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Abstract

Multivariate statistical techniques, such as cluster analysis (CA), discriminant analysis (DA),
principal component analysis (PCA), and factor analysis (FA) were applied to evaluate temporal
and spatial variations of water quality and to identify potential pollution sources of U-tapao River
Basin (URB). A large set of water quality data were collected from 21 monitoring stations of river
during five years (2007-2011) and analyzed for 12 parameters. Hierarchical cluster analysis
grouped 21 sampling sites into three clusters, relatively less polluted (LP), medium polluted (MP)
and highly polluted (HP) sites, and based on the similarity of water quality characteristics. From
DA, five significant parameters including temperature, pH, dissolved oxygen, fecal coliform
bacteria and ammonia were identified with correctly assign about 69.6% for the temporal variation
and four significant parameters temperature, pH, dissolved oxygen and ammonia with correctly
assign about 63.3% for the spatial variation. PCA/FA, applied to analyze the data sets of the three
different groups obtained from cluster analysis, resulted latent factors accounting for 75.16%,
76.01% and 70.51% of the total variance in water quality data sets of LP, MP and HP areas and
also accounting for 72.97% and 71.51% of the total variance in water quality data sets of wet and
dry seasons respectively. The PCA/FA assisted in extracting and recognizing the factors
responsible for spatial and temporal variations and indicated that the parameters for water quality
variations are mainly related to organic pollutants and showed that agriculture and urban activities
were the major pollutant sources.
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1. Introduction

Water quality has become one of the major environmental concerns worldwide and is influenced
by natural and anthropogenic disturbance, such as wastewater, runoff effluents, land reclamation,
atmospheric deposition and climate change [1]. In recent years, more and more attention has been
paid to surface water quality because of its strong linkage with human well being [2-3]. The
quality of river at any point reflects several major influences, including the lithology of the basin,
atmospheric inputs, and climatic conditions [4] and governed by both natural process and
anthropogenic effects [5-9]. So, wastewater from agricultural, industrial and urban activities and
often natural processes such as erosion and weathering degrades water quality and impair their use
for drinking, industrial, agriculture, recreation or other purposes [10]. Clean river water is a vital
commodity for the well-being of human societies, and damage of inland aquatic system was one of
the most serious environmental problems of the last century [11]. Rivers, due to their role in
carrying-off the domestic and industrial wastewater and run-off from agricultural land in their vast
drainage basin are among the most vulnerable water bodies to pollution [12]. Discharges from
municipals and industries are considered as a point source while surface runoff is as a non-point
source due to its characteristics that are highly influenced by spatial and seasonal changes [13-15].

Spatial and temporal variability in water chemistry in rivers and streams is directly
related to different factors. Rivers and streams are highly heterogeneous at different spatial scales.
The spatial heterogeneity within the stream is due to local environmental conditions that change
through time and differences in local channel form, while degree of temporal variability of surface
water chemistry varies as a function of stream/river type and depends on the chemical parameter
of interest [16]. Due to spatial and temporal variations in water quality, regular monitoring
programs are recognized to be the essential step to characterize and control the surface water
pollution [17]. However, many monitoring programs result in large and complicated data sets
consisting of physical, chemical, biological and microbiological properties, which are difficult to
analyze and interpret because of latent interrelationships among parameters and monitoring sites
[3]. For this reason, multivariate statistical methods like cluster analysis (CA), discriminat analysis
(DA), principal component analysis (PCA) and factor analysis (FA) have been widely applied to
interpret and derive useful information from complicated data about water quality studies [14-21].

In recent years, many studies related to these methods have been carried out. For
instance, multivariate statistical methods, such as FA was used by Charkhabi and Sakizadeh [22]
to identify the sources of pollution and temporal variation of water quality of Anzali wetland,
Northern Iran. Similarly, Zhou et al [3] used PCA and CA to classify the sampling sites and to
identify the latent pollution source. And, Zhao and Cui [23] used CA and FA to find the temporal
variation of water quality of Luan River, China, taking 19 parameters of 10 stations. Further,
multivariate methods, like, CA, DA and PCA/FA were used by Shrestha and Kazama [4] to
analyze the water quality dataset, including 12 parameters at 13 sites of the Fuji river basin from
1995-2002 to obtain temporal and spatial variations and to identify potential pollution sources.
Again, Huang, Ho and Du [24] used CA, DA and PCA to analyze the costal water quality from 22
inshore sampling sites to extract latent information about the similarities or dissimilarities among
the monitoring periods or sites and identify pollution sources leading to spatiotemporal variations
in water quality in Macau peninsula. Obviously, previous studies provided valuable insights into
the application of CA, DA and PCA techniques to environmental management and protection.
However, comprehensive application of CA, DA and PCA/FA to analysis of the river water
quality along U-tapao River Basin regarding spatial-temporal variation and sources identification
has not been conducted.

Therefore, in this study, the data sets obtained during 2007-2011 in U-tapao River Basin
in southern Thailand, were analyzed with CA, DA and PCA/FA. The objectives of this study were:
(1) to extract information about the similarities or dissimilarities between monitoring sites, (2) to
identify significant parameters responsible for temporal and spatial variations in river water
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quality, (3) to find the influence of possible pollution sources on water quality parameters. The
results of this study are expected to be helpful to optimize river-monitoring plan and provide a
valuable tool in developing assessment strategies for effective water quality management as well
as rapid solutions on pollution problems. In addition, this study is aimed to provide information
and scientific understanding to policy makers, environmentalists and researchers dealing with
these kinds of river systems and yet have not been the subject of scientific investigation.

2. Materials and Methods

2.1 Study area

U-tapao is a sub-basin of Songkhla lake basin (SLB) which is located in southern part of Thailand.
The basin is about 60 km long from north to south, and 40 km wide from west to east, and total
coverage is about 2,305 square kilometers. The longitude and latitude of basin is 100° 10' through
100° 37° E and 6° 28' through 7° 10" N respectively (Figurel). Basin has a tropical monsoon
climate and it is governed by two monsoons; the southwest monsoon and the northeast monsoon
with average rainfall of approximately 1800 mm per annum varying between 1600 and 2400 mm
and temperature of the area varies between 24°C and 32° C throughout the year. In the basin, more
than 75% of area is covered by agricultural land use and about 13 % by forest and forest land is
located mostly in mountainous areas, whereas agricultural and grassland areas are sparsely
distributed throughout the basin. U-tapao is one of the most important rivers of SLB which has 10
tributaries including major and minor ones. The river serves as a major source of domestic and
industrial water supply for Hatyai and Songkhla cities. During its course of 90 kms, it receives
pollution load from both point and non-point sources.

2.2 Parameters and monitoring stations

The secondary data of 12 water quality parameters : water temperature (TEMP), pH, dissolved
oxygen (DO) biological oxygen demand (BOD), suspended solid (SS), electrical conductivity
(EC), turbidity (TUR), fecal coliform bacteria (FCB), ammonia (NH3), nitrate (NO3), nitrite (NO>)
and total phosphorous(TP) at 21 monitoring stations over 5 years (2007-2011) were collected
from the Environmental Office -16, Songkhla and this organization is the authentic organization of
collecting and maintaing data of southern region of Thailand. The water quality parameters, their
units and descriptive statistics are mentioned in Table 1. Thai metrological department has
categorized southern part of Thailand into two seasons. So, all data were divided into two parts, i)
dry season (February, March, April and May) and ii) wet season (June, July, August, September,
October, November, December and January) for seasonal variation analysis.

In this study, station 1 to 9 represent upstream region of basin and most of areas are less affected
from human activities, out of which, station 1-3 are the least effected regions. Station 10 to 17
represent midstream region of basin and most of areas were affected by almost all types of
pollution from residential, agricultural and industrial activities. Most of rubber processing and
agricultural based industries are located along the station 12 to 17. Station 18 to 21 represent
downstream region of basin and these are highly affected from agriculture based pollutants and
station 20 and 21 are highly affected by agricultural, as well as shrimp and pig farming activities.
Overall, the most of industries are located on the banks of river with about 10% at the upstream,
65% at midstream and 25% at downstream region. The main commercial city, Hatyai is located in
midstream region whereas traditional city, Songkhla is located in downstream region of the basin.



KMITL Sci. Tech. J. Vol. 12 No. 1 Jan. - Jun. 2012

ST-1 Sapan langwat huayku
ST-2 Office of Water Work ,Sadao
ST-3 Mitr Sampan Community
ST-4 Sanepong School Bridge

ST-5 Ban Nam Hua Bridge

: Y ) ST-6 Safe Skin Industry

ST-7 Ban Huathanon Bridge

sts 1
> > (A \ ST-8  Ban Takian Pao Bridge
G '-“"‘S:i o g
S TS - . o
7 = j’ﬁ‘n‘\ { ST-9  Ban Tha Pho Ok Bridge
l st E »
/ 7 2= NS e At P .
= n‘Y 2 ST-10  Muang Kong Temple Bridge
ST-11  Ban Prao Bridge
ST-12 Siam Fiber Board Cooperation

ST-13  Ban Klong Pom Bridge

ST-14 Public Works Bridge, Klong Pla
ST-15  Bangsala Temple Bridge
ST-16  Hatyai University Bridge

ST-17  Utapao Canal Water Gate

Legend
ST-18  Ta Sae Temple Bridge

Monitoring Stations . q
O 9 R ‘ J - ST-19  Narong Nok Temple Bridge
7 el ~ .
River Network RAYEN ‘ __ ST-20  Wat Kutao Bridge

PN ST-21  Songkla Laguna Bridge
0 5 10 20 Kilemeters
i i i i i J

Figure 1 Map of study area and surface water quality monitoring stations (listed ST-1 to ST-21) in
the U-tapao river basin (URB).
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Table 1 Mean, standard deviation, minimum and maximum values of 12 water quality parameters
(WQP) of U-tapao river of 21 monitoring stations from year 2007 to 2011

wQP Mean SD Min Max
TEMP (°C) 28.96 1.75 25.12 34.37
pH 6.891 0.925 2.907 12.531
BOD (mg/L) 3.597 2.431 0.931 16.243
DO (mg/L) 4.109 1.396 0.802 11.237
EC (us/cm) 766.09 4,249.25 24.00 52,800.00
SS (mg/L) 45.72 45.37 7.00 189.00
TUR (NTU) 40.38 29.23 3.81 151.03
FCB (mpn/100ml) 13,878 31,341 1,300 1,600,000
NH; (mg/L) 0.458 1.126 0.010 3910
NO; (mg/L) 1.066 1.185 0.110 4.980
NO, (mg/L) 0.622 1.388 0.003 5.521
TP (mg/L) 1.081 2.683 0.010 3.133

2.3 Statistical methods

In this study, multivariate statistical techniques were used to analyze the huge data set of 21
monitoring stations of river basin. The application of different multivariate statistical techniques,
such as cluster analysis (CA), principal component analysis (PCA), factor analysis (FA), assists in
the interpretation of complex data matrices to better understand the water quality and ecological
status of the studied systems, allows the identification of possible factors that influence water
environment systems and offers a valuable tool for reliable management of water resources [4].
All mathematical and statistical calculations were implemented using SPSS version-12 and
Microsoft Office Excel 2007.

2.4 Data treatment

Prior to multivariate statistical analysis, the normality of the distribution of each variable was
checked. The Kolmogorove-Smirnov (K-S) statistics were used to test the goodness of fit of the
data to log-normal distribution [4]. According to the K-S test, all the variables were log-normally
distributed with 95% or higher confidence. CA and PCA/FA were applied on experimental data
standardized through z-scale transformation in order to avoid misclassification due to wide
differences in data dimensionality [20]. To examine the suitability of the data for PCA/FA, Kaiser-
Meyer-Olkin (KMO) and Bartlett’s Sphericity tests were performed [4]. In this study, the KMO is
0.647 (>0.6) and the significance level of Barelett’s test was less than 0.05, so the data set was
found to be appropriate for factor analysis.

3. Results and Discussion

3.1 Cluster analysis (Spatial similarity and site grouping)

Since one of the objectives of this study was to identify similarities or dissimilarities among
monitoring sites and to distinguish each cluster analysis was applied to find out the similarity
groups between 21 monitoring sites. Cluster analysis was performed on the mean values of the
parameters for each of the stations. It yielded a dendrogram (Figure 2), grouping all 21 sampling
sites of the basin into three statistically significant clusters at (Dlink/Dmax) X 100 < 25. The
results separated three different groups (clusters) along the U-tapao River consisting all the
measured values.
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3.1.1 Group A: This group (cluster) could be regarded as relatively less polluted (LP) sites of the
river. Most of stations (ST-1, ST-2, ST-3, ST-4, ST-5, ST-7, ST-8, and ST-9) are situated at
upstream sites and ST-10 and ST-12 are situated the midstream region. In this area, the
urbanization and industrialization level is relatively low. Hence, the impact of human activities on
the riverine ecosystem is relatively low. The inclusion of the midstream sampling location in
cluster group suggests the self purification and assimilative capacity of the river. Most of this area
is underdeveloped. Although, the most of surrounding areas of ST-1, ST-2, ST-3, ST-4 and ST-5
are covered by forest and rubber plantations, some mining and the direct discharge of domestic
wastewater from villages somehow contaminated the water. Overall these sites are somehow
influenced by agricultural activities; however, less pollutant pressures from industrial and
household wastewaters.

3.1.2 Group B: This group (cluster) could be regarded as relatively highly polluted (HP) sites of
the river. Most of stations (ST-11, ST-13 and ST-16) are situated at midstream sites whereas ST-6
is situated in upstream and ST-18 and ST-20 are situated in downstream region. Most of sites are
located industrial and city area; therefore, these sampling stations received pollutants mostly from
domestic wastewater, wastewater treatment plants and industrial effluents. Beside these, untreated
sewage of agriculture activities and surface runoff from Hatyai city also increased pollutants.

3.1.3 Group C: This group (cluster) could be regarded as relatively moderate polluted (MP) sites
of the river. The stations ST-19 and ST-21 are situated at downstream region whereas for ST-14,
ST-15 and ST-17 are situated in midstream region. Most of land uses in this cluster are agriculture,
especially paddy fields, where relatively high levels of fertilizers and pesticides are used.
Therefore, these inputs reflect the result of soil erosion and leaching. Most of land uses of ST-14,
ST-15 and ST-17 are rubber plantation, so these sites receive pollution from non-point sources.
The water quality of ST-21 is poor because this site is surrounded by ancient town Songkhla.

The results indicate that the CA technique is useful in offering reliable classification of
surface water in the whole region and make it possible to design a future spatial sampling strategy
in an optimal method, which can reduce the number of sampling stations and associated costs of
sites [12-14].
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Figure 2 Dendrogram showing clustering of sampling sites according to surface water quality
characteristics of URB

12



KMITL Sci. Tech. J. Vol. 12 No. 1 Jan. - Jun. 2012

3.2 Correlation analysis (Interrelationship within parameters)

The correlation matrix of water quality parameters obtained from U-tapao river was examined.
Some parameters showed significant correlationship. DO was negatively correlated to BOD (r =
- 0.366, p<0.05), EC (r = - 0.433, p<0.05), TUR (r = - 0.267, p<0.01), NHj3 (r = - 0.680, p<0.05)
and TP (r = - 0.527, p<0.01). The negative relationship of DO with other parameters revealed the
high organic pollution along with anthropogenic activities in the present study area. Inverse
relationships DO with nutrients imply that the organic portion of nutrients play a major role for
depletion of dissolved oxygen in the river system. There is negative correlation between TEMP
and DO (r = - 0.136, p<0.01), which is natural process; warm water easily becomes saturated with
oxygen and thus can hold less DO. The value of DO decreases with increase in the value of most
of the polluted parameters; thus, it can serve as a single useful index of river water quality. And,
the strong negative relationship of DO with other parameters indicates a common anthropogenic
source.

3.3 Discriminant Analysis (Temporal/spatial variations in river water quality)

In this study, temporal variations of river water quality parameters were first evaluated through a
season parameter correlation matrix, using Spearman non-parametric correlation coefficients
(rs).The results shows that the parameters; TEMP, pH, BOD, DO, EC, TUR, FCB, NOs, NO, and
TP were found to be significantly (p<0.05) correlated with the season, except SS. Among these,
temperature exhibited highest correlation coefficient (r; = 0.73) followed by DO (rs= 0.52). The
season-correlated parameter can be taken as representing the major source of temporal variations
in water quality [4].

Temporal variations in water quality were further evaluated through DA. Temporal DA
was performed on raw data after dividing the whole data set into two seasons (dry and wet).
Discriminant functions (DFs) and classification matrices (CMs) obtained from the standard,
forward stepwise and backward stepwise modes of DA are illustrated in Table 2 and 3.The
standard and forward stepwise mode DFs, using 12 and 9 discriminant variables, respectively,
yielded CMs correctly assigning >69% of the cases. However, in the backward stepwise mode, the
DA produced a CM with close to 69.6% of the case, assignment using only five discriminant
parameters showing that TEMP, pH, DO, FCB and NH3; were significant parameters of temporal
variations in the river water quality.

Like temporal DA, spatial DA was performed with the same raw data set comprising 12
parameters after grouping into three major classes A, B and C obtained through CA. Just as
temporal DA, discriminant functions and classification matrices were also obtained from the
standard, forward stepwise, backward stepwise modes, showing in Tables 4 and 5. The standard
and forward stepwise mode DFs use 12 and 7 discriminant variables, respectively, correctly
assigning 63.3% and 63.9% of the cases to the two groups. In the backward stepwise mode, the
DA produced a CM with close to 63.9% correct assignment using only 4 discriminant parameters,
showing that TEMP, pH, DO and NH3 were significant parameters of spatial variables.

3.4 Principal component/factor analysis (Source identification)

In case of temporal variation, PCA/FA was executed on 12 variables for two seasons, in order to
identify important seasonal water quality parameters. An eigenvalue gives a measure of the
significance of the factor: the factors with the highest eigenvalues are the most significant.
Eigenvalues of 1.0 or greater are considered significant [4]. Classification of factor loading is thus
‘strong’, ‘moderate’ and ‘weak’, corresponding to absolute loading values of > 0.75, 0.75-0.50 and
0.50-0.30, respectively [20]. Corresponding, variable loadings and explained variance are
presented in Table 6 and strong loading values have been highlighted.

13



KMITL Sci. Tech. J. Vol. 12 No. 1 Jan. - Jun. 2012

Table 2 Classification function coefficients for discrimnant analysis of temporal variation in water
quality of URB

Parameters Standard mode Forward stepwise mode Backward stepwise mode
Dry Wet Dry Wet Dry Wet
TEMP 10.129 9.797 10.389 10.060 10.517 10.185
pH 5.989 6.198 6.541 6.744 5.847 6.025
BOD -0.198 -0.228 -0.189 -0.279
DO 3.953 3.838 3.836 3.720 3.898 3.800
EC 0.001 0.001 0.000 0.000
SS 0.910 0.980
TUR 0.342 0.337 0.280 0.275
FCB -2E-6 -2E-6 -2E-6 -2E-6 -8-E6 -3-ES
NH; 13.038 14.256 6.155 7.301 8.376 9.322
NO; 74.426 75.353
NO, -54.398 -55.149
TP 15.552 15.994 3.128 3.392
Constant -245.112 -238.226 -143.204 -185.188 -185.586 -177.281

Table 3 Classification matrix for discriminant analysis of temporal variation of water quality

Period assigned by DA
Seasons Percent correct Dry Wet
Standard DA Mode
Dry 48.4 92 125
Wet 79.5 221 57
Total 69.2 313 182
Forward stepwise DA mode
Dry 48.4 92 125
Wet 80.2 223 55
Total 69.5 315 180
Backward stepwise DA mode
Dry 49.8 95 122
Wet 80.9 225 53
Total 69.6 320 175

14
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Table 4 Classification function coefficients for discrimnant analysis of spatial variation

wQP Standard mode Forward stepwise mode Backward stepwise mode
Group | Group | Group | Group Group Group | Group | Group | GroupC
A B C A B C A B
TEMP 10.757 | 11.410 11.235 10.922 11.576 11.404 | 10.929 | 11.577 | 11.397
pH 7.272 7.757 7.437 7.112 7.588 7.275 7.157 7.644 7.341
BOD -0.317 -0.294 -0.310 0.031 0.055 0.045
DO 1.888 1.051 1.077 2.090 1.258 1.288 2.026 1.940 1.227
EC 0.001 0.001 0.001 0.000 0.000 0.000
SS 0.920 0.916 0.927
TUR 0.343 0.347 0.354
FCB -3E-5 -4E-5 -5E-5 -3-E5 -4E-5 -3-E5
NH; 15417 | 15.063 16.192 | 10.247 | 9.940 11.005 | 9.985 9.739 10.811
NO; 78.955 | 79.831 81.353
NO, -59.265 | -60.542 | -61.598
TP 17.306 | 17.638 17.895
Constant | -251.33 | -271.11 | -266.30 | -186.62 | -205.73 | -198.83 | -186.24 | -205.30 | -198.290

Table 5 Classification matrix for discriminant analysis of spatial variation

Period assigned by DA
Season Percent correct Group A Group B Group C
Standard Mode
Group A 82.2 171 11 26
Group B 38.3 38 42 46
Group C 45.6 50 45 65
Total 63.3 259 98 137
Forward stepwise mode
Group A 822 171 9 28
Group B 36.3 37 42 47
Group C 455 51 41 68
Total 63.9 259 92 143
Backward stepwise mode
Group A 81.2 169 7 32
Group B 37.1 36 43 47
Group C 46.1 53 38 69
Total 63.9 258 88 148

For dry season, VF1, which explained 21.07% of the total variance, had strong positive
loadings on EC and moderate loading on SS and TUR, and had high negative loadings on NOs.
This factor indicates that during this period, the surface runoff originated from the fields
containing high load of solids from waste disposal source [4]. VF2, which explained 19.45% of
the total variance, had strong negative loadings on pH and moderate negative loading on TEMP
and positive loading on TP. This factor explains forming of organic acids leading to decrease pH.
VF3, which explained 16.93% of total variance, had strong positive loading of NO,. NO, has
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relationship with runoff from agriculture field, so the contamination in this period is associated
with agriculture as well as solid waste disposal activities of cities and towns [23]. VF4, which
explained 15.05% of the total variance, had strong positive loading on DO and moderate negative
loading on NH3.

For wet season, VF1, which explained 21.05% of the total variance, had strong positive
loadings on TP and negative loadings on NH3.VF2, which explained 18.64% of the total variance,
had strong negative loading on NH; and moderate positive loading on DO. These factors indicate
the decrease of organic pollution in this period. VF3, which explained 17.27% of the total
variance, had high positive loading on EC and moderate negative loading on TEMP and moderate
positive loading on TUR. This factor explains the erosion from upland areas during rainfall or
similar events [4]. VF4, which explained 14.08% of the total variance, had strong positive loading
on NO;s. This factor explains the pollution of river due to surface runoff.

From factor analysis of seasonal variation explained that, in dry season the river received
pollution mostly from point sources as opposed to wet season, where it received higher amount of
nutrients from surface runoff from agriculture areas. The strong positive loading EC and strong
negative loading of pH on both seasons is a peculiar thing. Actually, U-tapao river is connected to
Songkhla lake (or lagoon) from where salty water enters into river system. The concentration
amount of salinity depends upon seasonal pattern and EC and pH are also related with salinity. So,
there is high variation of EC and pH value and showed strong positive and negative loading in
both seasons.

In case of spatial variation, Principal component analysis/factor analysis was performed
on the normalized data sets (12 variables) separately for the three different regions, viz., groups A
B, and C as delineated by CA techniques, to compare the composition pattern between analyzed
water samples and identify the factors influencing each one PCA/FA of the three data sets yielded
four VF for the group A, three VF for group B and four VF for group C with eigenvalues >1,
explaining 71.62%, 71.77% and 72.01% of the total variance in respective water quality data sets
(Table 7).

For the data set pertaining to group A, among four VFs, VF1, which explained 22.35% of
total variance, had strong positive loading on BOD and NOs and moderate positive loading on
TUR and NHs. Since, BOD and NO; represent organic pollution and this factor represents the
contribution of non-point source pollution from rubber plantation areas. In these areas, farmers use
the nitrogenous fertilizer, which undergo nitrification processes, and the rivers receive nitrate
nitrogen via groundwater leaching [4] and moderate loading of TUR explains the erosion from
upland areas.VF2, which explained 19.36% of total variance, had strong positive loading on DO
and SS and moderate positive loading on FCB and moderate negative loading on TEMP. Since the
inverse relationship between TEMP and DO is a natural process, the warmer water becomes
saturated more easily with oxygen and it can hold less dissolved oxygen [16]. Strong positive
loading of SS and FCB explain domestic wastewater contaminated by fecal pollution from local
livestock, especially pig farming. VF3, which explained 17.70% of the total variance, had positive
loading on EC and NO,. Generally, geological deposits, natural or organic matter decomposition
and agriculture runoff are sources of NO, [16]. VF4, which explained 15.74% of total variance,
had strong negative loading on TP and moderate positive loading pH. This factor represents the
erosion effect during cultivation of soil and associated organic matter.

For group B, VF1, which explained 35.04% of total variance, had strong positive loading
on pH, EC and NO, and moderate positive loading on TUR. The existence of high loading on pH
and EC is due to a lot of ions from industrial pollution. This factor explains the anthropogenic
activities on the surrounding areas by the physiochemical source of variability [4]. And strong
positive loading of NO, with positive loading of TUR indicates the relationship of river runoff
from the agricultural field along with waste disposal activity [26]. VF2, which explains 22.65% of
total variance, had strong positive loading on FCB and moderate positive loading on TP. This
factor explains the effects of pollution from domestic waste as well as livestock waste from
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surrounding areas because FCB is strongly related to municipal sewage and wastewater treatment
plants along the river [4]. VF3, which explained18.32% of total variance, had high negative
loading on DO and positive loading on NH3. Negative relationship between NH; and DO can be
explained such that high levels of dissolved organic matter consume large amount of oxygen [16].
This factor explains the organic pollution from municipal sewage and industrial wastewater [14].

For group C, VF1, which explained 19.82% of total variance, had high positive loading
on TP and moderate negative loading on TUR. This factor explains agricultural runoff from
phosphorous based fertilizers and the domestic wastewater particularly containing detergents
contribute to elevated levels of phosphorous in surface waters [26]. VF2, which explained 18.35%
of total variance, had high positive loading on pH and negative loading on NO,. VF3, which
explained 17.97% of total variance, had moderate positive loading on TEMP, DO and EC. This
factor explains the downstream dilution effect of water. VF4, which explained 16.67% of total
variance had strong positive loading on NHs. This factor explains the pollution from domestic
wastes and stream bed material [26].

From PCA/FA showed that the level of pollution generally increases from upstream to
downstream of the river. Overall, there were three types of pollution in the study area: organic
pollution, nutrients pollution, and fecal pollution. The Group B sites (HP) influenced by household
wastewater presented the highest concentrations of nutrients and extremely high pollution due to
discharge of wastewater from industry and domestic. The Group C sites (MP) were influenced
from pollution from agriculture runoff and domestic waste from city area, since domestic
wastewater discharges from the dense combined sewer system from city, fecal pollution was one
of the potential pollution sources for both Group B and Group C. The Group A (LP) sites were
influenced especially by agricultural facilities; however, this was less pollutant pressures than
industrial and household wastewaters.

Table 6 Loadings of experimental variables (12) on principal components for two seasons

Variables Dry Season Wet season

VF1 VF2 VF3 VF4 VF1 VF2 VF3 VF4
TEMP -0.488 0.646 0.248 -0.339 0.256 0.113 -0.738 -0.066
pH -0.231 -0.912 -0.186 0.116 -0.827 0.253 0.158 0.128
BOD 0.132 0.144 0.520 -0.230 0.438 -0.480 0.289 0.226
DO 0.198 -0.201 -0.132 0.876 -0.204 0.725 0.062 0.020
EC 0.764 -0.601 0.132 0.155 -0.102 0.238 0.957 -0.127
SS 0.562 0.079 -0.037 0.245 0.031 0.456 -0.034 -0.334
TUR 0.742 0.077 0.117 -0.024 0.423 -0.207 0.626 -0.215
FCB -0.181 0.012 -0.139 0.411 -0.154 0.329 -0.241 0.048
NH; -0.273 0.100 -0.204 -0.730 -0.035 -0.994 -0.067 -0.067
NOs -0.753 -0.152 0.534 0.351 -0.028 -0.006 -0.190 0.981
NO2 -0.177 0.224 0.943 0.046 0.639 -0.009 0.051 0.675
TP 0.122 0.745 0.616 0.036 0.986 -0.014 -0.074 0.144
Eigenvalue 2.529 2.334 2.033 1.861 2.580 2.237 2.073 1.691
% Total variance 21.075 19.451 16.938 15.506 21.504 18.641 17.278 14.088
Cumulative % 21.075 40.526 57.464 72.970 21.504 40.145 57.423 71.511
variance
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Table 7 Loadings of experimental variables (12) on principal components for Group A, Group B
and Group C data sets

Group A Group B Group C

VF1 VF2 VF3 VF4 VF1 VF2 VF3 VF4 VF1 VF2 VF3
TEMP 0.294 -0.612 0.144 0.326 0.333 -0.209 0.691 -0.072 -0.738 0.074 0.431
pH -0.091 -0.149 0.399 0.732 -0.286 0.772 -0.074 0.350 0.759 -0.103 -0.164
BOD 0.750 -0.217 -0.195 -0.016 0.158 -0.713 0.009 0.350 0.328 0.247 0.656
DO 0.514 0.770 -0.082 -0.147 -0.463 0.078 0.528 -0.171 -0.013 -0.036 -0.812
EC -0.148 0.033 0.872 0.219 -0.352 0.176 0.736 -0.006 0.998 0.053 0.009
SS -0.077 0.750 0.395 0.273 0.101 0.472 0.096 -0.387 0.487 -0.102 -0.140
TUR 0.647 0.212 -0.334 0.042 -0.737 -0.252 0.349 -0.155 0.712 -0.230 0.514
FCB -0.273 0.653 0.133 0.202 0.473 0.244 0.440 0.497 -0.130 0.989 -0.030
NH; 0.686 0.025 0.036 -0.494 -0.347 -0.117 -0.360 0.794 -0.279 -0.127 0.926
NOs 0.845 -0.425 -0.128 -0.009 0.698 0.363 -0.275 -0.367 -0.572 0.437 -0.270
NO2 -0.233 0.175 0.913 -0.076 0.317 -0.792 0.041 -0.345 0.899 0.307 0.088
TP 0.032 -0.198 -0.050 -0.900 0.767 0.142 0.449 0.258 -0.480 0.737 0.445
Eigenvalue 2.683 2323 2.124 1.890 2.259 2.104 2.037 1.942 4.206 2.718 2.198
% Total 22.359 19.361 17.701 15.746 19.826 18.534 17.978 16.179 35.047 22.650 18.320
variance
Cumulative 22.359 41.750 59.422 75.168 19.826 37.361 54.339 70.518 35.047 57.697 76.017
% variance

4. Conclusions

In this study, multivariable statistical methods were successfully applied to evaluate temporal and
spatial variations in river water quality and source identification at the monitoring sites in U-tapao
River Basin. Hierarchical cluster analysis grouped 21 sampling sites into three groups, i.e., less
polluted area, moderate polluted area and high polluted area based on their similarity of water
quality characteristics. Based on obtained information, it is possible to design an optimal sampling
strategy, which could reduce the number of sampling stations and associate costs. Also this
analysis allowed the identification of three different zones in the river, with different water quality.
From correlation analysis, the negative relationship DO with other parameters reveals the high
organic pollution along with anthropogenic activities in the basin. Discriminant analysis gave the
best results both spatially and temporally. For the temporal variation analysis, the DA used only
five parameters (TEMP, pH, DO, FCB and NH3) with close to 69.6% correct assignment. It was
found that a parameter that can be significant in contribution to water quality variations in river for
one season may less or not be significant for another one. For the spatial variation analysis, the
DA also used only four parameters (TEMP, pH, DO and NHs3) and correctly assigned about
63.9%. Therefore, DA allowed a reduction in the dimensionality of the large data set, delineating a
few indicator parameters responsible for large variations in water quality. Although the
factor/principle component analysis did not result in a significant data reduction, it helped extract
and identify the factors/sources responsible for temporal and spatial variations in river water
quality. Factor analysis explained in dry season the river received comparatively high amount
point source pollution from domestic and industrial sector whereas in wet season, the received
pollution from non point source like surface runoff from agriculture and residential areas.
Varifactors obtained from factor analysis indicate that the parameters responsible for water quality
variations are mainly related to temperature and organic pollution in relatively less polluted areas
and organic pollution and nutrients in both medium and highly polluted areas in the basin.
Considering the results of the measured physiochemical water parameters and the results of factor

18



KMITL Sci. Tech. J. Vol. 12 No. 1 Jan. - Jun. 2012

and cluster analyses, the agriculture and urban land use were the most contributing factors to the
pollution of the river. Thus, this study illustrates the usefulness of multivariate statistical
techniques for analysis and interpretation of complex data sets, and in water quality assessment,
identification of pollution sources/factors and understanding temporal/spatial variations in water
quality for effective river water quality management. It is recommended to Environmental Office-
16, Songkla to adjust more water quality parameters for effective monitoring system and might
reduce the monitoring stations for cost benefit purpose.
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