must be faster (or
larger) than the value as measured from the event
frame, to take into account the non-zero spatial
coordinate value. This can be readily seen from the
definition of the interval, i.e. I = (X* — |T]%)"% We
will make use of this conclusion to gain insight to
the “clock paradox” problem later on.

It is important and informative to consider what
would happen if we were to put another physical
event, say x on the T axis of figure 2a also having a
time value of j1.5, then we can readily show that an
observer in the T-X’ frame will read the time of the
event x to be j1.84, exactly symmetrical to the case
of the event a as described previously. Such a
consideration is the fundamental cause of all the
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confusions and controversies surrounding the “clock
paradox” problems stated previously. However,
before we go into a state of despair, let us consider
the situation more carefully. Since the events a and
x are different and distinct physical events, the fact
that both observers measure different times for both
events are perfectly allowable, and the resulting
measured values follow the SR theory exactly. Both
times will be real to each observer, as we will argue
for in the following paragraphs. In fact, if the
measured times of the two events in each observer’s
frame were to be the same value, then it is time that
we should start despairing for the future of the SR
theory!

Figure 3b Shows a more general case figure 2b

Before making further observations, we will
consider more general cases of figures 3a and 3b,
where in the figure 3a, the frame 7-X is stationary
and the frame T-X’is moving to the right with a
speed of 0.5774c, which is the same as in figure 2a.
We will arbitrarily choose a physical event b having
j1.5 interval and is moving to the right with a speed
of 0.2679¢c. Therefore, the angle of the worldline of
the event b will be 15° with respect to the 7 axis.
Using such a spacetime diagram, the measured
values of the time and spatial coordinates of the
event b by the observer in the frame 7-X are j1.56
and 0.43 respectively, while the same respective
values from the point of view of an observer in the

frame T-X’ are jl.61 and —0.58. We can readily
check that both sets of coordinates yield the same
value of interval equals to j1.5.

Next we transform the frames, as in figure 2b, so
that now the frame T-X’ is stationary and the
frame 7T-X is moving to the left with a speed of
0.5774c. We will also transform the worldline of the
event b, so that the relationships to the two frames
are still the same. In order to do this we can use the
“velocity addition” formula as first announced by
Einstein, which can be written as:

w=(u+v)/(1+uv/c?) (2)

where u is the speed of the frame 7T-X with respect
to the frame T-X’ after transformation, v is the
speed of the event b with respect to the frame T-X
before transformation and w is the speed of the
event b with respect to the frame T-X’ after
transformation. Equation (2) can be expressed in
terms of various appropriate tangents of angles by
dividing through with c. We can then easily
substituting the appropriate tangent numbers to
obtain the angle between the worldline of the event
b with respect to the time axis of frame T-X’, which
is approximately —20.1°, where the minus sign
indicates that the worldline will be on the left side of
the T’ axis, but the event itself is still on the line of
constant j1.5 interval. From the graph of figure 3b
we can obtain the time and the spatial coordinate
values with respect to frame T-X’ to be j1.61 and
—0.58 respectively. The respective values of the time
and the spatial coordinates of the frame 7T-X are
j1.56 and 0.43. These two sets of values are exactly
the same as previously obtained from the figure 3a.

From the results of figures 2a, 2b, 3a and 3b, we
can conclude that provided the relationships of the
coordinates of a physical event with respect to the
two frames of reference that possess coincidental
origins are the same, the values of both the time and
the spatial coordinates of the event, as measured by
an observer in the same frame of reference, will be
invariant whether we consider the frame to be
stationary or moving. This make perfect sense, since
each observer in his own frame feels that the frame
is stationary, irrespective of the way it is shown in
the spacetime diagrams. In fact, in the cases of
figures 2a, 2b, 3a and 3b it is easy to transform the
two frames by substituting appropriate values into
the “velocity addition” formula (by either using
phantom perpendicular frames or using hyperbolic
geometry), so that neither of the two frames is now
stationary, and the resulting measured values of the
coordinates of the events a and b by the respective
observers are still the same as in the corresponding
cases of figures 2a, 2b, 3a and 3b! Therefore, the
time and the spatial values of the event as measured
by both observers in their own frames must be real
to the respective observers, since they are always the
same values, even if the values from the two frames
of the same event are different by the natural results
of non-simultaneity.
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The two conclusions in this section are all we
need to completely understand the phenomenon of
the “clock paradox”, as will be shown in section 5.
In fact, all the effects of the “clock paradox” exist
even when we consider only two inertial frames!
Since the values as measured by the two observers
can be remotely transmitted to each other. Thus,
using a third frame of reference for the return trip
simply increases the values of the elapsed times of
both observers, and it also provides a convenient
way to compare the times of the two clocks at the
end of the trip.

4. THE “CLOCK PARADOX” WITHOUT GENERAL
RELATIVITY

In this section we will demonstrate a method that
can be used in the “clock paradox” problem without
the need to consider the effects of various
accelerations and decelerations, at least in principle.
Such a method was first proposed by Lord Halsbury
in 1957 [17], as a “triplet” or a “three clocks”
problem, and can be briefly stated as follows:

Let A, B and C be three inertial frames of
reference. Frame A is stationary with a clock 1
situated initially at its origin. Frame B is moving
away to the right of frame A with a clock 2, and
frame C is moving to the left toward frame A with a
clock 3, where both clocks 2 and 3 are initially
situated at the respective origins of their frames. At
the event a, the origins of frame A and frame B
coincide with each other, and the times of clocks 1
and clock 2 are synchronized. At the event b, the
spatial origins of frame B and frame C coincide with
each other, and the time of clock 2 is transferred to
clock 3. At the event ¢, the spatial origin of frame C
coincides with the spatial origin of frame A, and the
times of clocks 1 and clock 3 can then be compared.

It is somewhat surprising that Lord Halsbury’s
method is not more widely known in the literature.
This is probably due to early objections that clocks 1
and clock 3 cannot be readily synchronized, since
they are not together at the initial event a. However,
as we have concluded in section 3, the times of clock
1 and clock 2 are real, so in transferring the time of
clock 2 to clock 3, and there is no need to
synchronize clock 1 and clock 3.

5. SPACETIME DIAGRAMS FOR THE
PARADOX” PROBLEM

“CLOCK

In this section, we will use the actual spacetime
diagrams of the “clock paradox” to reinforce our
argument in section 3. Figures 4a shows the simplest
version of such a spacetime diagram, where we will
assume the inertial frame 7-X to be stationary with
clock 1 situated at its origin. Another inertial frame
T-X’ is moving to the right at a speed of, say,
0.5774c. Therefore, the angle between the time axes
T” and T is +30°. The clock 2 is situated at the
origin of the frame 7T-X’ which coincides with the

a0 T T
T «

j3.764—> 1% 3.0

Figure 4a Shows the simplest spacetime diagram of the
“clock paradox” problem, using the frame T-X (stationary
frame) as the reference frame.

origin of the frame 7-X at the event a. Thus the
frame T™-X’ represents the outward-bound portion of
the trip of the clock 2. We will further assume that
when the clock 2 registers a time of j1.5 at the event
b, it starts to turn back by moving to the left with
the same speed, thus the b event is a physical event.
Furthermore, clock 2 is now in a different inertial
frame, say, T’-X"’, and the angle between the time
axes T and T is —30°. At the event ¢ the clock 1
will again be coincidental with the clock 2, and the
observers in their respective frames can compare the
elapsed times on their respective clocks. From this
example, we can see that the times registered by the
clock 1 at the events b and ¢ will be approximately
j1.837 and j3.674 respectively, while at the same two
events, the clock 2 will register time values of j1.5
and j3.0 respectively. Therefore, the clock 1 runs
faster than the clock 2 by approximately j0.674 unit
time. In other words, the travelling twin is younger
than the stationary twin.

We can understand this phenomena completely
by noting, firstly, that during the outward bound
trip, the spacetime relationships between the two
clocks are continuously constant between the two
events a and b, so the time of clock 1 will be such
that the continuously changing different values of
intervals of the moving clock 2 will be preserved by
clock 1 at every instant for the whole outward-
bound trip. Thus, at the event b the interval as
measured by the observers in the frames 7-X and
T-X’ will be equally j1.50. Therefore, the times as
read by their observers of the two clocks are real, as
we have concluded from section 3. We can apply
exactly the same reasoning to the inward-bound
portion of the trip. Thus, resulting in two different
times of clock 1 and clock 2 when they meet again.
We can certainly understand this results by using
the two conclusions from section 3. Firstly, the clock
1’s time is faster than the time of clock 2 because
clock 2’s spatial coordinate at the event b is zero,
whereas the spatial coordinate as measured by the
observer of clock 1 at the event b is non-zero and
the time of clock 1 has to be faster in order to
preserve the interval value of the event b. The same
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argument also applies to the inward-bound portion
of the trip. Secondly, because the times register by
the two clocks will be invariant, irrespective of how
we consider which frame to be stationary. Therefore,
the times as measured by the respective observers
will be real to the observers. At the end of the trip
when the two observers meet again, they will see no
real controversy, since they will understand that
their respective times are different because clock 1
and clock 2 have been through different regions of
spacetime. In fact, following our reasoning, it would
be shocking if their times were to be the same!

It is interesting and illuminating for the observer
of clock 2 at the event b to measure the time on the
T axis, which will be approximately j1.225. As
pointed out previously, this is the root of the
confusions, since it is different from the time as
registered by clock 1 at the same event, which is
j1.837. In fact, the time j1.225 as measured by the
outward-bound observer is physically meaningless
(which will be shown later on), since there is no
physical event at that time on the T axis. Even if we
were to arbitrarily put an event there, the time
j1.225 will then belong to an entirely different and
separate problem. This is because the outward-
bound observer’s measurement must stop at the
event b, and further measurement must be made by
in the inward-bound frame. Now the time as
measured by the outward-bound observer just before
the event b is j1.225, but the time on the T axis as
measured by the inward-bound observer just after
the event b is j2.45; thus, there is an apparent jump
of the time on the T axis just before and just after
the event b, as measured by the travelling observer.
This should not be surprising, since the travelling
observer changes the standard base of time
measurement just after the event b (which will be
explained in more detail later on). Therefore, it is
clear that the two sets of measurements during the
outward-bound and the inward-bound trips are
separate problems in themselves, as well as when
compared to the original problem. However, it
should be noted that after the event b, the time on
the T axis as measured by the travelling observer
will always be slower than the time on the T’ axis,
and at the end, at the event c, the respective times
on the T and the T’ axes will be j3.674 and j3.0
exactly as previously stated. We will consider the
physical significance (or mnon-significance) of such
apparent time jump a bit later.

Figures 4b and 4c illustrate the cases when we
consider the outward-bound and the inward-bound
frames to be stationary respectively. The readers can
inspect the diagrams and see that they lead to
exactly the same results of figure 4a. Thus,
confirming that the times as registered by clock 1
and clock 2 are invariant to the way we consider any
one frame to be stationary. In inspecting the figure
4b where the outward-bound portion of the trip is
stationary, the angle between the inward-bound time
axis (77’) and the T’ axis has to be found again by
using the “velocity addition” formula, resulting in an
angle of approximately —41°, and the same

procedure has to be used in figure 4c to obtain the
angle of the outward-bound time axis to the T axis,
when we consider the inward-bound frame to be
stationary.

T
. c .
J3.7—¥«—j3.0

—

Figure 4b Shows the case of using the outward-bound
frame as the reference.

T
j3.764 <30

Figure 4c Shows the case of using the inward-bound
frame as the reference.

Figure 5 Shows a more detailed consideration of the
figure 4a. Note that the equality of the times between the
events e-d and d-f is a special case of equal inward and
outward-bound speeds. It is not true in general.
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Figure 5 shows a more detailed break down of
figure 4a, where the three separate sets of reference
frames T-X, T-X’ and T”-X” are clearly shown.
Just before the event b, the outward-bound observer
measured the time of the event e on the T axis as
j1.225; and just after the event b, the inward-bound
observer measured the time at the event f, also on
the T axis, as j2.450. Thus, indicating an apparent
net (instantaneous) time jump of j1.225! From the
figure we can readily see that just before the event
b, the travelling observer uses the line e-b (which is
parallel to the X’ axis) to measure the time of the
event e on the T axis, but just after the event b, the
travelling observer uses the line f-b (which is parallel
to the X7 axis) to measure the time of the event f.
This is clearly the reason for the apparent time
jump. It is also clearly seen, from the point of views
of the observers in the outward-bound and the
inward-bound portions of the trips, that these are
separate problems. It should also be noted that the
times of the events e and f are the last and the first
times that the travelling observers can measure just
before and after the event b respectively. There are
no other last and first times measurement possible.
From figure 5, the time of the event e is slower than
the time of the event d by j0.613; similarly, the time
of the event f is faster than the time of the event d
by an equal amount, but this is only a special case of
equal outward-bound and inward-bound speeds, and
we should not infer any special physical significance
into the equality of the time differences. In general,
when the speeds are unequal, the time differences
will also be unequal. In fact, from figure 5, we can
readily see that the value of time at the event f as
read by the inward-bound observer will always be
greater that the time at the event d. Therefore, it
really does not matter what the values of the times
at the events e and f are, the inward-bound observer
will always read the time of clock 1 at the event ¢ as
j3.764, while his own time on clock 2 will read j3.0,
exactly as expected. This argument tends to support
the author’s assertion initially that the values of
times at the arbitrarily introduced events e and f are
physically meaningless!

From the aforementioned discussions, it should
be cleared to the readers that there are indeed three
separate problems, and they should be considered
separately on their own to avoid confusions.
However, the final combined results will be the
correct one. The problem that contains real physical
events is the important one, and in analyzing such a
problem there will be no apparent non-physical
effects. In any case, no matter how we choose to
analyze the problem, it seems that the law of the
invariance of interval reigns supreme in nature,
preventing any possibility of an impossible situation.

6. CONCLUSIONS

In this paper, we have shown that by carefully
considering the concept of the invariance of the
interval for a pair of physical events in spacetime,

we can eliminate all the confusions that surround the
phenomenon of the “clock paradox”, including, but
not limited to, the believe that such an effect
requires non-symmetrical frames of reference, or
requires accelerations and decelerations, or requires
general relativity to properly understand the
problem, or requires an absolute frame of reference.
The non-symmetry required is not in the frames of
reference, but rather in the events that are attached
to the frames.

There is certainly no new physics on offer in this
paper. However, we believe that the way we looked
at the physical significance of the invariance of the
intervals of physical events in spacetime is new, and
enable us to completely show why the “clock
paradox” phenomenon happens. Most of the former
publications seem to show how such phenomenon
comes about, rather than why, and will only leave
the readers to feel more uncomfortable and confused.
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