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Abstract

Pseudomonas species are being used as a biological control, probiotics and bioremediation tools.
Nevertheless, phenotypic properties of pseudomonads are the most heterogeneous among the
species. Consequently, a thorough characterization of this genus is needed for accurate
identification and may lead to a better understanding of the diversity of this genus. Here, 16S-23S
rRNA internal spacer regions (ITS1) of Pseudomonas isolated from various aquatic animals were
analyzed. PCR amplification of ITS1 region of the studied isolates generated one, two or three
bands ranging from 384 bp to 705 bp. The analysis of the DNA products revealed that two genes
namely tRNA"™ and tRNAA"® were detected in all six studied strains. Phylogenetic analysis using
the unweighted pair group method of clustering (UPGMA) revealed 3 phylogenetic clusters
including Pseudomonas aeruginosa, P.putida and P. fluorescens. This report for the first time
suggests that there was intercistronic heterogeneity of the ITS1 among the pseudomonad strains in
aquaculture environment in Thailand.

Keywords: Pseudomonas, 16S-23S rRNA, ITS1, aquatic animal

1. Introduction

The genus Pseudomonas has been used in various activities such as biological control, probiotics,
and bioremediation. For example, Pseudomonas fluorescens was utilized as biological control of
soil-borne phytopathogens [1-2]; P. fluorescens was employed to reduce the mortality in rainbow
trout during the vibriosis outbreak [3]. Pseudomonas was also used to promote the growth
performance and health of Nile tilapia, Oreochromis niloticus [4]; P. fluorescens was exploited to
degrade the Direct Orange-102 effluent from textile industries [5], whereas P. aeruginosa and P.
putida were used to degrade oil [6-7]. On the other hand, some Pseudomonas strains are known as
plant and animal pathogens [8]. Phenotypic properties of pseudomonads are well known as the
most heterogeneous across the genus. Much research has been elaborated on the genome
characterization to understand this genus [8-13]. This will facilitate the better utilization of
pseudomonad in each purpose.
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The rRNA genes (16S, 23S and 5S) are ideal gene candidates for bacterial identification
and evolutionary studies as they are highly conserved within the species [14]. The ITS1 regions
located between the 16S and 23S rDNAs have been proven to be under less evolutionary pressure
[15]. Thus, they are widely used in differentiation and identification of closely related bacteria
[16]. Intercistronic heterogeneity of the ITS1 has been observed among Pseudomonas strains
isolated from various sources including plants [9-11], hospitalized patients [17], foods [18].
However, there has been no report on the heterogeneity of ITS1 of Pseudomonas isolated from
aquaculture. Here, we describe the use of 16S-23S rRNA ITS1 to demonstrate the heterogeneity of
six Pseudomonas isolates found in aquaculture environment in Thailand.

2. Materials and Methods

2.1 Bacterial strains and culture conditions

Six bacteria isolated from different aquatic animals (Table 1) were grown on tryptic soy agar
(TSA) (Oxoid) at 30°C for 18 h. They were previously characterized by API 20NE (Biomerieux)
to identify the species as shown in Table 2.

2.2 Bacterial DNA isolation and amplification of spacer region

Genomic DNAs were extracted as described by Boom et al. [19]. The DNAs of each isolates were
then amplified in a DNA thermal cycler (OmniGene, Hybaid Ltd., UK) as described by Jaturapahu
et al. [20]. Briefly, a typical reaction mixture (50 puL) consisted of reaction buffer (50 mM KClI, 10
mM Tris-HCI, pH 9.0, 0.1% Triton X-100, 3.0 mM MgCl), 200 uM (each) deoxynucleotide
triphosphate, 2 U Taq DNA polymerase (Promega), 5 ng DNA sample, and 10 pmol of each
primer (P16sf and P23sr, previously described by Sawada et al. [15]. The reaction mixture was
cycled 35 times as follows: 1 min denaturation at 94°C, 1 min annealing at 52°C and 1 min 30 sec
extension at 72°C. The vials were held at 4°C until the PCR product was detected by 1.5%
agarose gel electrophoresis.

2.3 Cloning and sequencing

The PCR products were purified with phenol-chloroform. After precipitating with ethanol, the
DNA pellet was dissolved in 50 uL TE buffer. The fragment was ligated into pGEM T-Easy
vector (Promega), and then the recombinant plasmid was transformed into Escherichia coli.
Plasmid was extracted from positive transformants by the alkaline lysis method [21]. Inserts were
amplified with M13 primers using a Taq DyeDeoxy Terminator Cycle Sequencing Kit (Perkin-
Elmer, Norwalk, CT). Finally, the products were sequenced by the ABI Prism 377 automatic
sequencer (Applied Biosystems).

2.4 Sequence analysis

The ITS1 sequences with approximately equal lengths of the six Pseudomonas isolates were
aligned with CLUSTAL W program [22]. A phylogenetic tree was constructed by the unweighted
pair group method of clustering (UPGMA) using program MEGA version 4.0 [23] with a
bootstrap of 1,000 samplings. Gaps were eliminated from the calculations. The ITS1 regions were
analyzed by transfer RNAs (tRNAs) using tRNAscan-SE version 1.21 [24].
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Table 1 Characterization of ITS1 in six Pseudomonas strains isolated from different aquatic
animals.

Isolate Strain Host No. of fragment | Frag No. |PCR productsize (bp) | ITS1 length (bp tRNA
AAHRI 01031P. fluorescens |  Guppy 1 1 579 476 tRNA™, (RNAM
AAHRI 01213P. putida Oscar 3 1 705 602 RNA", (RNAM

2 614 511 RNA™, (RNAM
3 384 281 no
AAHRI 01342P. fluorescens |  Guppy 2 1 610 507 RNA™, RNAM
2 420 317 no
AAHRI 01419P. fluorescens [Flame gourami 1 1 611 508 RNA™, (RNAM
AAHRI 02007P. aeruginosa |Striped catfish 1 1 600 497 (RNA™, (RNAM
AAHRI 03418P. fluorescens | Gold fish 2 1 608 505 RNA™, (RNAM
2 420 317 no

AAHRI: Aquatic Animal Health Research Institute

3. Results and Discussion

3.1 PCR amplification of ITS1

PCR amplification of genomic DNA derived ITS1 region of the six Pseudomonas strains showed
different bands ranging from 384 bp to 705 bp (Table 1). The fragments consisted of the complete
ITS1 sequences flanked upstream by 53 bp of 16S rRNA and downstream by 50 bp of 23S rRNA.
The presence of multiple bands in PCRs suggested the presence of multiple rRNA operons (Figure

1.

1,000 bp —>
500 bp =

200 bp —>

Figure 1 The PCR products of six Pseudomonas strains isolated from aquatic animals. Lanes: (1)
AAHRI 01031, (2) AAHRI 01213, (3) AAHRI 01342, (4) AAHRI 01419, (5) AAHRI 02007, (6)
AAHRI 03418. Lane M was DNA marker (100 bp ladder, BIOLINE). Lane 7 was negative control
(dH>0)
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3.2 Comparison of ITS1 sequences and phylogeny

ITS regions from the six isolates were sequenced and then were generated from the PCR
amplicons. The complete ITS1 nucleotide sequences were edited to eliminate the 16S and 23S
portions for further analysis. The size of the 16S-23S ITS1 ranged from 281 to 602 bp. The
analysis of the DNA sequences revealed that there were two genes, including tRNA""® and tRNAA®R
presenting in all six Pseudomonas strains, in the order 16S rRNA-tRNA"® -tRNAA2-23S rRNA.

The tRNA sequence for tRNA" and tRNAA®, which are highly conserved, and major
areas among a sequence of tRNA genes are variable. The variable region followed the tRNAAR
gene and ended with antiterminator box B stem-loop structure equivalent to box B of E. coli [25].
The study area was conducted as a report of Milyutina et al. [11]. The conserved region following
box B contained a block of nucleotides highly homologous to the sequence of the antiterminator
box A of other bacteria [26] (Figure 2). In additional, isolates AAHRI 01213, AAHRI 01342 and
AAHRI 03418 generated a smaller ITS1 281 bp, 317 bp and 317 bp respectively without tRNA
features was detected confer the report Tamboung et al. [9]. These multiple non-identical rRNA
operons may have an impact on studies in molecular systematic and population genetics in
cyanobacteria [27]. ITS1 operon variability in the genomes of the Pseudomonas strains reported
here confirms that may vary due to recombination events and/or horizontal transfers [9, 11].

The aligned ITS1 sequences were used to generate a phylogenetic relationship of the six
Pseudomonas strains, three reference Pseudomonas sequences (including P. aeroginosa ATCC
27853, P. putida DMST 10603 and P. fluorescens TISTR 358 previous studied from Jaturapahu et
al. [20]), and two sequences obtained from the GenBank database (P. aeruginosa accession
number FM209186 and P. fluorescens accession number AM181176) were entries. The results
showed three distinct clusters. By phylogenetic analysis, the use of UPGMA clustering revealed
these three clusters were P. aeruginosa, P. putida and P. fluorescens (Figure 3). This result is
consistent with that obtained from the biochemical test (Table 2).

In conclusion, the heterogeneity of the pseudomonad ITS1 conducted from aquatic
environment was determined by sequence variants of variable region. However, the identical
multiple rRNA operons are interesting for further analysis to understand the recombination and
horizontal transfer.
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Figure 2 Total sequence alignments of the 16S-23S rRNA intergenic spacer regions of six
Pseudomonas strains isolated from various aquatic animal. The highly variable region between
positions 67-93, 171-198 and 277-300 are enclosed in dash boxes as well as box A and B and
position of tRNA genes are indicated.
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Figure 3 Phylogenetic tree based on the 16S-23S rRNA intergenic spacer regions of six
Pseudomonas strains was inferred using the UPGMA clustering. (ATCC: American Type Culture
Collection, DMST: Department of Medical Sciences Thailand, TISTR: Thailand Institute of
Scientific and Technological Research, AAHRI: Aquatic Animal Health Research Institute).
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Table 2 Phenotypes of six Pseudomonas strains (AAHRI 01031, AAHRI 01213, AAHRI 01342, AAHRI 01419, AAHRI 02007 and AAHRI

03418) isolated in this study and reference strains (ATCC 27853, DMST 10603 and TISTR 358) using the API 20NE biochemical test kit.

Characteris tic

AAHRI 01031

AAHRI 01213

AAHRI 01342

AAHRI 01419

AAHRI 02007

AAHRI 03418

ATCC 27853

DMST 10603

TISTR 358

Gram strain

neagtive

neagtive

neagtive

neagtive

neagtive

neagtive

neagtive

neagtive

neagtive

Reduction of nitrates to nitrites

Reduction of nitrites to nitrogen

+

+

Indole production

Fermentation (Glucose)

Arginine dihydrolase

Urease

B-glucosidase hydrolysis

Protease hydrolysis

Para-nitrophenyl-BD-galactopyranosidase

Assimilation (glucose)

+

Assimilation (arabinose)

+

Assimilation (mannose)

Assimilation (mannitol)

Assimilation (N-acetyl-glucosamine)

+ |+ |+

+ |+

+ |+ |+

Assimilation (maltose)

Assimilation (potassium gluconate)

+

Assimilation (capric acid)

+ |+ |+ |+ [+

R R

Assimilation (adipic acid)

Assimilation (malate)

Assimilation (trisodium citrate)

++ |+ |+ |

e N R N e

o+ |+ [+ |+

Assimilation (phenylacetic acid)

+ [+ |+

+ [+ |+

+ |+ |+

Oxidase

+

+

+

+

+

+

+

+

+

Strain

P. fluorescens

P. putida

P. fluorescens

P. fluorescens

P. aeruginosa

P. fluorescens

P. aeruginosa

P. putida

P. fluorescens

Abbreviations: + = reaction occur, - = no reaction
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