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Abstract 
 
Multivariate statistical techniques, such as cluster analysis (CA), discriminant analysis (DA), 
principal component analysis (PCA), and factor analysis (FA) were applied to evaluate temporal 
and spatial variations of water quality and to identify potential pollution sources of U-tapao River 
Basin (URB). A large set of water quality data were collected from 21 monitoring stations of river 
during five years (2007-2011) and analyzed for 12 parameters. Hierarchical cluster analysis 
grouped 21 sampling sites into three clusters, relatively less polluted (LP), medium polluted (MP) 
and highly polluted (HP) sites, and based on the similarity of water quality characteristics. From 
DA, five significant parameters including temperature, pH, dissolved oxygen, fecal coliform 
bacteria and ammonia were identified with correctly assign about 69.6% for the temporal variation 
and four significant parameters temperature, pH, dissolved oxygen and ammonia with correctly 
assign about 63.3% for the spatial variation. PCA/FA, applied to analyze the data sets of the three 
different groups obtained from cluster analysis, resulted latent factors accounting for 75.16%, 
76.01% and 70.51% of the total variance in water quality data sets of LP, MP and HP areas and 
also accounting for 72.97% and 71.51% of the total variance in water quality data sets of wet and 
dry seasons respectively. The PCA/FA assisted in extracting and recognizing the factors 
responsible for spatial and temporal variations and indicated that the parameters for water quality 
variations are mainly related to organic pollutants and showed that agriculture and urban activities 
were the major pollutant sources.  
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1. Introduction 
 
Water quality has become one of the major environmental concerns worldwide and is influenced 
by natural and anthropogenic disturbance, such as wastewater, runoff effluents, land reclamation, 
atmospheric deposition and climate change [1]. In recent years, more and more attention has been 
paid to surface water quality because of its strong linkage with human well being [2-3]. The 
quality of river at any point reflects several major influences, including the lithology of the basin, 
atmospheric inputs, and climatic conditions [4] and governed by both natural process and 
anthropogenic effects [5-9]. So, wastewater from agricultural, industrial and urban activities and 
often natural processes such as erosion and weathering degrades water quality and impair their use 
for drinking, industrial, agriculture, recreation or other purposes [10]. Clean river water is a vital 
commodity for the well-being of human societies, and damage of inland aquatic system was one of 
the most serious environmental problems of the last century [11]. Rivers, due to their role in 
carrying-off the domestic and industrial wastewater and run-off from agricultural land in their vast 
drainage basin are among the most vulnerable water bodies to pollution [12]. Discharges from 
municipals and industries are considered as a point source while surface runoff is as a non-point 
source due to its characteristics that are highly influenced by spatial and seasonal changes [13-15]. 
 Spatial and temporal variability in water chemistry in rivers and streams is directly 
related to different factors. Rivers and streams are highly heterogeneous at different spatial scales. 
The spatial heterogeneity within the stream is due to local environmental conditions that change 
through time and differences in local channel form, while degree of temporal variability of surface 
water chemistry varies as a function of stream/river type and depends on the chemical parameter 
of interest [16]. Due to spatial and temporal variations in water quality, regular monitoring 
programs are recognized to be the essential step to characterize and control the surface water 
pollution [17]. However, many monitoring programs result in large and complicated data sets 
consisting of physical, chemical, biological and microbiological properties, which are difficult to 
analyze and interpret because of latent interrelationships among parameters and monitoring sites 
[3]. For this reason, multivariate statistical methods like cluster analysis (CA), discriminat analysis 
(DA), principal component analysis (PCA) and factor analysis (FA) have been widely applied to 
interpret and derive useful information from complicated data about water quality studies [14-21]. 
 In recent years, many studies related to these methods have been carried out. For 
instance, multivariate statistical methods, such as FA was used by Charkhabi and Sakizadeh [22] 
to identify the sources of pollution and temporal variation of water quality of Anzali wetland, 
Northern Iran. Similarly, Zhou et al [3] used PCA and CA to classify the sampling sites and to 
identify the latent pollution source. And, Zhao and Cui [23] used CA and FA to find the temporal 
variation of water quality of Luan River, China, taking 19 parameters of 10 stations. Further, 
multivariate methods, like, CA, DA and PCA/FA were used by Shrestha and Kazama [4] to 
analyze the water quality dataset, including 12 parameters at 13 sites of the Fuji river basin from 
1995-2002 to obtain temporal and spatial variations and to identify potential pollution sources. 
Again, Huang, Ho and Du [24] used CA, DA and PCA to analyze the costal water quality from 22 
inshore sampling sites to extract latent information about the similarities or dissimilarities among 
the monitoring periods or sites and identify pollution sources leading to spatiotemporal variations 
in water quality in Macau peninsula. Obviously, previous studies provided valuable insights into 
the application of CA, DA and PCA techniques to environmental management and protection. 
However, comprehensive application of CA, DA and PCA/FA to analysis of the river water 
quality along U-tapao River Basin regarding spatial–temporal variation and sources identification 
has not been conducted.  
 Therefore, in this study, the data sets obtained during 2007-2011 in U-tapao River Basin 
in southern Thailand, were analyzed with CA, DA and PCA/FA. The objectives of this study were: 
(1) to extract information about the similarities or dissimilarities between monitoring sites, (2) to 
identify significant parameters responsible for temporal and spatial variations in river water 
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quality, (3) to find the influence of possible pollution sources on water quality parameters. The 
results of this study are expected to be helpful to optimize river-monitoring plan and provide a 
valuable tool in developing assessment strategies for effective water quality management as well 
as rapid solutions on pollution problems. In addition, this study is aimed to provide information 
and scientific understanding to policy makers, environmentalists and researchers dealing with 
these kinds of river systems and yet have not been the subject of scientific investigation. 
 
 

2. Materials and Methods 
 
2.1 Study area 
U-tapao is a sub-basin of Songkhla lake basin (SLB) which is located in southern part of Thailand. 
The basin is about 60 km long from north to south, and 40 km wide from west to east, and total 
coverage is about 2,305 square kilometers. The longitude and latitude of basin is 100º 10' through 
100º 37’ E and 6º 28' through 7º 10' N respectively (Figure1). Basin has a tropical monsoon 
climate and it is governed by two monsoons; the southwest monsoon and the northeast monsoon 
with average rainfall of approximately 1800 mm per annum varying between 1600 and 2400 mm 
and temperature of the area varies between 24ºC and 32º C throughout the year. In the basin, more 
than 75% of area is covered by agricultural land use and about 13 % by forest and forest land is 
located mostly in mountainous areas, whereas agricultural and grassland areas are sparsely 
distributed throughout the basin. U-tapao is one of the most important rivers of SLB which has 10 
tributaries including major and minor ones. The river serves as a major source of domestic and 
industrial water supply for Hatyai and Songkhla cities. During its course of 90 kms, it receives 
pollution load from both point and non-point sources.  
 
2.2 Parameters and monitoring stations 
The secondary data of 12 water quality parameters : water temperature (TEMP), pH, dissolved 
oxygen (DO) biological oxygen demand (BOD), suspended solid (SS), electrical conductivity 
(EC), turbidity (TUR), fecal coliform bacteria (FCB), ammonia (NH3), nitrate (NO3), nitrite (NO2) 
and total phosphorous(TP) at 21 monitoring stations over 5 years (2007–2011) were collected 
from the Environmental Office -16, Songkhla and this organization is the authentic organization of 
collecting and maintaing data of southern region of Thailand. The water quality parameters, their 
units and descriptive statistics are mentioned in Table 1. Thai metrological department has 
categorized southern part of Thailand into two seasons. So, all data were divided into two parts, i) 
dry season (February, March, April and May) and ii) wet season (June, July, August, September, 
October, November, December and January) for seasonal variation analysis.  
In this study, station 1 to 9 represent upstream region of basin and most of areas are less affected 
from human activities, out of which, station 1-3 are the least effected regions. Station 10 to 17 
represent midstream region of basin and most of areas were affected by almost all types of 
pollution from residential, agricultural and industrial activities. Most of rubber processing and 
agricultural based industries are located along the station 12 to 17. Station 18 to 21 represent 
downstream region of basin and these are highly affected from agriculture based pollutants and 
station 20 and 21 are highly affected by agricultural, as well as shrimp and pig farming activities. 
Overall, the most of industries are located on the banks of river with about 10% at the upstream, 
65% at midstream and 25% at downstream region. The main commercial city, Hatyai is located in 
midstream region whereas traditional city, Songkhla is located in downstream region of the basin. 
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Figure 1 Map of study area and surface water quality monitoring stations (listed ST-1 to ST-21) in 
the U-tapao river basin (URB). 
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Table 1 Mean, standard deviation, minimum and maximum values of 12 water quality parameters 
(WQP) of U-tapao river of 21 monitoring stations from year 2007 to 2011 
 

WQP Mean SD Min Max 
TEMP (ºC) 28.96 1.75 25.12 34.37 

pH 6.891 0.925 2.907 12.531 
BOD (mg/L) 3.597 2.431 0.931 16.243 
DO (mg/L) 4.109 1.396 0.802 11.237 
EC (μs/cm) 766.09 4,249.25 24.00 52,800.00 
SS (mg/L) 45.72 45.37 7.00 189.00 

TUR (NTU) 40.38 29.23 3.81 151.03 
FCB (mpn/100ml) 13,878 31,341 1,300 1,600,000 

NH3 (mg/L) 0.458 1.126 0.010 3.910 
NO3 (mg/L) 1.066 1.185 0.110 4.980 
NO2 (mg/L) 0.622 1.388 0.003 5.521 
TP (mg/L) 1.081 2.683 0.010 3.133 

 
 
2.3 Statistical methods 
In this study, multivariate statistical techniques were used to analyze the huge data set of 21 
monitoring stations of river basin. The application of different multivariate statistical techniques, 
such as cluster analysis (CA), principal component analysis (PCA), factor analysis (FA), assists in 
the interpretation of complex data matrices to better understand the water quality and ecological 
status of the studied systems, allows the identification of possible factors that influence water 
environment systems and offers a valuable tool for reliable management of water resources [4]. 
All mathematical and statistical calculations were implemented using SPSS version-12 and 
Microsoft Office Excel 2007. 
 
2.4 Data treatment 
Prior to multivariate statistical analysis, the normality of the distribution of each variable was 
checked. The Kolmogorove-Smirnov (K-S) statistics were used to test the goodness of fit of the 
data to log-normal distribution [4]. According to the K-S test, all the variables were log-normally 
distributed with 95% or higher confidence. CA and PCA/FA were applied on experimental data 
standardized through z-scale transformation in order to avoid misclassification due to wide 
differences in data dimensionality [20]. To examine the suitability of the data for PCA/FA, Kaiser-
Meyer-Olkin (KMO) and Bartlett’s Sphericity tests were performed [4]. In this study, the KMO is 
0.647 (>0.6) and the significance level of Barelett’s test was less than 0.05, so the data set was 
found to be appropriate for factor analysis. 
 
 

3. Results and Discussion 
 
3.1 Cluster analysis (Spatial similarity and site grouping) 
Since one of the objectives of this study was to identify similarities or dissimilarities among 
monitoring sites and to distinguish each cluster analysis was applied to find out the similarity 
groups between 21 monitoring sites. Cluster analysis was performed on the mean values of the 
parameters for each of the stations. It yielded a dendrogram (Figure 2), grouping all 21 sampling 
sites of the basin into three statistically significant clusters at (Dlink/Dmax) X 100 < 25. The 
results separated three different groups (clusters) along the U-tapao River consisting all the 
measured values. 
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3.1.1 Group A: This group (cluster) could be regarded as relatively less polluted (LP) sites of the 
river. Most of stations (ST-1, ST-2, ST-3, ST-4, ST-5, ST-7, ST-8, and ST-9) are situated at 
upstream sites and ST-10 and ST-12 are situated the midstream region. In this area, the 
urbanization and industrialization level is relatively low. Hence, the impact of human activities on 
the riverine ecosystem is relatively low. The inclusion of the midstream sampling location in 
cluster group suggests the self purification and assimilative capacity of the river. Most of this area 
is underdeveloped. Although, the most of surrounding areas of ST-1, ST-2, ST-3, ST-4 and ST-5 
are covered by forest and rubber plantations, some mining and the direct discharge of domestic 
wastewater from villages somehow contaminated the water. Overall these sites are somehow 
influenced by agricultural activities; however, less pollutant pressures from industrial and 
household wastewaters. 
3.1.2 Group B: This group (cluster) could be regarded as relatively highly polluted (HP) sites of 
the river. Most of stations (ST-11, ST-13 and ST-16) are situated at midstream sites whereas ST-6 
is situated in upstream and ST-18 and ST-20 are situated in downstream region. Most of sites are 
located industrial and city area; therefore, these sampling stations received pollutants mostly from 
domestic wastewater, wastewater treatment plants and industrial effluents. Beside these, untreated 
sewage of agriculture activities and surface runoff from Hatyai city also increased pollutants. 
3.1.3 Group C: This group (cluster) could be regarded as relatively moderate polluted (MP) sites 
of the river. The stations ST-19 and ST-21 are situated at downstream region whereas for ST-14, 
ST-15 and ST-17 are situated in midstream region. Most of land uses in this cluster are agriculture, 
especially paddy fields, where relatively high levels of fertilizers and pesticides are used. 
Therefore, these inputs reflect the result of soil erosion and leaching. Most of land uses of ST-14, 
ST-15 and ST-17 are rubber plantation, so these sites receive pollution from non-point sources. 
The water quality of ST-21 is poor because this site is surrounded by ancient town Songkhla. 
 The results indicate that the CA technique is useful in offering reliable classification of 
surface water in the whole region and make it possible to design a future spatial sampling strategy 
in an optimal method, which can reduce the number of sampling stations and associated costs of 
sites [12-14].  
 

 
 
Figure 2 Dendrogram showing clustering of sampling sites according to surface water quality 
characteristics of URB 
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3.2 Correlation analysis (Interrelationship within parameters) 
The correlation matrix of water quality parameters obtained from U-tapao river was examined. 
Some parameters showed significant correlationship. DO was negatively correlated to BOD (r =    
- 0.366, p<0.05), EC (r = - 0.433, p<0.05), TUR (r = - 0.267, p<0.01), NH3 (r = - 0.680, p<0.05) 
and TP (r = - 0.527, p<0.01). The negative relationship of DO with other parameters revealed the 
high organic pollution along with anthropogenic activities in the present study area. Inverse 
relationships DO with nutrients imply that the organic portion of nutrients play a major role for 
depletion of dissolved oxygen in the river system. There is negative correlation between TEMP 
and DO (r = - 0.136, p<0.01), which is natural process; warm water easily becomes saturated with 
oxygen and thus can hold less DO. The value of DO decreases with increase in the value of most 
of the polluted parameters; thus, it can serve as a single useful index of river water quality. And, 
the strong negative relationship of DO with other parameters indicates a common anthropogenic 
source. 
 
3.3 Discriminant Analysis (Temporal/spatial variations in river water quality)  
In this study, temporal variations of river water quality parameters were first evaluated through a 
season parameter correlation matrix, using Spearman non-parametric correlation coefficients 
(rs).The results shows that the parameters; TEMP, pH, BOD, DO, EC, TUR, FCB, NO3, NO2 and 
TP were found to be significantly (p<0.05) correlated with the season, except SS. Among these, 
temperature exhibited highest correlation coefficient (rs = 0.73) followed by DO (rs= 0.52). The 
season-correlated parameter can be taken as representing the major source of temporal variations 
in water quality [4]. 
 Temporal variations in water quality were further evaluated through DA. Temporal DA 
was performed on raw data after dividing the whole data set into two seasons (dry and wet). 
Discriminant functions (DFs) and classification matrices (CMs) obtained from the standard, 
forward stepwise and backward stepwise modes of DA are illustrated in Table 2 and 3.The 
standard and forward stepwise mode DFs, using 12 and 9 discriminant variables, respectively, 
yielded CMs correctly assigning >69% of the cases. However, in the backward stepwise mode, the 
DA produced a CM with close to 69.6% of the case, assignment using only five discriminant 
parameters showing that TEMP, pH, DO, FCB and NH3 were significant parameters of temporal 
variations in the river water quality. 
 Like temporal DA, spatial DA was performed with the same raw data set comprising 12 
parameters after grouping into three major classes A, B and C obtained through CA. Just as 
temporal DA, discriminant functions and classification matrices were also obtained from the 
standard, forward stepwise, backward stepwise modes, showing in Tables 4 and 5. The standard 
and forward stepwise mode DFs use 12 and 7 discriminant variables, respectively, correctly 
assigning 63.3% and 63.9% of the cases to the two groups. In the backward stepwise mode, the 
DA produced a CM with close to 63.9% correct assignment using only 4 discriminant parameters, 
showing that TEMP, pH, DO and NH3 were significant parameters of spatial variables. 
 
3.4 Principal component/factor analysis (Source identification) 
In case of temporal variation, PCA/FA was executed on 12 variables for two seasons, in order to 
identify important seasonal water quality parameters. An eigenvalue gives a measure of the 
significance of the factor: the factors with the highest eigenvalues are the most significant. 
Eigenvalues of 1.0 or greater are considered significant [4]. Classification of factor loading is thus 
‘strong’, ‘moderate’ and ‘weak’, corresponding to absolute loading values of > 0.75, 0.75-0.50 and 
0.50-0.30, respectively [20]. Corresponding, variable loadings and explained variance are 
presented in Table 6 and strong loading values have been highlighted. 
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Table 2 Classification function coefficients for discrimnant analysis of temporal variation in water 
quality of URB 
 

Parameters Standard mode Forward stepwise mode Backward stepwise mode 

 Dry Wet Dry Wet Dry Wet 

TEMP 10.129 9.797 10.389 10.060 10.517 10.185 

pH 5.989 6.198 6.541 6.744 5.847 6.025 

BOD -0.198 -0.228 -0.189 -0.279   

DO 3.953 3.838 3.836 3.720 3.898 3.800 

EC 0.001 0.001 0.000 0.000   

SS 0.910 0.980     

TUR 0.342 0.337 0.280 0.275   

FCB -2E-6 -2E-6 -2E-6 -2E-6 -8-E6 -3-E5 

NH3 13.038 14.256 6.155 7.301 8.376 9.322 

NO3 74.426 75.353     

NO2 -54.398 -55.149     

TP 15.552 15.994 3.128 3.392   

Constant -245.112 -238.226 -143.204 -185.188 -185.586 -177.281 

 
 
 
Table 3 Classification matrix for discriminant analysis of temporal variation of water quality  
 

 Period assigned by DA 

Seasons Percent correct Dry Wet 

Standard DA Mode    

Dry 48.4 92 125 

Wet 79.5 221 57 

Total 69.2 313 182 

Forward stepwise DA mode    

Dry 48.4 92 125 

Wet 80.2 223 55 

Total 69.5 315 180 

Backward stepwise DA mode    

Dry 49.8 95 122 

Wet 80.9 225 53 

Total 69.6 320 175 
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Table 4 Classification function coefficients for discrimnant analysis of spatial variation 
 

WQP Standard mode Forward stepwise mode Backward stepwise mode 

 Group 
A 

Group 
B 

Group 
C 

Group 
A 

Group 
B 

Group 
C 

Group 
A 

Group 
B 

Group C 

TEMP 10.757 11.410 11.235 10.922 11.576 11.404 10.929 11.577 11.397 

pH 7.272 7.757 7.437 7.112 7.588 7.275 7.157 7.644 7.341 

BOD -0.317 -0.294 -0.310 0.031 0.055 0.045    

DO 1.888 1.051 1.077 2.090 1.258 1.288 2.026 1.940 1.227 

EC 0.001 0.001 0.001 0.000 0.000 0.000    

SS 0.920 0.916 0.927       

TUR 0.343 0.347 0.354       

FCB -3E-5 -4E-5 -5E-5 -3-E5 -4E-5 -3-E5    

NH3 15.417 15.063 16.192 10.247 9.940 11.005 9.985 9.739 10.811 

NO3 78.955 79.831 81.353       

NO2 -59.265 -60.542 -61.598       

TP 17.306 17.638 17.895       

Constant -251.33 -271.11 -266.30 -186.62 - 205.73 -198.83 -186.24 -205.30 -198.290 

 
 
 
Table 5 Classification matrix for discriminant analysis of spatial variation 
 

  Period assigned by DA 

Season Percent correct Group A Group B Group C 

Standard Mode     

Group A 82.2 171 11 26 

Group B 38.3 38 42 46 

Group C 45.6 50 45 65 

Total 63.3 259 98 137 

Forward stepwise mode     

Group A 82.2 171 9 28 

Group B 36.3 37 42 47 

Group C 45.5 51 41 68 

Total 63.9 259 92 143 

Backward stepwise mode     

Group A 81.2 169 7 32 

Group B 37.1 36 43 47 

Group C 46.1 53 38 69 

Total 63.9 258 88 148 

 
 For dry season, VF1, which explained 21.07% of the total variance, had strong positive 
loadings on EC and moderate loading on SS and TUR, and had high negative loadings on NO3. 
This factor indicates that during this period, the surface runoff originated from the fields 
containing high load of solids from waste disposal source [4]. VF2, which explained 19.45% of 
the total variance, had strong negative loadings on pH and moderate negative loading on TEMP 
and positive loading on TP. This factor explains forming of organic acids leading to decrease pH. 
VF3, which explained 16.93% of total variance, had strong positive loading of NO2. NO2 has 
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relationship with runoff from agriculture field, so the contamination in this period is associated 
with agriculture as well as solid waste disposal activities of cities and towns [23]. VF4, which 
explained 15.05% of the total variance, had strong positive loading on DO and moderate negative 
loading on NH3. 
 For wet season, VF1, which explained 21.05% of the total variance, had strong positive 
loadings on TP and negative loadings on NH3.VF2, which explained 18.64% of the total variance, 
had strong negative loading on NH3 and moderate positive loading on DO. These factors indicate 
the decrease of organic pollution in this period. VF3, which explained 17.27% of the total 
variance, had high positive loading on EC and moderate negative loading on TEMP and moderate 
positive loading on TUR. This factor explains the erosion from upland areas during rainfall or 
similar events [4]. VF4, which explained 14.08% of the total variance, had strong positive loading 
on NO3. This factor explains the pollution of river due to surface runoff.  
 From factor analysis of seasonal variation explained that, in dry season the river received 
pollution mostly from point sources as opposed to wet season, where it received higher amount of 
nutrients from surface runoff from agriculture areas. The strong positive loading EC and strong 
negative loading of pH on both seasons is a peculiar thing. Actually, U-tapao river is connected to 
Songkhla lake (or lagoon) from where salty water enters into river system. The concentration 
amount of salinity depends upon seasonal pattern and EC and pH are also related with salinity. So, 
there is high variation of EC and pH value and showed strong positive and negative loading in 
both seasons.  
 In case of spatial variation, Principal component analysis/factor analysis was performed 
on the normalized data sets (12 variables) separately for the three different regions, viz., groups A 
B, and C as delineated by CA techniques, to compare the composition pattern between analyzed 
water samples and identify the factors influencing each one PCA/FA of the three data sets yielded 
four VF for the group A, three VF for group B and four VF for group C with eigenvalues >1, 
explaining 71.62%, 71.77% and 72.01% of the total variance in respective water quality data sets 
(Table 7). 
 For the data set pertaining to group A, among four VFs, VF1, which explained 22.35% of 
total variance, had strong positive loading on BOD and NO3 and moderate positive loading on 
TUR and NH3. Since, BOD and NO3 represent organic pollution and this factor represents the 
contribution of non-point source pollution from rubber plantation areas. In these areas, farmers use 
the nitrogenous fertilizer, which undergo nitrification processes, and the rivers receive nitrate 
nitrogen via groundwater leaching [4] and moderate loading of TUR explains the erosion from 
upland areas.VF2, which explained 19.36% of total variance, had strong positive loading on DO 
and SS and moderate positive loading on FCB and moderate negative loading on TEMP. Since the 
inverse relationship between TEMP and DO is a natural process, the warmer water becomes 
saturated more easily with oxygen and it can hold less dissolved oxygen [16]. Strong positive 
loading of SS and FCB explain domestic wastewater contaminated by fecal pollution from local 
livestock, especially pig farming. VF3, which explained 17.70% of the total variance, had positive 
loading on EC and NO2. Generally, geological deposits, natural or organic matter decomposition 
and agriculture runoff are sources of NO2 [16]. VF4, which explained 15.74% of total variance, 
had strong negative loading on TP and moderate positive loading pH. This factor represents the 
erosion effect during cultivation of soil and associated organic matter. 
 For group B, VF1, which explained 35.04% of total variance, had strong positive loading 
on pH, EC and NO2 and moderate positive loading on TUR. The existence of high loading on pH 
and EC is due to a lot of ions from industrial pollution. This factor explains the anthropogenic 
activities on the surrounding areas by the physiochemical source of variability [4]. And strong 
positive loading of NO2 with positive loading of TUR indicates the relationship of river runoff 
from the agricultural field along with waste disposal activity [26]. VF2, which explains 22.65% of 
total variance, had strong positive loading on FCB and moderate positive loading on TP. This 
factor explains the effects of pollution from domestic waste as well as livestock waste from 
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surrounding areas because FCB is strongly related to municipal sewage and wastewater treatment 
plants along the river [4]. VF3, which explained18.32% of total variance, had high negative 
loading on DO and positive loading on NH3. Negative relationship between NH3 and DO can be 
explained such that high levels of dissolved organic matter consume large amount of oxygen [16]. 
This factor explains the organic pollution from municipal sewage and industrial wastewater [14].  
 For group C, VF1, which explained 19.82% of total variance, had high positive loading 
on TP and moderate negative loading on TUR. This factor explains agricultural runoff from 
phosphorous based fertilizers and the domestic wastewater particularly containing detergents 
contribute to elevated levels of phosphorous in surface waters [26]. VF2, which explained 18.35% 
of total variance, had high positive loading on pH and negative loading on NO2. VF3, which 
explained 17.97% of total variance, had moderate positive loading on TEMP, DO and EC. This 
factor explains the downstream dilution effect of water. VF4, which explained 16.67% of total 
variance had strong positive loading on NH3. This factor explains the pollution from domestic 
wastes and stream bed material [26]. 
 From PCA/FA showed that the level of pollution generally increases from upstream to 
downstream of the river. Overall, there were three types of pollution in the study area: organic 
pollution, nutrients pollution, and fecal pollution. The Group B sites (HP) influenced by household 
wastewater presented the highest concentrations of nutrients and extremely high pollution due to 
discharge of wastewater from industry and domestic. The Group C sites (MP) were influenced 
from pollution from agriculture runoff and domestic waste from city area, since domestic 
wastewater discharges from the dense combined sewer system from city, fecal pollution was one 
of the potential pollution sources for both Group B and Group C. The Group A (LP) sites were 
influenced especially by agricultural facilities; however, this was less pollutant pressures than 
industrial and household wastewaters. 
 
Table 6 Loadings of experimental variables (12) on principal components for two seasons 
 

Variables Dry Season Wet season 

 VF1 VF2 VF3 VF4 VF1 VF2 VF3 VF4 

TEMP -0.488 0.646 0.248 -0.339 0.256 0.113 -0.738 -0.066 

pH -0.231 -0.912 -0.186 0.116 -0.827 0.253 0.158 0.128 

BOD  0.132 0.144 0.520 -0.230 0.438 -0.480 0.289 0.226 

DO  0.198 -0.201 -0.132 0.876 -0.204 0.725 0.062 0.020 

EC  0.764 -0.601 0.132 0.155 -0.102 0.238 0.957 -0.127 

SS  0.562 0.079 -0.037 0.245 0.031 0.456 -0.034 -0.334 

TUR 0.742 0.077 0.117 -0.024 0.423 -0.207 0.626 -0.215 

FCB  -0.181 0.012 -0.139 0.411 -0.154 0.329 -0.241 0.048 

NH3  -0.273 0.100 -0.204 -0.730 -0.035 -0.994 -0.067 -0.067 

NO3  -0.753 -0.152 0.534 0.351 -0.028 -0.006 -0.190 0.981 

NO2  -0.177 0.224 0.943 0.046 0.639 -0.009 0.051 0.675 

TP  0.122 0.745 0.616 0.036 0.986 -0.014 -0.074 0.144 

Eigenvalue 2.529 2.334 2.033 1.861 2.580 2.237 2.073 1.691 

% Total variance 21.075 19.451 16.938 15.506 21.504 18.641 17.278 14.088 

Cumulative % 
variance 

21.075 40.526 57.464 72.970 21.504 40.145 57.423 71.511 
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Table 7 Loadings of experimental variables (12) on principal components for Group A, Group B 
and Group C data sets 
 

 Group A Group B Group C 

 VF1 VF2 VF3 VF4 VF1 VF2 VF3 VF4 VF1 VF2 VF3 

TEMP 0.294 -0.612 0.144 0.326 0.333 -0.209 0.691 -0.072 -0.738 0.074 0.431 

pH -0.091 -0.149 0.399 0.732 -0.286 0.772 -0.074 0.350 0.759 -0.103 -0.164 

BOD  0.750 -0.217 -0.195 -0.016 0.158 -0.713 0.009 0.350 0.328 0.247 0.656 

DO  0.514 0.770 -0.082 -0.147 -0.463 0.078 0.528 -0.171 -0.013 -0.036 -0.812 

EC  -0.148 0.033 0.872 0.219 -0.352 0.176 0.736 -0.006 0.998 0.053 0.009 

SS  -0.077 0.750 0.395 0.273 0.101 0.472 0.096 -0.387 0.487 -0.102 -0.140 

TUR 0.647 0.212 -0.334 0.042 -0.737 -0.252 0.349 -0.155 0.712 -0.230 0.514 

FCB  -0.273 0.653 0.133 0.202 0.473 0.244 0.440 0.497 -0.130 0.989 -0.030 

NH3  0.686 0.025 0.036 -0.494 -0.347 -0.117 -0.360 0.794 -0.279 -0.127 0.926 

NO3  0.845 -0.425 -0.128 -0.009 0.698 0.363 -0.275 -0.367 -0.572 0.437 -0.270 

NO2  -0.233 0.175 0.913 -0.076 0.317 -0.792 0.041 -0.345 0.899 0.307 0.088 

TP  0.032 -0.198 -0.050 -0.900 0.767 0.142 0.449 0.258 -0.480 0.737 0.445 

Eigenvalue 2.683 2.323 2.124 1.890 2.259 2.104 2.037 1.942 4.206 2.718 2.198 

% Total 
variance 

22.359 19.361 17.701 15.746 19.826 18.534 17.978 16.179 35.047 22.650 18.320 

Cumulative 
% variance 

22.359 41.750 59.422 75.168 19.826 37.361 54.339 70.518 35.047 57.697 76.017 

 
 

4. Conclusions 
 
In this study, multivariable statistical methods were successfully applied to evaluate temporal and 
spatial variations in river water quality and source identification at the monitoring sites in U-tapao 
River Basin. Hierarchical cluster analysis grouped 21 sampling sites into three groups, i.e., less 
polluted area, moderate polluted area and high polluted area based on their similarity of water 
quality characteristics. Based on obtained information, it is possible to design an optimal sampling 
strategy, which could reduce the number of sampling stations and associate costs. Also this 
analysis allowed the identification of three different zones in the river, with different water quality. 
From correlation analysis, the negative relationship DO with other parameters reveals the high 
organic pollution along with anthropogenic activities in the basin. Discriminant analysis gave the 
best results both spatially and temporally. For the temporal variation analysis, the DA used only 
five parameters (TEMP, pH, DO, FCB and NH3) with close to 69.6% correct assignment. It was 
found that a parameter that can be significant in contribution to water quality variations in river for 
one season may less or not be significant for another one. For the spatial variation analysis, the 
DA also used only four parameters (TEMP, pH, DO and NH3) and correctly assigned about 
63.9%. Therefore, DA allowed a reduction in the dimensionality of the large data set, delineating a 
few indicator parameters responsible for large variations in water quality. Although the 
factor/principle component analysis did not result in a significant data reduction, it helped extract 
and identify the factors/sources responsible for temporal and spatial variations in river water 
quality. Factor analysis explained in dry season the river received comparatively high amount 
point source pollution from domestic and industrial sector whereas in wet season, the received 
pollution from non point source like surface runoff from agriculture and residential areas. 
Varifactors obtained from factor analysis indicate that the parameters responsible for water quality 
variations are mainly related to temperature and organic pollution in relatively less polluted areas 
and organic pollution and nutrients in both medium and highly polluted areas in the basin. 
Considering the results of the measured physiochemical water parameters and the results of factor 
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and cluster analyses, the agriculture and urban land use were the most contributing factors to the 
pollution of the river. Thus, this study illustrates the usefulness of multivariate statistical 
techniques for analysis and interpretation of complex data sets, and in water quality assessment, 
identification of pollution sources/factors and understanding temporal/spatial variations in water 
quality for effective river water quality management. It is recommended to Environmental Office-
16, Songkla to adjust more water quality parameters for effective monitoring system and might 
reduce the monitoring stations for cost benefit purpose.  
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